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Abstract. In the preceding paper under the same title we have formulated a
theorem which describes the set of states (i.e., probability measures on phase
space of an infinite system of particles in Rv) corresponding to stationary
solutions of the BBGKY hierarchy. We have proved the following statement: if
G is a Gibbs measure (Gibbs random point field) corresponding to a stationary
solution of the BBGKY hierarchy, then its generating function satisfies a
differential equation which is "conjugated" to the BBGKY hierarchy. The
present paper deals with the investigation of the "conjugated" equation for the
generating function in particular cases.

0. Preliminaries

This paper is the second part of a work of the authors published under the same title.
The first part of the work is [1]. All references to the paper [1] are marked by the
index I: Theorem 1,1, condition (G151), formula (2.2,1), etc. In paper [1] we have
formulated the main theorem which describes all stationary solutions of the
Bogoliubov hierarchy equations (B.h.e.) in a class of probability measures on phase
space. The proof of this theorem is naturally divided into two parts. In [1] we have
proved a statement (Theorem 1, I) which is, in a sense, the first part of the main
theorem. Namely, we have showed that under some restrictions [see conditions
(I1? Ty-(I4,1) and (G1? I)-(G6, I)], the generating function of a Gibbs random field
corresponding to a stationary solution of the B.h.e. satisfies a differential equation1

[see (2.8, I)] which may be considered as a conjugate equation to the B.h.e. The
present paper deals with the proof of the second part of the main theorem.

The second part of the main theorem is formulated in [1] as an assertion
(Theorem 2,1) according to which any function satisfying the Equation (2.8,1) [and
conditions (G1? I)-(Gό, I)] has the form (2.7,1), i.e. generates an equilibrium state (in

* Permanent address: Institute of Problems of Information Transmission, USSR Academy of
Sciences, Moscow, USSR
1 Or, if one prefers, a system of differential equations
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the sense of Dobrushin-Lanford-Ruelle) corresponding to the given interaction
potential U(r) appearing in the B.h.e.2 Here we prove the assertion of Theorem 2,1
in a particular case where the generating function / corresponds to a binary
interaction and also deduce some auxiliary facts used in the general situation.

The case of binary interactions, besides being interesting itself and requires an
individual proof, is also important since it is an initial step of inductive schemes on
which the proof of Theorem 2,1 is based in the general case. In a separate paper we
will give these induction schemes and finish the proof of Theorem 2, I.

For the reader's convenience we follow an exposition independent on that of
[1]. This is motivated also by the fact that the assertion of Theorem 2, I is valid
under more general assumptions than that of the main theorem (see Footnote13 in

[1]).

1. Formulation of Results

Remember some notations of [1]. We denote by M1 the space R2v, v = 1, 2, ..., with
the fixed representation R2v = RvxRv (the space Rv is always considered with a
fixed basis). The points of Mα are denoted x, y, etc., and also — when one uses the
representation R2v = RV x Rv — as (q, v\ (q1, v'\ etc., where q, qΈRv and v, vΈRv, etc.
The same notations are used for one-point subsets of M^ The set M1 is interpreted
as the phase space of a one-particle system in .Rv. Denote by Mn, n ̂  2 the collection
of all (unordered) subsets of M1 having n elements. The set Mn is interpreted as the

00

phase space of a ^-particle system in Rv. The union M° = (J Mn is interpreted as the
n=l

phase space of a system of an arbitrary (finite) number of particles in Rv3. The points
of M° are denoted x, y, etc. this includes points of M1 unless we need to distinguish
them. Denote by n(x) the number of elements in x, xeMn. Finally, let M denote the
subset of M! x M° defined by M = {(y, x): yex}.

Denote

There is the natural symmetrisation map sn: (M")Φ->Mn. The conjugate map
(s*f)(') = f(sn(*)) transforms a (real-valued) function f:Mn-^R^ into a symmetric
(real-valued) function on (M")Φ. We say that a function / is of class Ck at a point
3ce Mn if s*f is of class Ck at every point of s~ 1 x C (M;)Φ .

