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Abstract. It is shown that for any KMS-state of a classical system of non-
coincident particles, the distribution functions are absolutely continuous with
respect to Lebesgue measure; the equivalence between KMS states and
Canonical Gibbs States is then established.

1. Introduction

In classical statistical mechanics macroscopic systems are described by "states"
defined as probability measures on the phase space of the system. For infinite
systems (the precise mathematical analogs of macroscopic systems) these measures
are specified in terms of "local" distributions, i.e. n-particle distributions on
bounded regions/I ClR^//? [1]. Moreover, systems at equilibrium are specified by
states satisfying certain conditions (e.g. D.L.R. equations = Gibbs states, K.-S.-
equations, limit of finite volume grand-canonical states, variational principles).
These conditions have been proved to be equivalent in many different cases [2-5]
however, in these proofs, it has always been assumed that the μ^ are absolutely
continuous with respect to Lebesgue measure. This assumption gives thus a special
status to the Lebesgue measure which has not been derived from physical principles.

On the other hand, it has been suggested that equilibrium states could also be
defined as states satisfying the KMS-condition in fact it is well known that for
infinite quantum systems, Gibbs states are characterized by this KMS condition
[6] for infinite classical systems, Gallavotti and Verboven gave in a recent work
[7] some sufficient conditions for the equivalence of the KMS-conditions and the
Kirkwood-Salzburg equations; among those fairly strong conditions were in
particular the conditions of absolute continuity of the μ^} with respect to Lebesgue
measure, low density, exponential clustering, smoothness properties, ....
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In this paper, we shall deduce the (Canonical) Gibbs states directly from the
KMS -condition without any prior assumption about the absolute continuity of
the μ^}. Our result is valid for a very large class of interactions and for all densities
(below close packing in the case of hard cores). The physical significance of the
classical KMS-condition lies in the fact that it yields a definition of equilibrium
states which is related to the dynamics of the system rather than to the second
principle of equilibrium thermodynamics; indeed it was shown [8, 9] that the
KMS-condition is a fairly direct consequence of a stability condition of the state
under local perturbation of the Hamiltonian time evolution; moreover it has also
been shown that Gibbs states are invariant under the time evolution [10] this is
obviously the minimal requirement for a state to describe a system in equilibrium.
The converse statement, "any time invariant state is a Gibbs state", is certainly not
true generally without further assumptions. What we do then in this paper is to
show that the requirement of time invariance plus "stability" (plus unfortunately
some ergodic properties which can however be relaxed, [11]), which lead to the
KMS-condition, does indeed single out the Gibbs states as the proper description of
equilibrium systems.

In Section 2, we recall the mathematical description of infinite classical systems
and the definition of the "static KMS condition" in Section 3, we prove that any
KMS-state yields distributions which are absolutely continuous with respect to
Lebesgue measure and that KMS-states are canonical Gibbs states. It follows then
from recent work of Georgi [12] and others [13] that any KMS-states is a
superposition of extremal Gibbs states with temperature T and different activities.

2. Mathematical Description of Classical Systems

1) A classical system of particles with hard core of diameter d^O, moving in a
bounded region A of the physical space IRV, is described by the phase space ΩΛoϊ
finite subsets of A x IRV satisfying the hard core condition, [1, 14] i.e. :

\qi-qj\>d for all iΦj}

ΩΛ= U f*A,n- (1)
n = 0

On the other hand, an infinite classical system is described by the phase space Ω
of infinite countable subsets of Rv x Rv satisfying the hard core condition and the
condition that the number of particles in any bounded region A of IRV is finite.
Introducing with any Borel set A in IRV the projection ΠΛ: X\->XΛ of Ω into ΩΛ

where
XA = {xi;xi = (qi9pi)eX9qieΛ} (2)

we have :

β = {X = {*.} ; χ.eIRv x 1RV, \qt - qj\ > d for all i Φj1,

for any bounded A the set XΛ is finite).

