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Abstract. For neutral atoms and molecules and positive ions and radicals, we
prove the existence of solutions of the Hartree-Fock equations which minimize
the Hartree-Fock energy. We establish some properties of the solutions
including exponential falloff.

§ 1. Introduction

In this paper we discuss the Hartree (H) and Hartree-Fock (HF) theories associated
with the purely Coulombic Hamiltonian of electrons interacting with static nucleii.
Our purpose will be to prove that these theories exist (in the sense that the equations
have solutions which minimize the H or HF energy) whenever the system has an
excess positive charge after the removal of one electron. An announcement of these
results was given in [22] and an outline of the proof was given in [19].

The precise quantum system is described by the Hamiltonian

H= - Σ Δt+ Σ V(xά+ Σ \xt~xj\~1 , (1)
ί = 1 i = l i<j

where

V(x)=- Σzjlx-RjΓ1 (2)
7 = 1

acting on the Hubert space tf = L2

a (R3]V (C2ΛΓ).We assume zj > 0, all./. The subscript
a on L2 indicates that we are to consider functions in L2 as Ψ(x^ σ1 ... XN, σN) with
x^elR3, σte ± 1/2 and only allow those Ψ antisymmetric under interchanges o f f and
j. The particles have two spin states, but we could allow q spin states in our analysis
below with only notational changes. The physically correct Fermi statistics
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(antisymmetric functions) which we impose turns out to be the most difficult our
method would apply equally well to any other kind of statistics.

In (2), the zj are the charges of the nucleii at positions Rj. By a famous theorem of
Kato [16], H is essentially self-adjoint on C% (IR3]V C2]V)fl - ̂ phys, the C°° functions
of compact support.

We set :

E^R^mϊtiΨ^Hψyψε®^ \\Ψ\\=l} (3)

which is defined to be the quantum ground state energy.
In 1928, Hartree [14] introduced an approximate method for finding E%. He

apriori ignored the spin variables and the Pauli principle and considered product
wave functions.

!P(x1,...,xΛΓ)=Π«ίWΠ
i= 1

Minimization of the functional

<fu(Ul,...,uN) = (Ψ,HΨ) (4b)

with the constraint \\ut\\ = 1 then leads to the Euler-Lagrange equation

hiU^SiUt, (5a)

where the st are Lagrange multipliers and

(x) + V(x) w(x) + Rir(x) w(x) , (5b)

Rir(x)=Σ f Is-yΓX OOl2^. (5c)
j*i

Note that in the H equations, (5), the hi depend non-trivally on ί. This is to be
contrasted with the HF equations (7) where his independent of ί. Of course, the
equations (5) formally only correspond to stationary points of $ H so there should be
solutions corresponding to M'S that do not minimize $ H. Hartree attempted to take
the Pauli principle into account by seeking solutions with ul=u2 and u3

"approximately orthogonal to u±\ u3 = u4 etc. [We should also mention that
Hartree's derivation of (5) did not go through a minimization in the variational
principle-this is a refinement due to Slater [30] which led him to the HF equations.]
A more systematic and satisfactory way to take the Pauli principle into account was
discovered in 1930 independently by Fock [10] and Slater [30] yielding equations
now called Hartree-Fock (HF) equations. One considers trial functions u^x^ σ£) i
= 1,.. .,AΓ with (u^u^δij and the Slater determinant

Ψ(xί9 σl9 . . . , XN, σN) = (N !)~ 1/2 det(tφ,, σ .)) (6a)

and minimizes

(6b)
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with the constraint (w f,w7 ) = <5f</.. The corresponding Euler-Lagrange equations are:

\ιui = &iui , (7 a)

(hw) (x) = ( - A w) (x) + V(x) w(x) + UΨ(x)w(x) - (Kψw) (x) , (7b)

uψ(x)= Σ j i x - y Γ ' K ωi2^, (7c)
7 = 1

(Ky w) (x) = f M/X) f |x - jΓ l ^(y)^(y)d3y . (7d)
J = l

I/^P is the "direct" interaction and K^ is the "exchange" interaction. We will show
that minimizing solutions of (7a) exist whenever N <Z + 1 where Z is the nuclear
charge

k

We make the convention that when u's depending on spin are involved, as in (7c)
and (7d) the symbol j — d3y indicates also a sum over the spin variable attached to y.
[We note that the naive Euler-Lagrange equations are more complicated than (7)

but after a unitary change, wf ew = ]Γ a^u™ with αί; a unitary N xN matrix, (7)
results. The Slater determinant (6a) is unaffected by the change so that (6b) is
unaffected. This is proved in Lemma 2.3 and is further discussed in many texts, e.g.
Bethe-Jackiw [6] it plays an important role in § 2 below.]

