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Abstract. Sufficient conditions on unbounded, symmetric operators A and
which imply that

exp (it A) exp (isB) exp (— it A)

satisfies the well known "multiple commutator" formula are derived. Th
formula is then applied to prove new necessary and sufficient conditions for tl
integrability of representations of Lie algebras and canonical commutatic
relations and the commutativity of the spectral projections of two commutin
unbounded, self-adjoint operators. A classic theorem of Nelson's is obtained ί
a corollary. Our results are useful in relativistic quantum field theory.

1. Introduction

In this note we discuss sufficient conditions for the multiple commutator forma

(1.
I n= 1

to hold. Here A and B are unbounded operators and, formally,

Our results have applications in group theory and quantum field theory.
They are a direct outgrowth of recent work of Driessler and the author [̂

concerning the Haag-Kastler axioms [12] in relativistic quantum field theory and
subsequent alternate proof of the main result of [2] due to Glimm and Jaffe [3

The main result of [2, 3], a sufficient condition for the bounded functions of tw
unbounded, symmetric operators A and B to commute, is a special case of tt
results proven in the following sections.
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The basic strategy for a proof of (1.1) is to find a self-adjoint operator N ̂  1 in
terms of which A, B and in ad" A(B), n = 1,2,..., can be dominated in the sense of the
commutator theorem of [4] see also [6]. (Different forms of the commutator
theorem may be found in [8].)

2. The Main Results

We start with describing the general set-up and recalling the commutator theorem.
Let ffl be a separable Hubert space, and N a positive, self-adjoint operator on 2tf

satisfying

. (2.1)

We let $en be (the completion of) D(Nn/2) in the norm

\\ψ\\n=\\N*2ιp\\,±n=l,2,3....,

and &(&„, Jθ the bounded operators from Jίfn to J^m.
The domain of an operator C is denoted D(C\ and a subspace 3) C 2tf is called a

core for C if

Here C ί ® denotes the restriction of C to the subspace Q) and ( )~ the closure of ( ).
We assume that A is a symmetric operator in <£ (Jf\, JfL J i. e., on some form

core for N (Ξ core for N1/2\

, (2.2)

for some finite constant Kl (in the quadratic form sense). Then

Ά = i[N,A] (2.3)

is defined as an element of ^f(jf3, Jf_3) in the obvious way; see e.g. [8].

Theorem 0. Let A be as above and assume, in addition, thatAe^(J^fl9 34?_ ̂  i.e., on a
form core for N,

±A^KiN . (2.4)

Then A determines a densely defined, symmetric operator — also denoted A — o n f f l
with

D(N)ζD(A),\\Aιp\\^k1\\Nιp\\, with fe1^21/2K1, (2.5)

for all ιpeD(N), and
A is essentially self-adjoint on any core for N . (2.6)

Remark. This is the commutator theorem of [4], stated in a form due to [6].
In the applications a slightly different form of the commutator theorem is

sometimes more useful.
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Theorem 0'. Let Abe a symmetric operator on ffl with the properties that

D(A) contains a core Q) for N ,

\\Aip\\ ^k.HNψll, and

±i{(Nιp,Aιp)-(Aιp,Nιp)}^K1\\N1/2ιp\\2

for all
Then the conclusions of Theorem 0 remain true.

For proofs of Theorems 0 and 0', related results and references see [8],
(Theorems X.36, X.36', and X.37).

We now state our main results.

Theorem 1M. Let A, A, B, and {Cn}£t0 be operators in ^(J^l,^f_1) satisfying the
hypotheses of Theorems 0 or 0'. Assume that C0=B, and

Cn = iiA,Cn_J, (2.7)

in J^pf2,Jf_2) (i.e., weakly on D(N)xD(N)), for all n=l,...,M. Then

pitAgisBg-itA _ gisBt

with

M-l n

-

+ $dt1... J dtMeίtMACMe-lt™A \ I D ( N ) \ . (2.8)
o o J J

Theorem 1^. Let A, A, B and [Cn}™= 0 be as in the hypotheses of Theorem 1M, (for M
= 00,), and assume, in addition, that there is some finite constant K2 such that, on a
form core for N

