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Abstract. The coherent state representations of a connected and simply
connected nilpotent Lie group are characterized in terms of the Kirillov
correspondence, as being those irreducible unitary representations whose
associated orbits under the coadjoint representation are linear varieties.

Introduction

The concept of coherent states, originally related to the Weyl representation of the
Heisenberg group, has been extended by Perelomov [8] to a general group
theoretical setting, involving an irreducible unitary representation of an arbitrary
Lie group. We shall adopt here a slightly modified version of Perelomov's
definition, which reveals from the very beginning the classical phase space that
parametrizes the coherent states. Our concern in this paper is to determine which
irreducible unitary representations of an arbitrary nilpotent Lie group admit
coherent states. The interest for nilpotent groups is motivated not only by the fact
that the Heisenberg group belongs to this class, but also by the existence of the
Kirillov orbital description for the unitary dual of such a group. Indeed, we find
that, in terms of the Kirillov correspondence, the irreducible unitary repre-
sentations of a connected and simply connected nilpotent Lie group which admit
coherent states are associated with those orbits of its coadjoint representation
which are of the simplest geometric form, namely linear varities. In other words,
they are essentially square integrable representations, like in the special case of
Heisenberg groups. Moreover, we show that, in a certain sense, the only classical
phase space which may support a system of coherent states for such a repre-
sentation is precisely the corresponding orbit.

1.

Let G denote a locally compact group anάX a G-homogeneous space which admits
an invariant measure μx. After fixing a point OeJf, we shall identify X to the
quotient space G/G0, where G0 is the isotropy subgroup of G at 0, and the measure
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μx to the quotient measure μG/μQ, where μG and μ0 are left Haar measures on G and
G0, respectively.

1.1. Definition. Let π be an irreducible unitary representation of G on a Hubert space
ffl. A family {Ep peX} of 1-dimensional projections in Jtif will be called a π-system
of coherent states based on X, if the following conditions are satisfied :

(CSJ Eg.p = π(g) Ep π(gΓl for any geG and pεX
(CS2) there exists a nonzero vector ψeJtf, such that

Let us add some comments on this definition. In view of (CSJ, E0 π(y) = π(γ)
• E0 for any yeG 0. Therefore, if we choose a vector φ0 in the range of E0 with ||φ0||
= 1, then φ0 is semi-invariant with respect to π|G0. More exactly, it has the
property :

(CS'1)π(γ)φΌ = λ0(y)φQ for all yeG0, where λ0 is a unitary character of G0.

In addition, Epψ = <φ, π(#) φ0> π(0) φ0 for any ψGJ^, when #e G is such that p
= g Q. In these terms, the property (CS2) says that:

(CS'2) there exists a nonzero vector φeJf7, such that

Conversely, assume that φ0eJ^ is a vector of norm one which satisfies the
properties (CS^) and (CS2). Define jE^to be the 1-dimensional projection associated
with π(g) φ0 for p = g 0. In view of (CS'J the choice of g in the fiber over p is
immaterial, so that Ep depends indeed only on the point peX. Moreover, it is not
difficult to check that the family {Ep; peX} thus defined forms a π-system of
coherent states based on X and this system is uniquely determined by the property
that φ0 is in the range of E0.

It is now easily seen that our definition of coherent states differs from
Perelomov's definition in only one point. Namely, we do not require to the isotropy
subgroup G0 to be maximal with the property that π|G0 stabilizes the state defined

by Φ0
We shall not take the space here to disscuss the elementary properties of the

coherent states introduced above, since they are essentially the expected ones. We
will only retain, for later use, the fact expressed in the proposition which follows.

Let {Ep peX] be a π-system of coherent states, φ0 a vector of norm one in the
range of E0 and λ0 the corresponding unitary character of the isotropy subgroup
G0. We shall denote by ind (G0, G, λ0), or more simply C/°, the unitary representation
of G induced by λQ. Recall that the Hubert space of [7°, which will be denoted here
^2(G G0, Λ,0), consists of those complex functions on G satisfying the relation
F(gγ) = λ 0 ( γ ) ~ 1 F ( g ) for geG and ye G0, which are square integrable onX = G/G0,
and that G operates on J2?2(G G0, λ0) by the formula U°(g)F(h) = F(g~ 1 h\ g,heG.