Let /eC1 at a point 5ceM°. The gradient map

to, υ\ 5c)eMh>(3β/(5c), d J(x))εRv x £v

2 It should be noticed that the proof of Theorem 2,1 (and hence of the Main theorem) becomes much
more simple if in addition to above conditions one supposes that the generating function does not
depend on velocities for configurations containing two or more particles. In this case one can replace
rather restrictive condition (G3) by a more natural one. A close result in a similar situation is recently
obtained in [2]
3 The set M0 consisting of one element φ (vacuum) corresponding to the absence of particles is not
considered
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is defined as follows. Let x = (q, v)εx, and xί =x\x. Then, for fixed x l 5 the function
/(§, v)=f(x1v(q, v)) is of class C1 at the point (q, υ). We set

dj(χ)=(d~J} - dvf(x}=(dj) f=β,
V = V '

The Poisson bracket of two functions /, /'eC1, is given by

{/ /'} (x) = Σ L<dqf(x), dj'(xf> - <dj(x), δ,/'(x)>]
(q,v)ex

«,> denotes the inner product in Rv).
Fix numbers d0 ̂  0 and dί>d0 and a real- valued function U (r), d0 < r < oo , such

that

(ΓJC/eC^+oo),

( Γ 2 ) C / Φ O on (d0Λ),

(Γ3) C/(r) = 0 for r^^.

We interpret U (r) as the potential of a pair interaction of particles. Clearly,
conditions (ΓJ-lΊg) are weaker than (I1? I)-(I4, I). Denote4

D0 = {xeM°: min \q-q'\>d0}9 (1.1)
q,q'ex,q*q'

and

H(5c)=J £<">">+ Σ ^(k-«Ί), ^eD°. (1.2)
•̂  ϋejc q,q'ex,q^q'

Let n0 = 2, 3, ... denote by ^Πo the class of the real-valued functions /(3c), 3ceD°,
satisfying the conditions

(G;)/eC2 at every point 3ceD°,

(Gi) for any fixed veRv, f(ί\q, v\ as a function of qeRv, is bounded below
[ _ f ( ί \ q , v) denotes here the restriction of / to

(G'3)/(3c)ΞΞθ if 3ceD°nMM and n>n0,

(G'4) for any n = 2,...5n0, every 3ceD°nMπ_1 and ι;e.Rv,

lim \f(xv(q,v))\=0.

Clearly, (GΊHGi) for d0>0 follow from (G2a, I), (G2b, I), (G3? I), and (G5, 1). Let
^n denote the set of functions h of the form

= X f(y\ xeD°,fεVno. (1.3)

As in [1], we use the notations qex and vεx instead of (q, v)ex
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The reader can easily write down conditions on h under which he^^no. For the
most part of the present paper we consider the case n0 = 2. Our main result is the
following

Theorem 2'. Let U satisfy the conditions (l\)-(l'3). Suppose /e^2

 ana that at every
point xeD° the corresponding function h(x) satisfies the equation

{Λ(Jc),H(3e)}=0. (1.4)

Then f is given by

x = x = (q,v)eM1 ,

(1.5)

, U(\q - q'\\ x = {(q, v), (q', v')}eD°nM2 ,

where c1? c2£Rl are constants and vQERv is a fixed vector. The function h(x\
corresponding to (1.5), has the form

h(x) = c, H(x) +(Σv>vo}+ c2n(x\ xe D° . (1.6)

Theorem 2, I [in the particular case when n0 = 2 in the condition (G3,1)] follows
from Theorem 2'. In fact, Equation (1.4) is equivalent to (2.8,1) [see (3.41,1)]. Hence
if, in addition to (G\)-(G'4\ the function / obeys (G2c, I), then c^ in (1.5) must be
positive. This means that / has the form (2.7, I).