±Cn^K"2nlN

(2.9)

for all n = l,2,3, ____
Then, for \t\<K^9

( M tn }
s-lim \B+ V — CΛU D(N) exists ,
M-oo [ n=l n- J

has a self-adjoint closure, denoted Bt, and

Remarks. 1) One may also denote Cn by inadnA(B); see (1.1) and (1.2).
2) A generalization of Theorems 1M and 1^ which may be useful in various

applications is presented in an Appendix; see Lemma A.I and Theorem A.2.
3) Theorem 1M contains as special cases sufficient conditions for the com-

mutativity of the bounded functions of two unbounded, self-adjoint operators
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(equivalent to the ones found in [2]) and for the integrability of the canonical
commutation relations; see Sections 6 and 7. Theorem 1^ is useful for the
integration of equations of motion in the Ήeisenberg picture".

3. Preliminaries: Invariance of Operator Domains

Here we discuss some results concerning the in variance of the domain D(N) of N
under certain unitary groups. They represent a slight elaboration of results of
Glimm and Jaffe [3] and may be of some interest in their own right. See also Lemma
A.I in the Appendix.

We let Q(N) = D(N1/2) denote the quadratic form domain of N.
The main result of this section is

Lemma 2. Let A and A satisfy the hypotheses of Theorem 0 or 0'. Then
1) JtAQ(N}QQ(N), and, for all ιpeQ(N),

\\Nll2eitAψ\\^e(1/2}Kίltl\\Nll2ιp\\

2) eίtAD(N)QD(N\ and, for all ψeD(N),

\\NeitAιp\\^ekllt] \\Nip\\

3) eίtAD(Na) = D(Na\ for α = l/2, 1 .

Remark. 3) is an immediate consequence of 1) and 2).

Proof. We first prove a simpler version of Lemma 2.

Definition. For λ^O we set

R(λ) = (N + λΓ^ Nλ = λ2R(λ)NR(λ) , (3.1)

and

= λ2R(λ) R(λ). (3.2)

Here A denotes A or A.
Using the self-adjointness and strict positivity of N we get

N*λ^NΛ, for all α^l , (3.3)

and since A and A satisfy (2.4), for some K1 < oo

A (3.4)

Application of (2.5) yields

\\N«Aλ ^λ1+^, for αe[0,l]. (3.5)

Lemma 2λ. Lemma 2 holds with Aλ replacing A and constants Kl and k1 independent
of λ.
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Proof. Using (3.4) and (3.5) and the power series expansion oϊeltAλ (convergent for
all |ί| < oo, λ < oo ) we obtain :

(3.6)

For φeβ(ΛO, set

Fλ(t) = (eίtAλιp, NeίtA*ιp) . (3.7)
Then

and we have used (3.2), (2.4), and (3.3). Hence

Fλ(t)^eκ^Fλ(ty = eκ^\\N1/2ψ\\2 (3.8)

which proves Lemma 2λ, (1). Next, let ψeD(N) and set

Gλ(t) = (NeίtA\ NeitAλy) . (3.9)

Then

dGλ(t)/dt = (NeitAλιp, Aλe
itAλ\p) + (Aλe

itAλιp, NeitAλιp]

^2\\NeίtAλ\p\\\\λλe
itAλ\p\\

^2\\NeίtAλιp\\ \\λR(λ)\\ \\AλR(λ)e?tA*ψ\\

and we have used (3.2), (2.5), and (3.3). Therefore

9 (3.10)

which proves Lemma 2Λ, (2). Lemma 2λ, (3) is statement (3.6). Hence the proof is
complete.

As a corollary to Lemma 2λ, (2) we note that

Since {eltAλ:λ^.O} and eίtA are unitary operators, it suffices to prove weak
convergence on a dense set. For φ and ψ in D(N),

(φ,{eίtA-eitA* }ιp)
i

= i J ds({l - λR(λ)}e-isAφ, (AN~ l)λR(λ)Neί(t-s}AΛψ)
o

i
4-ϊ j d s ( { ί — λR(λ)}e~lsAAφ, el(t~s}Aλψ) . (3.12)

o

Since {l-λR(λ)} tends to 0 strongly, AN'1 is bounded by (2.5), ||λjR(A)|| gl and
\\Neί(t~s}A;{ ψ\\ is bounded uniformly in A, the integrands tend to 0, for all s. Since the
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integrands are bounded uniformly in s and A, the r.h.s. of (3.12) tends to 0 by the
Lebesgue dominated convergence theorem.

