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Abstract. We define quantum fields (giant fields) on a multidimensional space
which contain an infinite set of local fields in Minkowski space. The
multiplicative structure for the giant fields implies global expansions for
products of the local fields. Conformal symmetry is imposed in order to reduce
the number of kinematical variables.

1. Giant Fields and Lie Fields

We propose to investigate quantum field theories that possess a multiplicative
structure

. (1)

Here q runs over a manifold Q that has more than four dimensions and contains the
Minkowski space as a subset. The quantum field Φ(q) will be called a "giant field".
H1 and H2 are assumed to be corresponding distributions. It is obvious that (1)
allows us to express all n-point Wightman functions of Φ(q) in terms of Hί and H2

provided

0. (2)

We assume that this normalization of Φ(q) is valid and that Φ(q) is real (symmetric).
The giant field Φ(q) can in general be decomposed into a bosonic and fermionic

part

Φ(q) = ΦB(q) + ΦF(q). (3)

Equation (1) splits up correspondingly into four equations. In models in which the
fermionic part is absent, the antisymmetric parts

HUq^q^H^qJ-H^qJ
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of H ί and H2 specify the n-point functions completely. In this case (1) implies the
Lie structure

LΦ(q1)9Φ(q2ί]=Hl(qi9q2)

(5)

Thus a giant field satisfying (1) is in particular a "giant Lie field" [1]. In the case of a
mixed bosonic and fermionic giant field the field theory is already fixed once Hf βfl,
HFFs, HB

2

Ba, HBFa, HF

2

Fs are given. The kernels Hl and H2 contain thus much
redundant information from the viewpoint of Wightman field theory and must
satisfy very restrictive constraints.

In any case this raises the question whether giant fields are beset with the
awkward and unwanted properties of standard Lie fields [2, 3]. Robinson's
theorem [2] applies only to one scalar field and does not apply to giant fields for this
trivial reason. Moreover, the variable q involves besides the coordinate x of
Minkowski space parameters on which the homogenous Lorentz group acts in a
nontrivial fashion. This alone spoils Glaser's arguments [3] which entail that in a
standard Lie field model with finitely many field components the angular
momentum exchanged in the S-channel absorptive part of the four-point Green
function is bounded.

In the giant field models that we have in mind primarily and which we propose
to study first, we impose an enlarged symmetry on the field, namely conformal
co variance. Though we are still sure that none of the arguments brought forward
against the standard Lie fields applies to this restricted class of giant fields, we
cannot exclude that other yet unknown problematic properties show up.

2. The Physical Content of Giant Fields

We imagine a conformally covariant field theory over four dimensional Minkowski
space built on k basic fields φf(x), ί = 1, 2, . . ., fe. The dynamics of the theory is fixed by
covariant global expansions

Σ lsίjl(x^z}φ^(z}^z (6)
1=1

and by corresponding expansions of products of φ\ij} with basic fields or with
themselves. We shall not discuss here the problems in deriving or proving such
expansions [4]. Only few solvable models in two-dimensional Minkowski space
have been shown to possess such expansions [5].

Assuming appropriate convergence of the expansions (6) all rc-point Wightman
functions can be expressed in terms of the kernels sij9 sijt. In turn these kernels are
determined by covariance requirements up to normalization constants: field
normalization constants (sί<7 ) and coupling constants (stjl) [6]. Of course the
Wightman axioms are partly taken into account of in the transformation behaviour
of the fields. This is fixed (in the infinite sheet formalism [4]) by two invariant
parameters, spin and dimension, and eventually internal symmetry quantum
numbers.
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Thus in order to define a field theory by expansions (6) one has to specify a
countable set of spins and dimensions and give sets of normalization and coupling
constants. However, since the axioms have not yet been fully satisfied, these
parameters are not all free, but still restricted by "crossing symmetry". Inserting
namely (6) into the n-point functions in different fashions (which amounts to
harmonic analysis of the rc-point functions on the conformal group in different
channels) leads to different expansions that must all be the same.

Deriving from these relations explicit constraints on the spectrum and the
normalization constants looks hopeless at present.

We therefore try to reformulate a theory of this kind as a giant field theory. We
define the giant field such that it contains the whole set of local fields appearing in
the covariant Wilson expansions. To explain how this can be done, we must be a bit
more specific [6,7].

We choose as carrier space the homogeneous space

Q = G/BxZ (7)

of the universal covering group G of the conformal group. B is the subgroup of
special conformal transformations, Z is a two-parameter subgroup of homo-
geneous Lorentz transformations with vanishing eigenvalues for the rotation and
boost angles. This homogeneous space possesses an invariant measure μ(q) (1) and
can be parametrized by

q = (n9λ,κ,μ,x) (8)

where n is an integer (the sheet label), λ is positive real, κ and μ are complex, and x is
a Minkowski vector.

Conformal covariance of the giant field is defined by

geG-+%g: %gΦ(q)<%~1 = Φ(qg) (9)

where q-*qgis the action of G on Q.
We denote a conformally covariant spinor field of spin (J1J2) and dimension d

by φj

n

ίhd(x) in matrix form. Then we postulate the expansion

j ι , j 2

f inite

(10)

Here Dj are the usual spinor representation matrices of GL(2, C), fe is a repre-
sentative element of GL(2,C)/Zx ί/(l), where [7(l)={expiargdetα, αeGL(2, C)}.
k depends on κ and μ.