Equation (1.4) means that the function h is invariant w.r.t. the shift along the
trajectories of the system of the Hamilton differential equations corresponding to
the interaction potential U. More precisely, fix xeD° and consider the Cauchy
problem for vector-valued functions q(ί (q, v)) and \(t (q, v)) labelled by the pairs
(q, v)ex:

(q,v)ex, (1.7)

V* (q',v')ex:q'+q

with the initial data

q(0;(q,υ)) = q, v(0 (q, v)) = v, fot?)eJc. (1.8)

For any 5ceD° one can find ί0 = ί0(5c)>0 such that the solution of the initial value
problem (1.7) and (1.8) exists and is unique for te( — t0, t0) and

xf — {(q(ί (q, v)\ \(t (q, v))), (q, V)EX}ED°, \t\ < ί0 .

Equation (1.4) means that h(xt) = h(x), \t\ <ί0, i.e., his a first integral of the system
(1.7).

From this point of view, Theorem 2' means that under conditions (ΓJ-^) all
first integrals of (1.7) belonging to £ ̂ 2 have the form of linear combinations of the
classical ones: total energy, total momentum and the number of particles.
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We conclude this section by the following remark. The study of the structure of
first integrals of a Hamilton system has been initiated by results of Bruns, Painleve,
and Poincare (see [3], Chapt. XIV). A valuable contribution was made by Siegel [4,
5] who considered a Hamilton system of a general type and studied its analytic first
integrals (see also [6]). The main result of [5] is that for "amost all" Hamilton
systems their analytic first integrals are series in the Hamiltonian H.

We consider the Hamilton systems of a special kind: our H is of the form (1.2).
Further, we consider the first integrals which are, in general, non-analytic, but have
special properties given by conditions (G^HG .̂). This approach is natural from the
point of view of Statistical Mechanics. It is interesting to note that in our situation
there is a family of "exeptionaΓ systems (i.e., of interaction potentials) having, in
general, other first integrals than these given by Theorem 2'. These exceptions are a
priori excluded by conditions (Î -̂ ).

The following sections deal with the proof of Theorem 2'.

2. Notations and Auxiliary Tools

Before going to the proof of Theorem 2' we introduce some notations and formulate
auxiliary statements we use below. The proof of these statements is carried out in
the Appendix. We use different type faces to denote scalar-, vector-, and matrix-
valued functions of the variables (g l5..., qn; vίy..., vn)eRnv xRnv, n = l, 2,.... These
functions are denoted as a, a, and A respectively5 (as exceptions, the vector
functions qt and vi9 i = l, 2, ..., n, are denoted as scalar ones).

A function of one of the mentioned types is called a Ck-function at a point of
gnv χ gnv if a}j jjs components are (scalar) functions of class Ck at this point. The
gradient of a scalar C1-function α at a point of Rnv x Rnv w.r.t. the variable q{ (resp.,
vt) is denoted as above by dq.a( ) [resp., dva( )~\. The derivative 3βιa( ) [resp., ̂ fa( )]
of a vector C1-function a = (α1,...,αv) at a point of RnvxRnv w.r.t. the variable qt

= (ql,...,qv

i) [resp., vί = (vl,...,vv

ί)~] is the matrix whose (/c, /)-th element equals
d/dq><aj(ΐQSp., d/dvkaj). By definition, for a C2-function a, dq.>q a( ) = dq (dq.a( }\

In what follows A* denotes the adjoint matrix Aa and A1A2 denote as usually
the product of a matrix and a vector and of two matrices, respectively.

In Section 3 we employ repeatedly the following assertions whose proof is
contained in Appendix.

Proposition2.1. Let U(r\ dQ<r< oo, be of class C2. Then

qeR\ \q\>d09

, qεR\ \q\>d0.ii) detd2

qqU(\q\)=U"(\q\)
\q\

Proposition 2.2. Any real solution of the matrix equation

(3lΛ2U(\q1-q2\)A(qί) = A(q2)(dllΛlU(\qί-q2\)), q,,

has the form A(q) = aE, qεRv, where aεR1 is a constant and E is the identity matrix.