1 Notice that even for d = Q,Xe Ω does not contain coincident particles-two or more particles with the
same position and momentum
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Moreover, for any Borel subset A of IRV, and ΛC = 1RV/A, we have:

ΩcΩΛxΩΛC with Ω^ΩΛxΩΛC if d = Q.

In the following we shall denote by X the configurations in ΩA and by Y the
configurations in ΩΛd we shall say that XeΩΛ and YeΩΛC are compatible if
XvYeΩ.

2) The classical system is furthermore characterized by a potential Φ, function on
the (non empty) finite subsets of the physical space JRV; alternatively Φ can be

considered as a symmetric function defined on (J 1RV"

For any bounded domain /LcIRv and any Ye : Ώ^cthe Hamiltonian HΛ γ of the
finite system A with boundary condition Y is the function on ΩΛ defined formally
by:

Σ Φ(£uY). (3)
φ±XCX

3) T/ze states are defined as probability measure μ on the phase space for finite
systems the measurable space (ΩA, &A} is defined by the σ-algebra &A of subsets of
ΩΛ introduced in the following manner [10] :

i) &Λtn is the σ-algebra of subsets of ΩΛn isomorphic to the σ-algebra of
symmetric Borel subsets of (A xIRv)[J, where:

(4)

For infinite systems, the measurable space (Ω, 93) is defined using the <%Λ, A
bounded Borel set in IRV, as cylinder sets; i.e. 93 is the σ-algebra of subsets of Ω
generated by ΠA

 1 A,Ae^A. In fact 33 is obtained by means of the weakest topology

making the function Σ Mx/) continuous for all continuous functions h with
xτeX

compact support in q.

Remarks, a) Since ΩAn is isomorphic to the symmetrization of (ylxlRv)2, any
function on ΩA n can be considered as a symmetric function on (A x IRV)J) and we
shall use the same notation for those two functions.

b) In the same manner, any Borel measure μ on (ΩA n, $& A n) can be considered as
a symmetric Borel measure on (A x IRv)[j which we shall also denote by μ such that

j dμ f= j dμ(x1,...,xπ)/(x1,...5xw).
ΩΛ,n (ylxlR v )2

The measure μ has furthermore the following property which we shall need to deal
with the symmetry condition imposed on the functions (see Prop. 2 of Sec. 3). Let DJ,
αeRv, π a permutation of (1, 2, ... w), be the open ordered subset of (A x IRV)^ defined
by

.α<...<ίπ n.α} (5)
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and g be any bounded function with support in D£; then, since the permuted
domains are disjoint, we have :

J dμgsym = j dμ(xl9...,xn)g(otl9...9an) (6)
ΩΛ,Π U x R v ) 2

with

4) Since the space (Ώ, 23) without hard core is a polish space under the natural
topology, our phase space is a Borel subset of a polish space and thus for any state μ
there exists conditional probability measures μΛ[_dX Y] defined for any bounded
measurable domain /LcIRv and YeΩΛC as a probability measure on ΩΛ such that:

i) μΛ[dX 7] =χd(XuY)μΛ[dX Y], where χd is the characteristic function of Ω
in ΩΛ x ΩΛc

ii) for any measurable set A in &Λ the mapping Y\-*μΛ[_A;Y] of ΩΛC in
IRV is measurable

iii) for any bounded measurable function / on Ω

$dμ f= j μAC[_dY] J μ κ [dY;Y]/(X:uY), (7)

where for any Borel set M in IRV, μM is the Borel measure on ΩM induced by the
projection ΠM.

iv) Compatibility Condition : Let A and M be bounded Borel domains in 1RV

such that M D A and let us denote by X, T, Y respectively configurations in ΩΛ, ΩM/Λ,
ΩMC; then the conditional probabilities satisfy for almost all Y (w.r. to μMC) the
equation

μM[_dXdT;Y^=μΛ[_dX;T^T\ f μM[άXdT;Y}. (8)
ΩΛ

5) A state μ is called a Gibbs Sίαίe for the interaction Φ with inverse temperature
β and fugacity z, if for every bounded open /lClRv the conditional probabilities
satisf the D.L.R. euat ions :

e-βHΛ,γ(X)

,
satisfy the D.L.R. equations:

e - ,

μΛ [M : Y] = χd(Xu Y) Q(^ γ} ZW dX , (9)

where
00 J

dX^ Σ -^dxl...dxn, \X I = cardinality of the set X
n = o n

and

Q(Λ9Y)= J dXχdφvY)e-βHΛ γ(X)zW.
ΩΛ

On the other hand a state μ is called [12] a "Canonical Gibbs State for the
interaction Φ with inverse temperature β", if for every bounded open yic!Rv, the
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conditional probabilities satisfy for almost all 7 in ΩΛC the Canonical Equation
(C.E.)