To give the expansion (10) a meaning we define a conformally invariant test
function space [6]. We subject ^2(Q) to harmonic analysis on G and obtain the
image space &2(Q\

Q6 is a homogeneous space of G on which we can define the representations of the
continuous principal series in certain S£ 2-spaces. Each point oϊX denotes one such
representation χ, χ involves two real continuous parameters ρ and ρf. Conformal
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invariance necessitates that test functions have a definite asymptotic behaviour in
the β6 variables for fixed χ (see the "canonical" construction of Ref. [6], Appendix).
On the other hand we are free to choose the dependence on X . We start from ^L2~
type functions on X and project out by Hubert transformations the subspace of
analytic functions over H: i.e. analytic functions in ρ for Imρ<0 and in ρ' for
Imρ'>0. Call this space ^H(Q\ The inverse image of s/H(Q) in &2(Q] is ^H(Q\

Since the Minkowski vectors are contained in Q6 and the analytic dependence
occurs solely in invariant parameters, we can formulate a Wightman giant field
theory with the space ^H(Q) without modification of the other axioms. In order to
build in the algebraic structure (1) we require that the kernel H^ maps £#H(Q) into
&#'H(Q) and that H2 maps ^H(Q) x ^H(Q) into ^H(Q) continuously. This can be
arranged (Section 3).

Consider an irreducible Wightman representation of the giant field algebra over
^H(Q) in the Hubert space § with the invariant cyclic vector |0>. With additional
technical assumptions on Hl and H2 (meromorphy in χ, Section 3) we can derive
(10). Each term on the r.h.s. arises from poles in ρ and ρ' in H and transforms as a
discrete series representation.

We close this section with a remark on locality. For the space (7) and in view of
the expansion (10) we define bosonic and fermionic parts of a giant field by

-κ, -μ,x)]

The locality condition applies to fields with equal n only. The fields on the r.h.s. of
(10) with a fixed n belong to the same Borchers class.

3. Constraints for Hί and H2

We assume that we have an irreducible representation of the giant field algebra as
considered in Section 2. The associative law applied to (1) yields

^ q)H2(q2, q3, q)dμ(q)

= ίH2(ql9q29q)Hl(q9q3)dμ(q) (12)
and

ί H2(qί9q29 q)H2(q9 q^ qjdμ(q) + H^q^ q2)δ(q3, q4)

= f H2(q29 q39 q)H2(qί9 q, q4)dμ(q] + H±(q29 q3)δ(q^ q4) . (13)

Harmonic analysis on G is applied to both Hί and H2. From co variance and the
spectral condition we obtain a spectral representation of H1 in terms of one type of
intertwining operator and a weight function γ(χ). The representation of the giant
field algebra on § requires H1 to generate a positive sesquilinear form on <%?H(Q)
which can be fulfilled by a meromorphic function γ(χ) over H with first order poles
and positive residues.

Correspondingly H2 possesses a spectral representation in terms of trilinear
co variant kernels. For the purpose of analytically continuing this spectral
representation in χ3 into H we have to use co variant kernels of the second kind [8].
Invariance of the space § under the multiplication (1) can be achieved by an
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appropriate meromorphic ansatz for the spectral functions f/Gcufo j fo) 1 - Neither
positίvity nor the spectrum condition constrains H2 provided (12) and (13) are
fulfilled. Locality can be taken into account by proper choice of the covariant
kernels.

By harmonic analysis the condition (12) reduces to an algebraic equation for y
and η. Since this is to be understood in a distribution sense only, it reduces to
algebraic relations for the residues of y and η in the case that these are realized by
meromorphic functions. Condition (13) expresses "crossing symmetry" (or "dua-
lity"). It reduces to an integral equation involving pairs of trilinear covariant kernels
of the second kind folded together in two different fashions. The relation among
two differently folded pairs of covariant trilinear kernels of the first kind can be
dealt with for the con formal group in two-dimensional Minkowski space by
analytically continued 6/-symbols of the rotation group. Nothing explicit is known
for higher dimensional spaces nor for any space if second kind kernels are used.
Thus we are not able to solve (13) at present for technical reasons. A model study in
two-dimensional Minkowski space is of no great interest whatever the result of such
investigation is: since it is known that there exist non-pathological models of Lie
field theories in two-dimensional Minkowski space [3] (in the case of existence of a
solution) and because of the high degeneracy of the spin-dimension spectrum that
may not fit into an expansion (10) (in the case there is no solution to our conditions).

We emphasize that meromorphy of the spectral functions of Hl and H2 with
first order poles on the imaginary axis [7] is an additional requirement. It allows us
to deduce (6) and (10) instead of Laplace integral representations or even more
complicated expressions.
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1 In the terminology of Ref. [5] stjl is a covariant kernel of the second kind. These are known only for
two-dimensional Minkowski space. Though their existence for higher dimensional spaces is likely, there
may be a finite degeneracy