We summarize:
i) For ιpeD(N112), \\N1/2eίtA*ιp\\ ^e

(ll2}κ^ \\N1/2ψ\\
ii) for ψeD(N), \\Ne?tA*ψ\\ ^ek^ \\Nψ\\ , uniformly in λ, and

iii) Equation (3.11).

We now complete the proof of Lemma 2.
Combination of i)—iii) with the spectral theorem applied to N immediately

gives Lemma 2, 1) and 2). To prove 3), note that by 1) and 2)

e±itAD(N")QD(N*), for all |ί| < oo

and α = 1/2,1. Thus

D(N«) = eίtA{e-ίtAD(Na)}

QeitAD(N«) (3.13)

hence D(NΛ) = eitAD(N*\ for all \t\ < oo. Q.E.D.

Remarks. Lemma 2, 2) and the trick of using a differential inequality for Gλ(f) are
due to [3] (we have applied it in a slightly different form, and an extension is
presented in an Appendix: Proof of sufficient conditions for

) = D(N*), αe(—oo, oo)) .

We note that, by Lemma 2, 3) and Theorem 0, (0')

e~itAD(N) is a core for B (3.14)

if B satisfies the hypotheses of Theorem 0, (0').

Lemma 2 may be summarized as follows: {eltA} determines unique, exponentially
bounded one parameter groups on the spaces Jjfn, for n= —2, —1,0,1,2.

4. Proofs of Theorems 1M and 1^

Let A, B, and {Cn} satisfy the hypotheses of Theorem 1M or 1 .̂ By Theorem 0, B is
essentially self-adjoint on D(N). Its closure is also denoted B. Let

B=$λdE(λ)

be the spectral decomposition of B. We set

Bt = $ λdEt(λ), with 1

Then we conclude from (3.14) (by the fundamental criterion) that D(N) is a core for
Bv i.e., Bt is essentially self-adjoint on D(N). By Lemma 2, 2) and (4.1)

Bt = eitABe~itA, on D(N) .
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Let ψ and θ be in D(N). Then, using Lemma 2, 2), the hypotheses on B and C1? see
(2.7), and Theorem 0, (2.5), we obtain

d (ψ, Bt θ)/dt = i{(Ae~itAip, Be~itA9)

and

\d(ψ9Btθ)/dt\^k2M\\Ne-itAθ\\

£k2e*w \\ψ\\ \\NΘ\\ .

Thus, for all θeD(N),

and hence

Since D(N) is a core for Bt, we conclude :

We now proceed by induction : Assume

(A) 4= Σ ->

(4.2)

(4.3)

By hypothesis on {Cm} *= 0 (see Theorems 1M, 1 00), Theorem 0 and Lemma 2, 2), D(AΓ)
is contained in the domain of

eisA Cme' isA , for all m < oo .

As in the proof of (A^ we show that

(4.4)

on D(AΓ); [just replace β by Cπ, Ci by Cn+1, t by ίw and use (4.4)].
Inserting this equation into (An) and using again that D(N) is a core for Bt, we

immediately obtain (v4π+1).
This completes the proof of Theorem 1M.
The proof of Theorem 1^ is now easy:
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Using inequalities (2.9) (see Theorem 1^), (2.5) (see Theorem 0) and Lemma 2, 2)
we obtain the estimate

Jdί i . . . j dtne""ACne-""At
0 0

|t | ίn-l

0 0

(4.5)

for all θeD(N).
For |ί| < j^2 S tne Γ h s of (4.5) tends to 0, as n-+ oo, and this gives the first part of

Theorem 1^.
The second part then follows by using once more that D(N) is a core for Bt.
In the following sections we indicate some applications and in the Appendix an

extension of Theorems 1M and 1^.

5. An Application to Lie Groups

5.1. Integration of Representations of Lie Algebras

Let G be a simply connected Lie group with Lie algebra © let {ξ1? . . . , ξn} be a basis
for (5 and {cίjk} the structure constants. We consider a representation π of (S on a
Hubert space ffl and define

Xj = m(ξj), 7 = 1,..., n . (5.1)

Furthermore J V ^ l is some self-adjoint operator on Jf.
The following result gives new sufficient conditions for the integrability of π((δ),

different from the classic ones found by Nelson in [7] (and extended e.g., in [10]).