H^x^CΛ^ndxί...dxn (10)

with CΛtYίtl non negative constant.
The classical KMS-states are defined with respect to a suitable class 91 of

functions on the phase space this class 91 is however not unique and we shall want
to choose 91 as small as possible our choice of 91 will be guided by the following
considerations.

In the description of states in terms of correlation measures dρ [7] one
introduces the algebra 91 of real functions / on Ω given by

/«= Σ Σ f τ ( X " ) or simply f=Sfτ, (11)
n ^ O XncX

where fn

τ are C°°=functions on (IRvxIRv)π which are symmetric, have compact
support and are identically zero, except for finitely many values of n. The interest of
this algebra 91, also called "algebra of unbounded strictly local observables", lies in
the definition of correlation measures ρ, which give for integrable / in 91

μUl=ίdμf= Σ ί dρ(Xn)f^(Xn).
Ω n ^ O Ωn

On the other hand in the description of states in terms of probability measures μ,
one introduces rather the algebra of bounded strictly local observables [1].

For our purpose a convenient class 91 will be given by the algebra generated by
the functions eish - f with /e9Ϊ and /ιe^ = C°°-real functions on IR vxIR v with
compact support in the q variable. In fact 9Ϊ is only a slight enlargement of 91 and the
usefulness of the functions

(12)

will be seen in the proofs of next sections.

Definition. A state μ of the classical system is called a (static) KMS-state for the
interaction φ and inverse temperature β if

i)
2) g-{f,H}e^1lμ'] for all f , g in 91,

3) μ[{/,0}]=jfy [>{/,#}] for all f , g in

where the Poisson bracket {/, g} is the bilinear map of 91 x 91—>9I defined by {/, g}
^ df dg df dg

i dqt dpi dpi dqt

and

^df(x) p df(x)
Σdq m dp χj"x dq

XBX

Let us remark that 1) expresses in particular the condition that the expected
number of particles in any finite region is finite. The condition 2) will be satisfied in
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particular for potential Φ which are C°°-functions with finite range however, it also
allows functions of class C1 which are singular on the boundary of (A x lRv)d Let us
also note that for all he@ and /e2I

{ W h , f } = iWh{Sh,f}. (13)

3. Equivalence of KMS-States with Canonical Gibbs States

In this section we shall establish our main theorem, which then will yield the
equivalence between KMS-states with canonical Gibbs states. To express this
theorem in a form which is valid for systems with hard core d Φ 0 we introduce the
following definition.

Definition. A state μ is "loosely packed" if for every bounded connected A in Rv and
almost all Y in ΩAC, there exists a bounded M^Λ such that for any pairs of
configurationsX,X f in ΩΛ n compatible with Y, the pointsX\j YM andX'u YM belong
to a connected subset of ΩM>π + |Y3dr|.

Roughly speaking this condition requires that for almost all configurations in Ω
the "free volume" is sufficiently large for translation invariant state this condition
will be satisfied whenever the density is smaller then the close packing density.

In the rest of this paper, we shall always denote by A a bounded open set in 1RV

moreover, we shall assume that the potential Φ is given by functions Φn(qί9...ί qn) on
RVM which are symmetric, of class <$l on (IRV)^, and such that for all XeΩ,

a)2 (14)

and

Σ —Λ < °°? uniformly in a neighborhood of q.

Theorem 1. Let μ be a loosely packed KMS-sίαίe; then the conditional probability
measures are absolutely continuous with respect to Lebesgue measure and μ is a
canonical Gibbs state.