5 We deal with v-vectors and v x v-matrices for v = 1 all the functions are of course, scalars and this
notation system is not necessary
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3. Proof of Theorem 2'

Let a function /e^2 we identify / with the pair of functions (/(1), /(2)), where

(3.1 a)

(3.1 b)

and /(2) has the following symmetry property :

f(2\ql9q2ivί9v2)=f2\q29qί;v29v1). (3.1 c)

Condition (G4) for /(2) may be written in the form

lim f(2\q9ql9v9υ1) = Q9 qί9υί9veR\ (3.1 d)
|g |-»oo

In terms of the functions /(1) and /(2)

Λ(x)= Σ /(1)(4,f) + i Σ f(2\q,q';v,v'), xeD°.
(q,v)ex (q,v)ex,(q',v')ex,

q*q'

Equation (1.4) is equivalent to the system of three equations:

<dqf
(1\q9v)9vy=09 q9veR\ (3.2a)

q2'9υl9 υ2) + dΌ2^\q29 υ2)9 dq2 U(\q, - q2\f> = 0 ,

and

1, q3ivlt v3), dq3U(\q2-q3\)y

q»υteR\ i= 1,2,3, \qs-qk\>d0, lίj<k^3. (3.2c)

Our aim is to show that, if C2-functions /(1) and /(2) obey (G'2) and (G'4)
respectively and satisfy (3.2a)-(3-2c), then

(3.3a)

and

(3.3b)

where c l 5 C26Λ 1 and ι>0e,Rv are fixed.
It is not hard to verify that this assertion follows from the two lemmas below.
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Lemma3.1. Let /^eC1, /(2)eC2, and /(2) obey (G'4). Suppose the pair of functions
(f(1\ /(2)) satisfies (3.2a)-(3.2c). Then

(3.4)

Lemma 3.2. Lei α pair (/(1), /(2)) o/ C2 -functions satisfy (3.2a)-(3.2c) and /(1)

(G2), /
(2) ofcej; (G4).

i) f(2} = f(2\q,,
ii) d f(2\qί,q2) = cίdqiU(\q1-q2\\ \ql-q2\>dQ9 i= l ,2 ,

iii) /U) is o/ ίΛe /orm (3.3 a).

To avoid a repetition in the proof of Theorem 2.1 for arbitrary n0 we prove here
a general assertion, whose particular case is Lemma 3.1. Let f(n) be a function
defined on the set

θM = {(ql9...,qn 9υl9...9vn)εRnvxRnv: min \qi-qj\>d0}9 n = 2,3,....
1 ̂  i < j ^ n

We say that f(n} obeys (G'4) if for any (q29 ...9qn;v29 ...,vn}e(9(n~1} and any veRv

lim f(n\q,q2,...,qn;v,v2,...,vn) = Q. (3.5)
ki->oo

Denote

Lemma 3.1'. Let f(n~ 1}e C1, /(n)e C2 and /(n) obey (G4). Suppose the pair (f(n~ 1},/(n))
satisfies the equations

Σ <3βί/
(V"))^ί>- Σ Σ

i = l i = l

- Σ Σ <^/<"-1V") ί),δ
i = l l^ j^«, jφi

, (3.6a)

Σ <dVjf"\x(n+1)'i),dq.U(\qί-qj\)y=0,
« + l , j φ i

qί,...,qa+1;v1,...,v,+ ί)e^+1\ (3.6b)

/<">(x(n)) = 0 i/ min \qi-qj\xlt. (3.7)
1 ̂  i < j = n

Proof of Lemma 3.1. From now on ά^ is supposed to be chosen so that d1

= inf[d/:C7(r) = 0 for r^d']. Let x(n) = (ql9...9qn'9vl9...9vn)9 where min fa — qA

> dγ. We say that q{ is an external point for (#!,..., qn) ifqt is a vertex of the smallest
convex polyhedron containing qί9...9qn.Itis easy to see that any external point qt

has the following properties : one can find
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a) an open set 6/ = Q/(^i5 •• > ί?«X#v sucn tnat for any qeQt, U'(\q — qi\)ή=Q and

min \q-qj\xli\
j^njϊί

b) an open connected unbounded set Q — Q't(q ί , . . . , gw) C #v, 2 3 gί5 such that any

'eQi is an external point for (g1? ..., g/_ 1? g', gί + 1? ..., gn) and min |g' —