Irrespective of the physical content of the H and HF equations, (5), (7), it is far
from evident that there exist any solutions of them, let alone minimizing solutions,
for they are clearly complicated non-linear equations. Because the full TV-body
Schrodinger equation is, at present, virtually inaccessible to computer calculation
while the HF equation, especially in the spherical approximation [6], is ideal for
computer iterative solution, the HF equations are extensively used in quantum
chemistry [27].

Before our work, the only existing theorems were for the Hartree equation (5) as
follows : Reeken [26] considered the restricted Hartree equations for Helium, i.e. he
considered (5) with fe= 1, zl — 2 and the additional restriction u1 =u2. He found a
solution for this case with w^O pointwise; his method works for any z>l.
Independently Gustafson and Sather [12] found solutions for the restricted two
electron problems for sufficiently large z (they state their results for z = 2 but with
\\Ui\\ sufficiently small rather than 1. Since we insist on the normalization condition
Hi/; || = 1, we scale coordinates to translate their result into a large z, \\Ui\\ = 1 result).
These authors all use a bifurcation analysis further discussed in Stuart [32], and
depend on the fact that they seek spherically symmetric solutions so that methods of
ordinary differential equations are available. Properties of their solutions are
further discussed in [3,4]. Relations between the restricted Hartree two electron
problem and the unrestricted problem appear to present some interesting
mathematical phenomena and we hope to return to them in a future publication.

Using a Schauder-Tychonoff theorem, Wolkowisky [34] found ground state
and excited solutions of the Hartree equation in the spherical approximation (see
e.g. Bethe-Jackiw [6] for a discussion of the approximation).



188 E. H. Lieb and B. Simon

All these authors attack the equations directly as fixed point equations in some
sense. The reason we are able to go further is that we exploit the form of the
equations as gradient maps, i.e. as Euler-Lagrange equations and directly attempt
to find solutions by finding minimizing w's for S>

H and $ HF. (This method has already
been used successfully in [23] to find solutions of another of the non-linear
equations of atomic physics: the Thomas-Fermi [9,33] model.)

These results for the H and HF equations, which we give in § 2 were announced
in [22] and sketched in [19] seemingly unaware of our work, Bader [2] has recently
presented a similar method to obtain similar results for the H (but not HF)
equations. We note that prior to our work, solutions of the HF equations for a class
of potentials excluding Coulomb potentials were found by Fonte et al. [11].
Recently, several authors [7, 8] have proved existence of the time-dependent HF
equations.

In §3, we establish various "regularity" properties of any M'S (not necessarily
minimizing ones), which solve the H and HF equation. Among these is the
exponential falloff of the M'S announced in [22] after our announcement, similar
results for the H equations were obtained by [5].

In § 4, we repeat the remark already made in [23] that our proof that HF theory
is "exact" in the Z->oo limit implies the same result for HF theory.

§ 2. Solutions of the H and HF Equations

While one could present the existence theory for the H and HF equations as two
cases of one general result, we present the two theories in sequence to illustrate the
extra difficulties in the HF case. The basic strategy is (cf. [23]) to introduce a weak
topology on the trial functions in which the trial functions are precompact and then
to prove that the functional one wishes to minimize is lower semicontinuous. This
establishes that the functional is minimized at some point in the closure of the trial
functions. In many cases, additional arguments are then available to prove that the
minimizing point belongs to the original trial functions rather than merely to the
closure.

Theorem 2.1 (H Theory). Fix N,k\ z l 9...,zk, Rί9...,Rk. There exist functions
M1,...,M ] VeL2(IR3;(C2) with uieQ( — A\ the quadratic form domain of — A, such that
the ut minimize

£„(«!,..., MN)= £>„(-/! + *>,)

ί = l

+ Σ iMxtflujWflx-yΓttfxdty (8)
i<j

with the subsidiary conditions, uίeQ( — A) and

N i ^ i .
The u s satisfy (5 a) with the additional condition, that for each i, either ε^ rgO or ut = 0.
In either event εt = inf spec^ ) and if εf <0, H w J I = 1. //, moreover, N<Z+l, then all
ε<0 and each \\u\\ = 1. In all cases

is finite.
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Remark. We have introduced the function J*H which agrees with $ H only when all
||w.|| — l. Theorem 2.1 says that dH always has a minimum if we only impose U i ^ U 5^1.
When the minimum of <fH occurs for H u j j = 1, all i, as we assert it does if Z -h 1 > N,
then, of course, these ut also minimize <fH subject to Hi^H = 1.