To prove this theorem, we shall need the following two lemmas the first lemma
reduces the problem to finite systems with exactly n particles, and the second proves
the equivalence of KMS states with canonical Gibbs states for such finite systems.

Lemma 1. For any KMS-state μ of the infinite system, the conditional probability
μΆ\_dX Y~\ with A the closure of A satisfies for almost all Y the following "locaΓ
KMS-condition

f μχ[dXn;Y] [{f,g}-βg{f9HλtY}']φ:n) = Q

for all symmetric functions /, g of class °̂° with compact support contained in
(A x Rv)n.

2 For d = 0 these conditions are much too strong. In particular, the first inequality implies in this case
that Φ has finite range. It might be better, for d = 0, to include in the definition of a KMS state μ that (14)
holds for μ, a.e. XeΩ
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Lemma 2. Let μ be any KMS-sίαίe of the finite system Ω^ n for the Hamiltonian H —
n p2

Σ ~ - + U(ql9...,qn) with U of the class Ήl on (AxW}n

d; then μ is absolutely
i=ι 2m
continuous with respect to Lebesgue measure on each connected open subset %> of
(A x IRV)2 and is given on Ή by :

dμ = Cexp[-βH(X")']dxί...dxn

with C a positive real number.

Let us remark that in these lemmas we have used A (i.e. Άc is open) in view of the
application of Property 1 below which is valid for open set. We shall show at the end
of the proof of Theorem 1 that both of these lemmas also hold with A replaced by A.

Proof of Lemma i. With any Borel set M in IRV, let 2IM be the subalgebra of 21
generated by the functions Wh - f for which support h C M x IRV and support
/? C (M x IRT We note that :

{/,0}=0 for /e2IM and geWN if M and N

are disjoint.
From the KMS-condition, it follows that for any bounded open A in Rv and any

f,ge$lA9 gce$ίΛc9 we have

which yields

f μ#[.dY]gc(Y)F(Y) = Q for all gceWΆc (15)
ΩΛC

with

F(Y)= f μλ[_dX Y ] [ _ { f i g } - β g { f i H Ά Ύ } - ] ( X } .
ΩΛ

To conclude that F(Y) = 0 a.e. we first remark that F and gcF are in <&l[_μΛC'] since
{ f , g g c } and ggc{f,H} are in ^l\_μ\ we then need the following property:

Property 1. Lei M fte αrcy open set in IRV and let μ1, μ2 be ίwo positive finite measures
on ΩM such that WMC3f1[μ1']Γi3f'1[β2'] and μl[_g\ =μ2[gf] /or a// gι in 9ίM; ί/zen μ1

separating for finite measures on ΩM).

To establish this Property, let Θ be a bounded open set in M, and h*(q) be a
sequence of C°°-functions with support in (9 converging pointwise to Θχ& where θelR
and χ& is the characteristic function of 0. For any g in 210, the functions Wh« - g are in
210 and converge pointwise to Wθχ&- g moreover by dominated convergence, we
have

oo

α-»oo fc=o β0)fc

for all 0eR
Since ge£?l\_μl~\π£?l\_μ2~], the coefficient of this trigonometric series are

summable and hence they must all vanish choosing g = Sgτ with g^ φ 0 only for fe
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= n, we conclude that for any bounded open set Θ in M and any n

for all functions gn

τ(y^ ..., yn) of class C°° with compact support in (Θ x JRV)". It thus
follows that μ1 =μ2.