For definiteness suppose that qί is an external point for ql9 ...,qn. Let veRv and
qeQ1 be arbitrary vectors. Denote x(fy1 =(q,q2, > ,qn>

υ>v2> •••̂J Then Equations
(3.6a) and (3.6b) take the form

i= 1

(dυif
(n\x(n\dqι U(\qί — q\)y + ̂ dvf

(n\x(

q^
ί)9 dqU(\qί— ^|)>=0. (3.8b)

Both terms in LHS of (3.8b) are of class C1. Apply to (3.8b) the operator dvι

6.
This gives the vector equality

and, according to (2. la) and the condition LΓ/(|^1 —

The last equality holds for the open set Q1 of vectors q. Thus we have the matrix
equality

^JVHO. (3.9)

The general solution of Equation (3.9) is

(jc("))^ι>? (3.10)

min \q_i~ qj\>d^ where qί is an external point for (g1? ...,qn) and aί and a t do
1 ̂  i < j ^ n

not depend on υ±. Substituting (3.10) into (3. 8 a) we obtain:

ί = 2

Taking the terms of the first and second order in vv we have

3βlflι(x(B))+ Σ (^.a^x^t ̂ O (3.1 la)
i = 2

and

<dqι*1(χM)v1,υly=Q,

i.e.

a^a,^)^-^^,^))*. (3.1 Ib)

6 By application of an operator d to a given equality we mean the operation of taking the
corresponding derivative of functions in both its sides
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Proposition 3.3. Let a(q) be a vector C2 -function on an open connected subset QCRV,
and dq&(q\ qeQ, is an antisymmetric matrix. Then the components of a are polynomial
functions of the components of q.

For the proof of Proposition 3.3 see Appendix. According to Proposition 3.3,

the components of a^ ) are polynomials in qeQ\ (q2,..»>qn',
 υ\> v2> ->vn are

supposed to be fixed). Due to (3.1 la), the same is true for dqιa1( ) and hence
a 1 ( - ) is also a polynomial in ql. Now return to (3.10) and set v1=Q. We obtain

Using (3.5) and the property b) above, we get

lim α^HO.
|<jι|-» oo,<ϊιe<2Ί

Since aΐ is a polynomial in qί9 it must vanish. Now (3.5) and (3.10) imply

lim <a1(jc(Λ)),t;1>=0 for any t^e/Γ.
|βι |-*Qθ,βιeQΊ

Thus the vector function ίί1 whose components are polynomials in q1 also vanishes.
This completes the proof of Lemma 3.1.
Proof of Lemma 3.2i). Let ql9q2eR"9 \q1-q2\>d0. Using conditions (IlHIa)
and our choice of dl it is not hard to check that there exists r > max [d0, d^] such that
U'(r)U"(r)=)rQ (and hence, an interval of such r's). Therefore, there exists a non-
empty open set 0 C Rv such that \qί — q\ > dl and U'(\q — q2\) U"(\q — q2\) Φ 0 whenever
qε&. By Lemma 3.1, iϊq3e@, Equation (3.2c) takes the form

2, q, V29 1;3), 3q2 U(\q, - q2\}} = 0 . (3.12)

Applying to (3.12) the operator dVί gives

i.e., according to Proposition 2.1i),

d2

V2,vJ
(2](qi,q2lvi,v2)(q2-q3) = V.

This equality holds for the open set G of vectors g3. Hence,

3?2,,1/
(2)(9ι,«2;»ι,«'2)=0. (3.13)

Equation (3.13) has the following general symmetric solution:

f(2\q^q2;vl,v2) = a2(q1,q2;v1) + a2(q2,ql;v2), \q1~q2\>dQ, (3.14)

where α2 is a C2-function.
Substitute (3.14) into (3.2b) and apply to the equation obtained the operator dVί :

^M^i, q2 ^i) + (8qltυι a2(ql9 q2 \ vl))vl + dqίa2(q2, qi υ2)

Vί a2(ql9 q2 v,))v2 - (S2

v^Vί a2(qly q2;v1) + dVί /
(1)(g1? vj)dqi U(\q^q2\) = 0.
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We see that the vector Sqιa2(q2,ql v2) depends on v2 linearly:

42>4ι ^1)^2 - (3 15)

Taking u 2=0 in (3.15) we have

i.e., a2(g2, q^ vj does not depend on i^. We write a2(#2, qj instead of a2(g2, q1 ι;1),
and, similarly, A1(q2,qί) instead of A1(q2,qί ί^). Thus

dqia2(q2,qίlv2) = Λ2(q2,qi) + A1(q29qί)v2. (3 15/)

Now return to (3.12). Apply the operator δ?3 and take into account (3.14) and
(3.15'):

We obtain that for any two vectors ι/, v'ΈRv

V2a2(q2,q1;v2)\V2 = v,-dV2a2(q2^

Due to Proposition 2.1ii), the matrk S2

q2^U(\q2 — q3\\ q3e@, is invertible and hence

δV2<*2(<l2><lι '>V2)\v2 = v'-dv2a2(<l2><lιϊ ^)lι;2 = ι;"= 0, i.e. ̂ (^ίiί^) depends on ι;2

linearly :

(3 16)

Denote a4(qί,q2) = a3(ql7q2) + a3(q2,ql)l a4 is a symmetric function: a4(q1,q2)
= a4(q2,q1). Due to (3.14) and (3.16), we have

(q2,q1lv2y + a4(q1,q2), \qί-q2\>d0.

(3.17)

Our aim is to show that a3=0. Substitute (3.17) into Equation (3.12). We get

<a3(42> <h), \, U(\q2 - q3\)y + <a3(^2, q,\ dq2 U(\q, - <z2|)> = 0

or, due to Proposition 2.1i),

β2-β l>=0. (3.18)

First suppose t/ /(|^ι—ζ?2l) = ̂  Then for q3ε(9

Since (Pis open, this implies that a3(^2,^f1) = 0. By symmetry of /(2), a3(^1,^2) = 0.
Hence,

f(2\q1,q2;vi,v2) = a4(q1,q2) (3.19)

for q^q2eRv such that

0. (3.20)
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Next consider the case Uf(\q1 — g2 |)φO. The set {r^d0: £/'(r)Φθ} is the union of
intervals βh k=l, 2,.... Let |<h—<?2 |e/? fc, g3e$. We can rewrite Equation (3.18) in
the form

~ 2.g3).<h-gι> = 0. (3.21)
E/'(I«2-«3IΓ "—— •»'

Notice that Equation (3.21) remains true for small changes of the variables q1 and
q3. Applying to (3.21) successively the operators dq3 and dqι9 we have

*=0. (3.22)

This means that, for fixed q29 the matrix dqι —— -̂— a3(g2, q^} does not change

for a small change of ί̂ .
From now on it is convenient to consider separately the cases v > 1 and v = 1. In

this Section we give the proof for the case v > 1 the modifications we have to make

for v — 1 are presented in Section 4. The vector function ττfπ

1 —rτ-a3(g2, qj is of

class C2 at any point (g l5<?2)
 suc^ ̂ at \(lι~cl2\Eβk' For v>l the set

is connected. Hence, for fixed q29 the matrix dqι\—77r ^~jγa3(^2' #ι) ^s constant

whenever \qί—q2\^β^ i e

\

Equation (3.22) takes now the form

A2(q2\k) + A2(q2,Kr=0 (3.24)

whenever there exist ql9 q3εRv such that

fc,fc' = l,2, ... . (3.25)

Clearly, such ql9q3 exist for a pair (/c, fe;) if ίfc + tk, > dί , where βk = (sk9 tk\ βk, = (sk,9 tk,).
Using conditions (lΊHΓs) and our choice of dl9 it is not hard to check that there
exists k0 such that tko >dί—d0 and hence, tko + ί fc/ > d1 for any fc7. This means that
A2(q2 k) does not depend on k :

)*-0. (3.26)

The general solution of Equation (3.23) may be written as

l^i-^NA. (3.27)

Now consider Equation (3.2c) where
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On account of (3.17) and (3.27), we obtain

^A2(q2)q1 + a4(g2 k\ q2-q^ + <A2(q2)q3 + a4(g2 k'\ q2 - q^ > = 0 . (3.28)