Theorem 3. Assume thatXj andXj satisfy the hypotheses of Theorem 0 or 0', for all]
= l,...,n, and that there is a core 2 for N such that

K,̂ .] = ί Σ % A > (5.2)
fc=l

weakly on Q) x 2).
Then π(©) is the differential of a continuous unitary representation πf of G on ̂

(i. e., the representation π of (5 on ffl can be integrated to a representation π' of G on

Proof. Let α l 5 . . . ,α n be arbitrary real numbers. By Theorem 0 (or 0')

D\
\ 7 = ι

and

n

7 = 1
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is essentially self-adjoint on D(N\ for all j = 1 , . . . , n. Using (2.5) for Xk, k=l,...,n,
and (5.2) we obtain

[Xl9Xj] = i Σ CyA , weakly on D(N) x D(N) . (5.3)
fc=l

By Lemma 2, 3)

e x p i ί Σα^i)(ΛO = D(ΛO, (5.4)
\ j = ι /

for all |ί|<oo.

Since © is the Lie algebra of G, there is some open neighborhood 17 of Oe©
which is mapped diffeomorphically onto an open neighborhood W of the identity

by the exponential mapping. Thus, for geW, there exists some

7=1

with

g = eξ .
We define

π'(0) = £?-*,

where

X=Σ«jXj. (5.5)
j = ι

Suppose now that g,g and g g are in W. We must show that

π'(gg) = π'(g)π'(g). (5.6)

Without loss of generality we may assume that, for all ίe [0, 1], etξ and etξg are in W.
Then

and

^ -'Sj(lKj' (57)etξg = e ' ^'^

where ά7 (ί) is continuously differentiable in ί in some neighborhood of [0, 1], for all
7 = 1, ...,n.

In order to prove (5.6) we now compare

with

π/(βfV«)φ = e"ίίJΓF(0), (5.8)

where ψ is an arbitrary vector in D(N).
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From (5.7) and (5.8) we know that

where

7(0= Σ&jWj
j=l

is essentially self-adjoint on D(N). We set

Then Y'(t) is essentially self-adjoint on D(N) and by Theorem 0 (resp. 0')

\\Y'(t)φ\\^k2\\Nφ\\ ,

uniformly in ίe [0, 1] moreover

(5.9)

uniformly in se[0, 1], ίe[0, 1], for all φeD(N).
From the formula

eiA-eiB= (ί j dseisA(A-B)ei(i~s)B

and the above estimates we conclude that e~lsΎ(t} is continuous in t and that F(t) is
differentiable, with the following derivative :

— F(t)= -i j dse-ismY'(t)e-i(1-a™ψ
at o

i
= -i f d s e - i s Ύ ( t } Y ' ( t ) e i s Ύ ( t } F ( f ) . (5.10)

o

The hypotheses of Theorem 3 permit us to apply the multiple commutator formula
proven in Theorem 1^ to compute

on D(N\ and then integrate over s: From Theorem 0 (resp. 0') and (3.14) we know
i

that 7(5, ί)and J dsY(s, t) are essentially self-adjoint on D(N), so that it suffices to
identify °

fdsY(s,t)ΪD(N).
o

We now claim that

i
J dsY(s,t)ΪD(N)=XΪD(N) . (5.11)
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Using the hypotheses of Theorem 3, Theorem 0 (resp. 0') and Lemma 2 we easily
derive the required estimates which guarantee that we may apply Theorem 1^. This
theorem then tells us that (5.11) holds if it holds formally, i.e., if

J dse*J =
o

holds as an equation between two elements of (S. This, however, is obvious.
From (5.10) and (5.11) we conclude that F(ή satisfies

dF(t)/dt=-iXF(t).

Since F(t)ED(N), for all te [0,1], and D(N) is a core forX, and since F(0) = π'(g)ψ, we
conclude that F(l) = e~lXF(0) = nr(eξ)π'(g)ψ.

The proof of (5.6) is now complete, because D(N) is dense in #?. Q.E.D.

We note that the idea of using a differential equation and Theorem 1^ to prove
F(t) = e~ίtXF(Q\ for all ίe[0,1], avoids the use of the Baker-Hausdorff-Campbell
formula in the proof of (5.6) (see also [7,10]).