To apply this Property to our case, we decompose F into

and set μ1=μΆcF+,μ2 = μχcF_. Since F and gcF are in Jί?1 [ju^c], the measures μ1, μ2

satisfy the conditions of Property 1 with M — ΆC\ we thus have

and thus

fOO= Σ ί
n = 0 ΩΛ,Π

μΆc almost everywhere.
To conclude the proof of Lemma 1, we still need to show that each term of the

above sum is zero. We first remark that Equation (15) remains valid with F(Y)
replaced by FΘ(Y) where

Fe(Ύ) = fχ« j μάdXk

 9Y]ί{f9g}-βg{f9HΆ9Yn&k). (16)

To establish this result let M be any closed set in Λ\ f = Sfτ, g = Sgτ be any
functions in 21̂  and gce^M; moreover let If be a sequence of real functions in 3)
such that h*(q) = θ on A and h*(q) = 0 on M, converging pointwise to θχA. Since {/, gc}
= 0 from the above remark, {/, Wh«] = 0 since ha is constant on the support of /τ, and
ggcha belongs to 21, we obtain from the KMS-condition

μfaWM, 9Ώ =βμίdcWh«g{f, H}]

and Equation (15) with F replaced by Fθ follows by dominated convergence.
Repeating the above argument we conclude that FΘ(Y} = 0 for almost all Yand

there exists a set of full μjc-measure such that FΘ(Y) = Q for all 0eIR3. Again the
coefficient of the trigonometric series Equation (16) are summable and hence
vanish. Choosing / and g generated by n-point functions /J, gn

τ, we obtain

j μx[_dX"; Y] t{fϊ,gn

τ}-βgn

τ{fΐ,HΆjn(Xn} = 0 (17)
ΩΛ,n

for almost all Y.
By separability of the algebra of ^?GO- functions, this equation then holds on a

common set of full μ^c-measure for all /", gn of class °̂° with compact support in
(A x IRV)", which concludes the proof of Lemma 1.

3 Remove a countable union of null sets corresponding to rational 0's then FΘ(Y) = 0 for all real θ by
continuity
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Proof of Lemma 2. 1) μ satisfies the KMS-condition

for any symmetric ^°°,/,g with compact support in (A x IRV)". Using the identity

{f,ge-»H} = e-l>E[.{f,g}-βg{f,H} ]

and the property of the potential U, it follows that

R{f,ge-tH}-]=0 (18)

for all (^°°,/,0 with support in (A x IRV)^, where μ is the positive Borel measure on
ΩAn defined by

μ = eβHμ. (19)

Moreover, by density, Equation (18) holds also for g's of class (^1 and thus

0 (20)

is valid of all <$l — /, g with support in (A x JRV)^. With the remark of Section 2 μ
yields a symmetric measure on (A x 1RV)^ which has the property

j dμ(xl9...9xn) {/,fif}(x 1,...,xπ) = 0 (21)
( Λ X I R V ) 3

for all /,# of class (^ί with compact support in some open ordered set D* of
(ΛxRv)».

2) To conclude the proof, we have to show that μ is absolutely continuous with
respect to Lebesgue measure on ,̂ where ^ is an open connected domain of
(A x IRV)^. For this, we note that it is always possible to decompose ^ as a union of
connected open subsets of D£, defined by Equation (5)

*=U*πD;. (22)
π,α

Then absolute continuity on ̂  will follow if we have absolute continuity on each of
the DJ's. For this latter fact, we need the property :

Property 2. Let μ be any positive Borel measure on (A x Rv)^ and & be any connected
open set in (A x IRV)^ such that :

J dμ{f,g}—0 for all (not necessarily symmetric)

f , g of class Ή1 with compact support in &; then dμ = Cdx1...dxn on (9, c>0.

Proof. Let /z(x1? ..., xn) be a function in ̂  which equals 1 on the support of g. Then,
with the notation xeIR v xϊR v x-{xα; α = 1...2v}, and /'s of the form f=x]h, we
obtain

^dμ^~=Q 7 = 1.. .n α = 1...2v for all
t/λ' ,

Thus the derivations of μ, μ considered as a distribution, vanish on the open
connected set (9.
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Therefore this distribution equals a constant function C on (9 [15] and Property
2 follows.

3) With Equation (21) and Property 2 applied to each DJ we see that μ is
proportional to the Lebesgue measure on each D". Moreover, the proportionality
constant is independent of α and π by the connectedness of ,̂ i.e.

dμ = C dxi...dxn on ^

and by the definition of μ the Lemma 2 is thus proved.