1.2. Proposition. Let π be an irreducible unitary representation of G which admits a
system {Ep; peX} of coherent states based on X = G/G0 and let λ0 be the
corresponding unitary character of G0. Then π is contained in the representation
ind (G0, G, λ0).
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Proof. For φe Jf , define Fψ to be the function on G given by Fψ(g) = (ψ, π(g) φ0>.
Clearly, Fψ(gy) = λ0(γ)~ 1 Fψ(g) for ge G, ye G0. Now we define an operator D from
f̂ to =£?2(G; G0, λ0) as follows. The domain of D consists of all ψe Jti? such that

FφE^2(G; GO, AO), that is f |<φ, π(#)φ0>|2dM# '0)< oo and DV = Fr It is not
difficult to see that D is a closed operator which intertwines π and UQ. Moreover,
since its domain is nonzero, D is densely defined. By Schur's lemma, it follows that D
is a multiple of an isometry. In particular the domain of D is the whole 2tf and π is
unitarily equivalent to a subrepresentation of U°. This proves the proposition.

Remark. Actually, the above arguments imply a little more than we said. Namely, D
being a multiple of an isometry, there exists a positive number d such that (Dψ^
Dψ2y = d(ψl, ιp2y for all ψl9 ψ2ε34f. This means that §Epdμx(p) = d I, where /
stands for the identity operator of ffl .

2.

From now on, unless otherwise stated, G will be a connected, simply connected
nilpotent Lie group. Let g denote its Lie algebra and g* the dual vector space of g. G
acts on g* by the coadjoint representation: Ad* (g) /=/• Ad(g)"1, geG, /eg*.
According to the Kirillov theory [3], all the irreducible unitary representations of G
can be constructed by the orbit method. More exactly, if we denote by π0 the
representation of G associated with the orbit Oeg*/Ad*(G), then the assignment
<9ι->π0 establishes a natural one-to-one correspondence between the space of orbits
g*/Ad*(G) and the unitary dual G of G. Finally, recall that any orbit 0 is a
symplectic manifold with respect to the Kirillov form ω0 and thus it possesses a
canonical G-invariant measure μ0 given by the volume element ωn

0, where n = 1/2
dim 0. Furthermore, 0 is an algebraic variety in g* which contains a linear variety
of dimension at least n.

2.1. Proposition. Suppose that the orbit Oeg*/Ad*(G) is itself a linear variety. Then
πo admits a system of coherent states based on 0.

Proof. It has been noticed by Brezin ([1], Theorem 1.1) that 0 is a linear variety if
and only if π0 defines a square integrable representation of the group G/K, where K
stands for the neutral component of the kernel of π0.We may assume therefore that
π0 is square integrable. But then it follows from [6] that : i) 0 = G/Z, Z being the
center of G ii) π0\Z is a multiple of a character λ0eZ iii) \ |<φ, π0(g) φ>|2 dμ0(gZ)
< oo, for any ψ, φ in the Hubert space jtf 0 in which π0 operates. It is now clear that
the conditions (CS'J and (CS'2) are satisfied. More precisely, any vector φeJ4?0 with
|| φ || = 1 defines a π0-system of coherent states based on the orbit 0.

3.

The point is that the converse assertion is also true.

3.1. Theorem. Let π be an irreducible unitary representation of the connected, simply
connected nilpotent Lie group G, and let Oπ be the corresponding orbit in g*/Ad*(G).
Suppose that π admits a system of coherent states based on a connected, simply
connected G-homogeneous space X. Then Oπ is a linear variety in g*, andX and On are
isomorphic G-spaces.
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In view of Proposition 1.2, this theorem will follow from Lemma 3.5 which we
shall prove below, after some preliminary remarks.