From Theorem 3 we immediately obtain the following classic result of Nelson

[7].

Corollary 4. //

n

J = l

is essentially self-adjoint on a dense domain S^C^f then

has the properties of the operator N of Theorem 3, and all the conclusions of Theorem
3 hold.

Remark. Corollary 4 and the results of [7] show that the converse of Theorem 3 is
true, too.

5.2. A Trivial Application to the Rotation Group

Here we consider G = SU(2).
Let x denote the vectors in R3, and

1 2

thwith xt the /th component of jc. Define

= Σ Ljaj •
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It is a well known exercise to show that the hypotheses of Theorem 3 are fulfilled
for this choice of N and Xj = L7, j = 1, 2, 3 e. g.

and

Uα) = 0, on

Thus

is a continuous unitary representation of SU(2), by Theorem 3. If we know, a priori,
that ( L> L) is essentially self-adjoint on some domain Q) we may re-define

and arrive at the same conclusions.

6. Commutativity of Unbounded Operators and an Application
to Relativistic Quantum Field Theory

Theorem 5 [2]. Let A, A, and B satisfy the hypotheses of Theorem 0 (or 0'), and
\_A, B~\ = 0, weakly on D(N] x D(N). Then all bounded functions of A and B commute.

Proof. An immediate consequence of Theorem 11.

Remark. If there is some domain Q) dense in ffl such that

is essentially self-adjoint then the hypotheses of Theorem 5 are true with

[On the other hand: If all bounded functions of A and B commute then
@ = D(A2)nD(B2} is obviously dense and (A2+B2 + \)\® is self-adjoint].

Application to Quantum Field Theory [2,3]. Let ^,H,{φ(/):/E^real(#d)} denote
the Hubert space, the Hamiltonian, the quantum fields, respectively, of a quantum
field theory satisfying all Wightman axioms [11] and, in addition,

±φ(f)£\f\(H+l) (6.1)

for some norm | | continuous on Schwartz space. Then the bounded functions of
{φ(/):/e^real(jRd)} generate a net of local von Neumann algebras satisfying all
Haag-Kastler axioms, [12].

Proof. Set

. (6.2)
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If / and g are two test functions with space-like separated support set

A = φ(f), B = φ(g). (6.3)

Then A,B, and N satisfy the hypotheses of Theorem 5; see [2]. [This is a
consequence of (6.1) and Wightman's form of locality.] For details see [2]. Q.E.D.

Let Q)w be the Wightman (polynomial) domain in &?. The remark following
Theorem 5 tells us that if (6.1) is replaced by the condition that (φ(/)2 + φ(g)2} Γ S>w

be essentially self-adjoint, for all test functions / and g with space-like separated
supports the theory also fulfills all Haag-Kastler axioms.

It is easy to see that with N as in (6.2), A = φ(f\ /e^realCRd), all hypotheses of
Lemmas 2 and A.I follow from (6.1). These lemmas then tell us that, for ιpeD(Hα),
(e.g., ψε@w or ψ = Ω, the physical vacuum)

eίφ(f)ιpeD(H«) , (6.4)

for all α=l,2,3,. . . .

7. Integration of Canonical Commutation Relations

Let J4?,H, and {(?(/) /e^^'1)}, {π(f)\fe&m\(Rd~1)} be the Hubert space,
the Hamiltonian, the time 0- fields and their canonically conjugate momenta, resp.,
of a canonical quantum field theory [1] that satisfies, in addition,

with N =

on jS?(jf3,j?L3), (7.1)

and

for some Schwartz space norms | |1? | |2, and | |3. Since we are dealing with a
canonical field theory, we must have

(7.2)

weakly on D(N) x D(N).

Then φ(f) and π(f) are essentially self-adjoint on D(N\ for all fεέfreal(Rd ~ 1)5 and

(1) e

i(P(f}e^(9} = ei^(9}eiφ(f}e-i(f,θ}

(the Weyl relations; set A = φ(f\ B = n(g) and apply Theorem 12).

(2) ei^π(g)e-ί^ = π ( g ) - ( g , f } ;

(set A = φ(f\ B = π(g) apply Lemma 2, 2), and (1.2)). A similar equation holds with

(3)
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on D(N); (set A — φ(f\ B = H and use Lemma 2, 2), (7.1), and Theorem 0). Hence

\\f\\2

2 on Q(H).