Proof of Theorem 1. It follows from Lemma 2 (with A replaced by {qe A χd({q} u 7)
= 1}) and Lemma 1 that for any bounded open A in Rv, the conditional probabilities
satisfy for almost all Y in ΩAc

μΆldXnιY^^χά(XuY)e-βH^^C^γdxί...dxn (23)

on each connected, open, component Φ of ΩΆ n.
To conclude the proof we must show that (23) holds, with A replaced by A, on all

of ΩΛ n. To do this we use the following lemma :

Lemma 3. Let M0ί = {qe]Rv; \q\«x} be theopena-ball, α>0. Then for any KMS- state
μ of the infinite system,

for all but at most countably many α.

Proof. The lemma follow easily from the fact that for a KMS state the expected
number of particles in any finite region is finite.

From Lemma 3 it follows that there exists a bounded open set MD/L such that
i) M is "the" set introduced in the definition of loose packing, and

ii) $dμ\XdM\=Q.
Consider Equation (23) with A replaced by M. Using the compatibility

condition Equation (8) (with M replaced by M, A replaced by A, and the expression
Equation (23) for μ&[_άX Y]), it then follows in fact that for any loosely packed
KMS-state and any bounded Borel set A in IRV

for almost all Y. This concludes the proof of Theorem 1.

Theorem 2. Any Canonical Gibbs State μ such that ̂  C J^1 [μ], /•{#,#} e ̂  [μ] for
all /, ge 2ϊ, and in the case of hard core Φ(ql9 q2)-* °° for ki ~ #2! ~^> *s a

This converse statement follows immediately from Equation (10) by integration
by parts which are justified by the conditions $1 C^M and the condition on the
potential.

4. Conclusion

We have shown that any KMS-state is a canonical Gibbs state. In Ref. [12] it is
proved under certain restrictive assumptions on the potential that any canonical
Gibbs state is a mixture of Gibbs states with (possibly) different activities, i.e.
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extremal canonical Gibbs states are also extremal Gibbs states (the converse was
also proven there). Since then, same result was established with considerably fewer
restrictions on the potential. (It was shown by Goldstein, Aizenman, and Lebowitz
[13] and by Preston [13] that a similar relation exists between (generalized) micro-
canonical Gibbs states and Gibbs states; their extremal points coincide). These
results indicate again the equivalence between the different canonical ensembles
(micro, macro, grand) commonly used for the description of macroscopic systems in
equilibrium; it also shows the usefulness of the concept of classical KMS-states
introduced in [7] and further developed in [11].

It is also possible to understand, in an intuitive way, that because the classical
KMS-condition is derived as a consequence of stability of stationary states to (local)
perturbations which conserve particle number, it leads to canonical (rather than
"grand-canonical") Gibbs states. The situation in quantum systems with per-
turbations which conserve particle numbers has recently been investigated [16].

We also note here that the relationship between KMS-states and Gibbs states
established here for continuous particle systems was established by van Hemmen
[17] for harmonic crystals.

Finally, we should emphasize that insofar as it does not allow for coincident
particles our definition of Ω (for d = G) is not the one used most frequently in
statistical mechanics. In fact, for the usual definition [i.e., that Ω is the set of
unordered sequences {(qi9 pt)}9 such that q.-+ oo] it is not a consequence of the KMS
condition that the local measures μΛ\_dX Y] be absolutely continuous. Indeed, one
can show, along the lines of the argument of this paper, that in this more general
case a KMS state is, in effect, a canonical Gibbs state for a system of particles of
different types—single particles, double particles4, triple particles, and so on. And,
it may be shown, under assumptions similar to those of [12] or [13], that such a
state is a "mixture" of Gibbs states (for the system of several types of particles). This
result is what we should expect, since a) multiple particles cannot be separated by
means of a Hamiltonian time evolution (or any other evolution for which the
particles are intrinsically indistinguishable), therefore b) just like ordinary Gibbs
states, Gibbs states for systems of multiple particles are stable (in the sense of [9]),
and hence c) are KMS, since the KMS condition is a consequence of stability [9].

Note. This work was done independently by the authors in the United States and the authors in
Lausanne.
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