Notice that Equation (3.28) with fixed k and K remains true for small changes of the
variables qί and q3. Thus considering the terms in LHS of (3.28) which contain q3,
but not qί9 we have

a4(<?2 k) = A2(q2Y q2, k = 1, 2, . . . ,

and, returning to (3.27) and using (3.26) and again Proposition 2.1i),

a3(42, 4ι) = Λ2(*2)3qι E/fl^ - «2|) . (3.29)

On account of (3.17) and (3.29),

/(%1; q2ivi,v2) = <A2(q2)v2 - A2(qjυi9 dqί U(\q, - q2\f> + a^ q2) , (3.30)

whenever

\<lι-<l2\>do> f(kι

Notice that the first term in RHS of (3.30) vanishes whenever U'(\q1 — q2\) = Q
and so, due to (3.19) and (3.20), formula (3.30) may be considered as a general
representation of /(2) for \q1—q2\>d0. Substitute (3.30) into (3.2b) and apply
successively the operators dVί and dV2. We obtain the equality

M^l^ U(\q, -q2\)- d^q2 U(\q, - q2\) A2(qJ = 0, \q,-q2\>d,. (3.3 1)

According to Proposition 2.2, A2(q2) = a6E where α6 is a constant. Due to the
antisymmetry of A2 [see (3.26)], a6=0. Hence, A2(qί) = A2(q2) = 0. Q.E.D.

ii) The proof given here holds for the both cases : v > 1 and v = 1. On account of i),
Equation (3.2b) takes the form

-<dV2f
w(q2,v2),dq2U(\qι-q2\)y=Q, \q,-q2\>d0. (3.32)

Applying to (3.32) the operator dvι gives

Hence, for any v, vfeRv,

«2|) = 0. (3.33)

Fix qίeRv and consider Equation (3.33) on the open set
U'(\q1—q2\)^Fθ}. Using Proposition 2.1i), we obtain

i.e.,

32

lpl)1/
(1)(«ι,o1) = ̂ 3(g1), (3-34)

where A $ is a symmetric matrix.
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The general solution of (3.34) is

f(1}(qί,v1) = <A3(ql)v1,vιy + (*5(q1),vιy + aΊ(q1). (3.35)

Substitute (3.35) into (3.32) and aquate with zero the first order terms in vί and v2

respectively. We obtain the equations :

ι-q2\)9 \q,-q2\>d0.

Apply to (3.36a) and (3.36b) the operators dq2 and dqι respectively. Using the relation
we arrive at the equation

According to Proposition 2.2,
A^(q^ = A^(q2) = a^E,

where a8 is a constant. Now Equations (3.36a) and (3.36b) give ii) with c1 =2α8.
iii) As in ii), we consider the both cases : v > 1 and v = 1 simultaneously. On

account of (3.35) and (3.37), we have to prove that a5(g1) and ^(qj are constant.
Equation (3.2b) takes now the form

=Q, \q1-q2\>d0.

and applying successively the operators dq2 and dqί gives

3βla5teJ + (Sβ2a5(^))*=0.

This means that d^^q^) is a constant antisymmetric matrix, say, A4, i.e.,

where aό is a constant vector.
Now use Equation (3.1c). Due to (3.35), (3.37), and (3.38), we have

<dqaΊ(q),υy=Q, q,υeR\

Hence, dqaΊ(q) = Q and aΊ(q) = c2 = const. For /(1) we obtain

Suppose veRv to be fixed. Condition (G2) implies that A4 = 0. Setting a6 = v0, we
obtain iii). Lemma 3.2 is proved.