These results are in some sense a converse to the results of Herbst, [5].
They [in particular 1) — 3)], are very useful to give an easy proof of the fact that

the P(φ)2 quantum field models [9] define canonical quantum field theories, [4],
which requires only information on Euclidean Green's functions.

Other application of Theorems 0, 0', 1M, 1^ to canonical commutation relations
(e. g., a simple proof of von Neumann's uniqueness theorem) can be worked out quite
easily and are therefore not discussed here.

Appendix

In this appendix we generalize Lemma 2 of Section 3 and reformulate Theorems 1M,
1^. First we prove

..... (2) ( |n|)
Lemma A.I. Suppose A, A, A = (A) =A ,..., A all satisfy the hypotheses of
Theorem 0, (resp. 0'). Then

eitAD(Nn) =

and

for some finite constant /c3, all |ί |<oo; (±71=1,2,3,...).

Proof. We may assume n>0. As in Section 2 we first prove a Lemma A.1A, but

Aλ = λ2nR(λ)nAR(λ)n . (A.I)

Then

(A.2)

is obviously true, for m = 0, 1,2,... .
Let ψeD(Nn). By (A.2) we may define

Then

dGλ(t)/dt = i(e ~ itAλ\p, [Aλ, N
2n] e

2n-l

is easily shown by use of (A.I), (A.2) and the hypotheses of Lemma A.I. Next one
can show that

Λ7^ A \7"
•'•'•A

= ..., on D(Nn)xD(Nn) .
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Applying this equation repeatedly, (proceeding e.g., by induction on fc and on n\
(«)

using the hypotheses on A, A, ..., A, Theorem 0 (resp. 0') and the trivial inequality

\\Nk\p\\^\\Nl\p\\, for k g / ,

we obtain

= 2k3Gλ(t),

for some finite constant k3 independent of λ, which after integration yields the
desired Lemma A.lλ. From this Lemma A.I follows by essentially the same
arguments that gave Lemma 2 as a corollary to Lemma 2λ. Q.E.D.

Remarks. 1) Careful inspection of the proof of Lemma A.I shows that the
conclusions of this lemma remain true if we only assume that

» (fc)
Aψ ^k3\\Nkιp\\ (A.3)

for some finite constant k3 and all ψeD(Nk\ k = l,2,...,|n|.
2) Let αe [ — |n|, |n|] since

Lemma A.I holds for all αe[ —|n|, |n|] if A, A,..., A all satisfy the hypotheses of
/ (k) \

Lemma A.I, (resp. A satisfies (A.3), k=l, . . . , |n | . j
We may now re-formulate Theorems 1M and 1^.

(α)
TheoremA.2. Let B and A,A,...,A, (for some α = 1,2,3,...,) all satisfy the
hypotheses of Theorem 0.

Let C0=B, and

Cn = i[_A, Cn_ J, weakly on D(NΛ) x D(N«) ,

and

\\Cnψ\\£K*2nl\\N ψ\\; π = l,2,3,....

Then

Bt =

0

and, for \t\<K21,

e

satisfy

ίt A isB - it A
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Proof. By Lemma A.I D(N«) = e±ίtAD(N«\ for all \t\ < oo. D(N«) is a core for N, hence
a core for B (by Theorem 0). Thus D(N") is also a core /or Bt [defined as in (4.1)].

But on D(Na)

Bt = e-ίtABe~ίtA

by Lemma A.I.
Applying now Lemma A.I and the hypotheses of Theorem A.2 (concerning

{Cn}^=Q\ the proof of Theorem A.2 can be completed as in Section 4.
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prior to publication and H. Araki and B. Simon for very helpful suggestions. This note would not have
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Note Added in Proof: Ed Nelson has informed me that he has derived the conclusions of Theorem 5
under the only assumptions that A and B satisfy the hypotheses of Theorem 0, and [A, 5] =0, weakly
on D(N) x D(N). His proof involves showing that A + iB is a normal operator. Subsequently we found a
proof of this result based on a straight forward extension of the methods of this paper. Moreover we
proved Theorem 3 without the extra-hypothesis on Xj.