Proof. By a well-known result of Kato [18], for any ε>0,

(u, FM) ̂  ε(w, -Au) + Cε(u, u)

from which it follows that

is finite and that for some K :

^H(u^...ίuN)^EH + lι\\uj\\^l=^\\7uί\\^K. (9)

Now pick sets u<Γ\ 1 ̂  i ̂  N, n = 1, . . . . so that ^H(^n)) ̂  £H + 1/n. By (9), the u\n}'s
lie in a fixed ball in the Sobolev space [1], Hl = {u\ \\\u\\\= (\\u\\2 + | |Fw||2)1 / 2<oo}.
Thus, by the Banach-Alaoglu theorem, there exists a subsequence such that

M(»)-»M(«» in the weak-H1 topology. Clearly H w ^ H ^ l . We claim that δH(u(^)
^\imS>

H(u\n)) = EH, whence it follows that the u[co) minimize $H. Positive definite
quadratic forms are always non-increasing under weak-limits (see e.g. [23]) so that

(u^uW, \xt -XjΓ1 uWuW) ^ limiw^M^, \xt -XjΓ1 u(?}uf)

since u^uf-^uWu^ in L2(R6). Finally, because [18,25] Fis relatively - A form
compact [i.e. (J + 1Γ1/2F(-2J + 1Γ1/2 is compact] (u^Vu^^u^Vu^). It
follows that lim^H^J^^Hί"/00^- Henceforth, u{ is used to denote this u^.

To see that the w f's satisfy (5a), fix M l 5 . . . , M f _ 1 ? t/ ί+1,...,% and let

= const + (u,hiu) .

Since /(w) is minimized by u — ut subject to | |M| | ̂  1, we conclude that either h^O, ut

= 0, or ^M^fifMf with ε ^infspec/z^O.
Now suppose that N <Z+ 1. Let i; be a spherically symmetric function on IR3.

Then (u, /zt-t;) = (ϋ, — zl ι;) + (i;, Kt;), where

K(r) =-Σ ^(max(r, 1^1))- 1 + Σ f |Mj.(k)|2 (max(x, r^dx .
7 = 1 J Φ i

Since \\Uj\\ ^1, we have that

K(r)^-lZ-(N-l)']\r\-ί when r>max(|JR i / |) .

It is easy to see (use explicit hydrogenic wave functions, or a scaling argument [28]),
that (v,htv)<0 for suitable t 's. It follows that ε£<0 so that 11^11 = 1. D

Remark. 1) In particular, in the neutral case Σzj = N, a solution of the H equation
exists.

2) Notice that no assertion is made about uniqueness.
3) In the above proof, we used |xf — x/Γ 1 ̂ 0 pointwise. In distinction, at the
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analogous point in the TF theory we used the fact that |x ~ 1 is positive
definite.

4) The above method fails for the Hartree-like Choquard functional
£(u,v)= \\Vu\\2 + \\7v\\2- J \u(x)\2\υ(y)\2\x-y\'ίdxdy, because the last term is neg-
ative instead of positive. Nevertheless, alternate methods involving rearrangement
inequalities can be used to prove that minimizing u and υ exist, see Lieb [21].

5) Since the w 's are ground states of ht, they are pointwise positive [25].
To prove the existence of solutions of the HF equation, we must extend S>

HF in a
manner analogous to (8); we define:

<?HFK,...,%H ΣM-Λ + FKH Σ ((^^-^Ki/W,
i = l l^i<J^N

where

For future reference we note that

(11)

The critical element in the extension will be to locate the weak closure of
{(uί,...,uN)\(ui,uj) = δij}:

Lemma 2.2. Let u^ -» ut(i =l,...,N) weakly with (u(?\ uf] = otj. Then (ui9 Uj) = Mtj is
an N x N matrix with OrgM^l. More generally the conclusion remains true if the
weaker hypothesis (u(n\u(]t}) = M^ with O^M(π)^l is imposed.