4. One-dimensional Case

For v = 1 we have to modify a part of the proof of Lemma 3.2i)7. The set Tk(q2) is
now non-connected : it consists o f two connected components Tk (q2) = [q 1 e R 1 : q ί

1 As we noticed above, for v = 1 all the functions considered are scalars. We use the same notation
system as in the case v > 1 for more complete analogy with corresponding arguments in the preceding
section
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42)eβJ Equations (3.23) and (3.24) take the form

^'h^^^] =A2(92lk)9 ±(<h-«2)eΛ, (4.1)
W Uίfi ~(ί2lJ /

and

(g2,fc') = 0, (4.2)

if there exist q l 5 q^eR1 such that

±(qi-q2)eβk, ±(q2-<lι)eβk> ±fai-tf3)><*i

Repeating the arguments used in the case v > 1 we obtain instead of (3.26) and (3.27),

A2(q2',k) = A^(q2}, fc=l,2,..., A2(q2} + A2(q2) = Q (4.3)

and
\q. —q2\ , ,

—77\ ίT a3(^25<2l)~ v^2 W 2 / ^ l +a4 (#2 ' ^)> iwi~^2) e Pfc (4-4)

As above, one can easely make sure that aj ( q 2 ; k ) = A$ (q2)q2 and therefore

Instead of (3.30) we now have

= (A2(q2}v2 — A^ (qί)v1)dqί U(\q1 —q^ + ̂ ^q^q^,

where

On account of (3.19) and (3.20), this representation holds for any ql9 q2eR1 such
that \q1 —q2\>d0. As above, we obtain the equation

(4.5)

which is analogous to (3.31). Now we may cancel U"(\q1 —q2\) out of (4.5) and get

AΪ(q2) = A*(qι) = A2.

Due to (4.3), A2 = Q. This gives i) for v = l.

Appendix

Proof of Proposition 2.1. Statement i) is trivial and we start with the proof of ii).
We use the following formula
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where eq = \q\~^q and eq®eq denotes the matrix whose (z/)-th element is el

qe
j

q. It is
easy to check that

(A.I)

and

(S,2.βE7(M))a = η|pa (A.2)

for any ae#v which is orthogonal to q. Thus, d2^ U(\q\) has two eigenvalues, U"(\q\)
and \q\~l U'(\q\\ of multiplicity 1 and (v — 1) respectively. This gives (2.1b).

Proof of Proposition 2.2. The change of variables qι<->q2 in (2.2) and the fact that
S2U(\q1—q2\) is a symmetric matrk lead to the equality

which together with (2.2) gives

1 ) , \qι-qz\>d0. (A.3)

(A.4)

By the above arguments,

where Pqι-q2 is the projection on the one-dimensional subspace spanned by q1 — q2.
Using (A.3) and (A.4) we have

V"(\ql-q2\}2A(q,}(q,-q2)

i.e., A(ql)(qί—q2) is an eigenvector of dq.tq.U(\q^—q2\) with the eigenvalue U"(\ql

— q2\}2. Now we use the fact that for any fixed q^ there exists an open set of vectors
q2 for which U"(\qι — #2l)

2 =H4ι — q2\~2 U'(\qι—q2\)2. The proof is simple and is
given below. Due to (A.I), (A.2), for any fixed qγ there exists an open set of vectors q2

and hence, of vectors (qί —q2J] such that

i.e., A(qί) has an open set of eigenvectors. Hence, A(q1) is a scalar matrix and a
depends only on qί : A(q1) = a(qί)E. Substituting this formula into (A. 3), it is not
hard to see that a(qί) = const.

Let us prove the mentioned fact. Let β = (s, t) be an arbitrary connected
component of the set {r>d0: t/'(r)=(=0}. Consider the sets Δ±={reβ: V"(r) =
+ r-1 U'(r)}. Clearly, A + nA_ =φ. We have to prove that A + uA_ φ β. The sets A ±

are closed in β. Since β is connected, either A + or A _ is empty. Consider, e.g., the
case A_=φ and suppose β = A + . The general solution of the equation U"(r)
= r~l LΓ'(r)is U (r) = a1r

2 + a2. By definition of j8, l//(ί) = 0»butα 1 φO.Thuswehave
the contradiction. The case A+=φ may be treated in a similar way.
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Proof of Proposition 3.3. Due to the antisymmetry,

and, in particular, - — =0. Taking d/dq1 of (A. 5) we obtain
dql

This means that the components aj(g) are locally polynomials in q. Since Q is
supposed to be connected, they are polynomials.
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