3.2. // H and K are closed, connected subgroups of G, then they are regularly related
in the sense of Mackey [5].

This follows, for instance, first noting that V= G/K is a real algebraic manifold
on which the real algebraic group H acts algebraically, and then using a result of
Che valley (quoted in [2], p. 183) which asserts that, under these assumptions, the
quotient space H\V=H\G/K is countably separated.

This remark will allow us to use the Mackey Subgroup Theorem ([5], Theorem
12.1), whenever we shall deal with a pair of closed, connected subgroups H and K of
G. For convenience, let us recall that the Subgroup Theorem asserts that, in such a
case, if ρ is a unitary representation of H, then

md(H,G,ρ)\K= f
H\G/K

where Hg = g~^Hg, ρg(y) = ρ(gyg~1) for γeHg, and v is an "admissible" measure on
H\G/K. It should be noted that the unitary equivalence class of the representation
md(Kr\Hg, K, Qg\Kr\Hg] depends only on the H :K double cosetg to which geG
belongs. Finally, the meaning of the term "admissible" measure attributed to v is the
following : pick a finite measure μ on G equivalent to the Haar measure μG, equip
H\G/K with the quotient Borel structure and then set v(E) = μ{gε G geE} for any
Borel subset E of H\G/K. ®
3.3. Let Γ be a separable locally compact group of Type I and let ρ = J Qtdβ(t) be a

B
direct integral decomposition of the unitary representation ρ of Γ over the Borel
measure space (B, β). Assume that ρ contains an irreducible unitary representation π of
Γ. Then, there exists a measurable subset E of B with β(E)>0 such that π is a
subrepresentation of ρt for all teE.

This follows by routine arguments from direct integral theory. However, for the
sake of completeness, we shall sketch a proof. Let R(ρ) be the von Neumann algebra
generated by ρ(Γ), C(ρ) its commutant and Z(ρ) = R(ρ)r\C(ρ) the center of jR(ρ).
Further, let Pe C(ρ) be the projection associated with π, PeZ(ρ) its central support
and π the corresponding subrepresentation of ρ. Then, there exists a measurable

Θ

subset EoϊB with β(E) > 0, such that π = j πtdβ(t), where π, is contained in ρt for all
E

teE. Since π is quasi-equivalent to π, which is irreducible, π is a multiple of π. It
follows that almost all πt are multiples of π. Substracting if need a negligeable set
from E, we get the desired subset E of B.

3.4. Let H be a closed, connected subgroup of the connected, simply connected,
nilpotent Lie group G and let χ be a unitary character of H. Assume that md(H, G, λ)
contains a unitary character λ of G. Then H = G and χ = λ.

Indeed, if #Φ G, by Theorem 8.2 in [5], G/H would admit a finite G-invariant
measure, which would imply compactness for G/H [cf. Mostow,G. D.,
Homogeneous spaces with finite invariant measure. Ann. Math. 75, 17 — 37 (1962);
Theorem 7.1]. But G/H is easily seen to be diffeomorphic to Rm, with w = dimG
-dimtf.
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3.5. Lemma. Let H be a closed, connected subgroup of the connected, simply
connected, nίlpotent Lie group G and λ be a unitary character of H. Assume that the
irreducible unitary representation π of G is contained in md(H, G, λ) and that π\H
contains λ. Then

i) the orbit Oπeg*/Ad*(G) associated with π is a linear variety in g*;
n)H = Gf for any /eOπ;

iii) ind(7ϊ, G, λ) is a multiple of π.

Proof. We begin by deriving some consequence of the above assumptions.
1) First we shall prove that H is a normal subgroup of G and that λg = λ for all

geG.
Applying 3.2 we get the direct integral descomposition

ind(H,G,A)|H= f mά(HπHg,H,λg\HrΛHg)dv(g).
H\G/H

Now, the exponential map being a diffeomorphism for simply connected
nilpotent Lie groups, //nf/0 = exp^nexp Ad(^f)"1I) = exp(^nAd(^)"1f)), where ί)
stands for the Lie algebra of H; in particular Hr\Hg is connected. Since λ is
contained in ind(/ί, G, λ) \H, by 3.3 and 3.4, it results that Hg = H and λg = λ for all g
in a measurable subset of strictly positive Haar measure in G. It follows further that
the closed subgroup of G consisting of those geG such that Hg = H and λg = λ is not
negligeable with respect to the Haar measure of G. Consequently, it must be the
whole G.