Remark. The point is that it is easy to see that every (w1? ...,%) with Mtj obeying 0
^M^ 1 arises as a weak limit of orthonormal TV-tuples. Since we do not need this
below, we do not give the easy proof of this converse which is based on
diagonalizing M.

Proof. Let zeC* Then (z,Mz) = ̂ z.MyzJ. = (M(z)Jφ)) = (w-limM(ϊl)(z)5 w-limι/n)(z))

^Σl z ΐ l 2 where w(n)(z) = ΣzX") The last inequality follows from the fact that balls
are weakly closed and the calculation (u(n](z\ u(n\z)}=Σ N2 Thus M^ 1. M^O is
trivial. D

We will also need the elementary observation :

Lemma 2.3. Let M f = Σ aijuj where A = {aij}ί^ίj<N is a unitary N xN matrix then

Proof. Let Ky = (Mί, (-Δ + V)uj), Kίj = (uί,(-Δ + V)uj), Riιi2jιJ2 = ( ( i J 2 ) 2 ,
\x-yΓ1(Jj2)2), etc. Then K = A*KA so ^ Ku = Ίτ(K) = Ίr(K) = Y , Ku.
Similarly, by taking traces on the antisymmetric tensor product of <CN with itself
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Theorem 2.4 (HF Theory). Fix N9k',zί9...,zk9R^...,Rk. There exist functions
w 1 ?... ?wNeL 2(lR 3;(C 2) such that uieQ( — A), the quadratic form domain of — A, and
such that the u{ minimize $HF (given by (10),) with the subsidiary condition.

Mtj = (u , Uj) obeys 0 ̂  M ̂  1 .

Moreover, the u's obey (ui,Uj) = λίδij and satisfy the HF equations (7) with the
additional condition that either ε^O or ut = 0 for each L si9...,εN are the N lowest
points of the spectrum of h and if st <0, λ{ — 1. // moreover, N <Z + 1, then all ε <0

Proof. By mimicking the proof of Theorem 2.1, we find w|co) obeying O^
which minimize (?HF. In this proof, we use Lemma 2.2 to be sure that O^M(oo) ̂  1
and the fact that (ij)(n)-+(ij)(oo) if uf}-*u(™\

Choose a unitary N x N matrix A so that A* MA is diagonal and let
ui== Σ aίju(Γ}' By Lemma 2.3, {w } minimizes ^HF also, and clearly (w/5 u^λ^^.

Now F(w) = ̂ HF(w l5 ..., uί_l,u9ui+ί, ..., WN) = const + (w, /zw) so since w = w f mini-
mizes F(u) subject to (w, w7 ) = 0(/Φ i), (w, M)^ 1, ut must be a linear combination of
the TV smallest eigenvectors of h with only eigenvalues ^0 allowed. Since each
ut has this property, by further unitary change, the u/s can be made to obey
/IM^Cftίf.

To complete the proof we need only show that if N— 1 <Z, then h has N points
of its spectrum below zero, i.e. dimP (_0 0 > 0 )(ft)^A/'. Now write h = h0 — KΨ with X^
given by (7d). By the positive definitness of M"1, KΨ is a positive operator, so we
need only show that h0 has N negative eigenvalues. This follows, as in the proof of
Theorem 2.1 by considering spherically symmetric trial functions. G

As already remarked in [22], the above method also yields solutions of modified
HF equations in which we restrict the t/'s to lie in certain sets with suitable
properties. Because of the spin independence of the assumed Hamiltonian, H, we
can obtain several solutions of the actual HF equation by taking each ut to be a
product of a space and spin function, for example, and demanding a particular
symmetry of the spinor functions. We emphasize that the "true" minimum of
Theorem 2.4 is not known to come from a set of u's which are product functions. An
additional restriction which is often made and for which our method applies, is to
demand the spatial functions be real.

§ 3. Properties of Solutions

Theorem 3.1. The solutions of the H equation (5) constructed in Theorem 2.1 obey:
a) The M. are globally Lipschitz and lie in D(ht) = D( — A).
b) Away from the points r = Rp the ut are infinitely differ entiable.
c) Exponential falloff: For any α<|e ί |