2) Let ί) be the ideal of g corresponding to H and let /eϊ)* be the functional
which corresponds to λ\ that is Λ(expy) = eil(y} for all yefy. We shall prove that I
= Ker(/) is an ideal of g.

Indeed, if xe g and ye ί), then eM(™(*χ&*M = ^(AdCexp^) = ̂ eχp ̂  eχp ̂  eχp

(- tx)) = λ(Qxpsy) = eίsl(y} for all se R Hence /(Ad(expίx)y) = l(y) for all te 1R and this
implies that (adx)m)/EΪ for any integer m^l. In particular [x, χ]eϊ.

3) For all /eOπ, ί) is contained in the Lie algebra Qf of the isotropy subgroup

Gf
To prove this assertion we note first that, since π is contained in ind(H, G, λ) and

H is normal in G, we may apply Theorem 1 in [7] to deduce that there exists an
/o e Oπ such that /011) = /. Now let / = Ad*(0) /0 be arbitrary in Oπ and choose xe g

such that expx = g. For any j eί), in view of 2), we have f ( y ) = X (—l)m/m!
m

/0((ad;c)mj;)=/0(j;). On the other hand, 2) also implies that [g, ί)]Cΐ.

Consequently, /|[&ί)] = / |[g,ί)]C/| ϊ = 0. This means exactly that ί)C<ϊ/
4) The ideal I) contains the center 3 of g and the restriction of λ to the center Z of

G coincides with the central character λπ of π.
Indeed π|Z which is a multiple of /lπ, is contained in ind(/ί, G,λ)\Z which by 3.2

is a multiple of ind(Zn//,Z,/l|HnZ). The assertion follows now from 3.4.
5) We are now ready to finish the proof of the lemma, reasoning by induction on

the dimension of G.
Let us note first that when G is abelian Oπ reduces to a point so that i) trivially

holds, while the remainder assertions ii) and iii) are also obviously true, by 3.4 for
instance. Suppose now that! Φ 0 and let us denote K = exp(f). Using 3), we see that λ,
π, and ind(#, G, λ) are trivial when restricted to K. Consequently, they can be viewed
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as being representations of the lower dimensional group G/K for which the lemma is
true by the induction hypothesis. It /emains to handle the case when I = 0. Then
Ϊ)ΦO, otherwise the regular representation of G would contain an irreducible
unitary representation, which is definitely false. Therefore dim(f)) = l. Then,
according to 4), 3 = fy and dim (3)= 1. The statement follows now immediately from
[6].

4.
The results in the nilpotent case together with the Kirillov-Konstant principle (see
[4]), which asserts that there should be a sort of correspondence between the
unitary dual of a connected Lie group and the space of orbits of its coadjoint
representation, suggest the following way to define intrinsically the concept of a
"coherent state representation".

4.1. Definition. Let G be a connected, simply connected Lie group. We shall say that
the irreducible unitary representation π of G is a coherent state representation if it
admits a system of coherent states based precisely on the "corresponding" orbit
Oπeg*/Ad*(G).

In the special case when G is nilpotent, combining Brezin's Theorem 1.1 in [1]
and the results in Sections 2 and 3 above, we get the following characterization of
coherent state representations.

4.2. Theorem. An irreducible unitary representation π of a connected and simply
connected nilpotent Lie group G is a coherent state representation if and only if it is a
square integrable representation of the quotient group G/Kerπ.

One may plausible conjecture that this assertion retains its validity for
exponential solvable Lie groups. Finally we note that it is patently true for compact
groups.
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