1 / 2 there exists a Ca so that

Proof. h^-A + Vi, with Vt = V + Rlp. Since UjGL2nQ(-A), by a Sobolov estimate
[31] (for a simple discussion of this point, see [20]) it follows that uJeL^r^L312' ε, so
by Young's inequality, .R^eL00. Thus D(hί) = D( — A). Since uieD(hi), we have u{
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continuous so that Rί^ is continuous, a) Now follows by a result of Kato [17] and c)
by a result of Simon [29] (both specialized to the two-body case; see the original
papers for other references including earlier results for the two body case), b)
Follows by a bootstrap argument reminiscent of our argument in [23] : We exploit
the following facts (see e.g. [24], Section IX.6):

a) Let Ω be a bounded open set. If uεL2(Ω); -Au = Wu and WeCk(Ω), then
DaueL2 for all multiindices α with α ^fe + 2.

b) If DaueL2(Ω) for all α, then u is C°° on Ω.
The additional fact which we need is that if weL2(IR3) and if D0ίueL2(Ω\ |α| ̂

then g(x) = J lw(y)|2|x — yΓ1^ is Cm on Ω. This follows by writing \x\~^ =φί

with (p2e C°° with support outside a ball of radius ε/2 and φί supported in a ball of
radius β. Then g(χ) = J \u(y)\2φί(x-y)dy+ j u(y)\2φ2(x-y)dy = gί+g2. The g2

term is C00 on all of IR3. The gl term is easily seen to be Cm on those x such that {y\ \x
-y\<ε}cΩ.

With a), b), and the above fact, u is C°° away from the ̂  by an obvious inductive
argument. Π

At first sight, the methods of Theorem 3.1 appear to be inapplicable to the HF
case because of the non-local term. However, an elementary trick allows one to
write the HF equations in local form; namely we consider the operator A on

0L2(#3;(C2) given by:
j=ι

Atj = δίj(-A + V(x) + R (x) - ε,)

with

βy(x) = - j \x - y\- 1

Then AΨ = 0 where Ψ is the vector with Ψi(x) = ui(x). With this remark, the
following can be proven by following the proof of Theorem 3.1 :

Theorem 3.2. The solutions of the HF equation (7) constructed in Theorem 2.4 obey :
a) The u{ are globally Lipschitz and lie in
b) Away from the points r = Rj9 the u{ are C°

c) Let k0 = min |εj|1/2. Then for any α </c0 :
i

α|x|), alii.

Remarks. 1) The common exponential rate of falloff which was obtained comes
about because we have written the HF equation as a single multicomponent
equation. However, it is evident that barring some miraculous cancellation, the w f's
should have the same rate of falloff because in the HF equations \_(—Δ+V)u^\(x) is a
sum of terms containing all the Uj(x)'s in them. After making this remark in [22], we
learned that it had already been made in the chemical physics literature [13].

2) By following the method of Kato [17] (or an alternative of Jensen [15]) one
can give the precise singularity in the first derivatives of the u{ at the points Rjf

3) We believe that the M f's are real analytic away from the Rjs.
4) In both Theorems 3.1 and 3.2, only the form of the equations and

UiEQ(—A)nL2 is used. Any solutions satisfying this Q( — Δ) condition will obey
the conclusions of the theorems.



Hartree-Fock Theory for Coulomb Systems 193

§ 4o Connection with the Quantum Theory

We make explicit a remark of ours in [23]:

Theorem 4»lβ Let E$(zz , JRf) be given by (3) and define

E*F(z ί9JR.)ΞΞ inf {(Ψ,HΨ)\Ψe@phys; \\ Ψ\\ = 1 Ψ a Slater determinant} .

Let jR f ,z f be N dependent in the following manner:
a) ziIN-+λi.
b) R!=O; RjN-*l3-+rj or to oo.

Proo/ E$5g£]JF<0 by the variational principle so clearly the lim isrg l . In our
proof that TF theory is asymptotically correct (§111 of [23]) we constructed an
explicit Slater determinant so that as JV-»oo, (Ψ,HΨ)/EχF-+l (where ETF is the
Thomas-Fermi energy). Since £g/£jF-»l by [23], and Ef^(Ψ,HΨ\ the
l im^l. D

Remarks. 1) As explained in [23], we expect £jf -E% = o(N5/3>} and E% =
+ bN2 + cN5/2> + o(N513). The proof of these facts seems to us to be an important
problem in understanding the bulk properties of large Z atoms and molecules. All
we were able to obtain rigorously is the leading term α/V7 / 3. In [23], a conjecture,
due to Scott, is made about the next term 67V2 (see [20] for more details).

2) We emphasize that Theorem 4.1 is only a limit theorem about total binding
energy. It is physically more important to prove that HF theory gives asymptoti-
cally correct ionization energies.
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