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Two-dimensional Neutral Coulomb Gas
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Abstract. Accurate bounds for the classical canonical partition function of the
two-dimensional Coulomb gas interacting through the Coulomb potential
— qβj logr^ are calculated (valid for all T> Tc). The existence of the thermody-
namic limit is proved.

In a recent paper Deutsch and Lavaud [1] speculated about the thermody-
namic limit for the two-component classical neutral Coulomb gas in two-
dimensions, i.e. the existence of finite thermodynamic functions per particle in the

N
limit N-+co9 F-»oo with — bounded.

Their estimates were not accurate enough to prove the existence of the
thermodynamic limit. Recently Frόhlich [12] has solved the problem using
euclidean quantum field techniques (Gaussian integration).

The objective of this paper is to obtain stronger bounds for the canonical
partition functions of the Coulomb gas and then prove the existence of the
thermodynamic limit using well established statistical mechanics techniques.

The general scheme of the paper is, by sections, as follows:
1. Definitions. The partition function, free energy per particle, etc. are defined

and the problem of the thermodynamic limit precisely stated.
2. Upper bound for classical partition function.
3. Basic inequality for classical systems. An inequality relating the canonical

partition function for domain Ω to the partition function for two sub-domain s Ωr

and Ω" is obtained.
4. Limit for cubes. A standard sequence Γk of cubic domains, each double the

size of its predecessor is introduced. The existence of the limiting free energy is
established for this sequence by showing (essentially) that the free energy per
particle is monotonically increasing in k and recalling the upper bound (Section 2).
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5. Properties of the free energy. It is shown from the basic inequality that the
limiting free energy is a convex function of the specific volume v=l/ρ, whence it
follows that f(v) is continuous and differentiable. This establishes the existence of
the limiting pressure and its monotonicity in v.

1. Definitions

We consider a 2-dimensional Euclidean space with position vectors r. A domain of
this space will be denoted by Ω and will have a volume V= V(Ω).

A mechanical system of 2N classical charged particles, N positive and N
negative will be specified by its Hamiltonian,

jf2N == J^2N(PV ri)= T2N+ U2N

where the kinetic energy is

2N

T2N= Σ Pt2/2m

and the potential energy

U2N= ~ Σ Wogh-fjl qA+q \ZN7\ 2/V

Here pb rb and qt are the momentum, position vectors and charge of the ith

particle.
Denoting β = l/kBT and A = (h2/2πmkBT)^ the canonical partition function for

the neutral Coulomb gas is

Z(β,2N,Ω) = Λ-*NQ(β,2N9Ω) (1.1)

where
2N

Q(β,2N,Ω)=(N\Γ2$...ί Π d2

riexpl-βU2N].
Ω i=l

The canonical free energy is defined through the formulas

Z(β, 2N, Ω) = e

2Nfiβ>2N>Ω) = eV9{β^Ω)

a n d

/(/?, 2N, Ω)=F2N/2NkBT = vg(β, ρ, β) (1.2)

where the density ρ and specific volume v are defined by

Given a sequence of domains Ωk(k = 0,1,...) with V(Ωk)-+co the thermodynamic
limit may now be defined, when it exists, by

where the limit is taken at fixed ρ.
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If the limiting functions are differentiate, the canonical pressure is defined by

υ) = g-ρ(dg/dρ) (1.3)

2. Upper Bound for Classical Partition Function

We can write the canonical partition function in the form

-βq2N
(2.1)

where

2N . v

Q*N= J...J ft ^S^xpiβ £ qβjloglSi-sΔ (2.2)
| S ί | ^ l i = l \ i<j /

and we used the scaling procedure

to separate out the volume dependence.

2.1. Electrostatic Inequality

A basic tool is an inequality whose source is closely related to the fact that non-
overlapping spherically symmetric charge distributions exert forces on each other
as if their total charge was concentrated in their centre.

Let ll9 l2, ...,/„ be rings with respective centers xι,x2, ...,xneK2 and arbitrary
radii r l 5 r2,..., rn. Suppose there is a uniform layer of charge on each l(. Let its linear
density be qJ2nri9 where qt may have either sign. This produces a continuous
potential in R2 given by

2Ή

The total electrostatic energy is

2N 2N

{Aπ)-"\\Vφ\H2x=-\ Σ Σ {qJ2πrύ(qj/27crj)$ f log\ti-ψkdlj
R2 ί=lj=l lilj

where we used the first Green's identity and the fact that we have a neutral system to
show that the boundary contribution vanishes. For non-overlapping charge
distributions and recognizing that the diagonal terms {i=j) are just the self energies
we obtain

2JV 2N

(4π)~1ί \Vφ\2d2x=-^ X ^.loglx -X l - i Σ q
R2 i,j=l i = l
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or

- \

2N 2N

Σ M loglXi-X l ^ Σ ^ 2 l o g r ; (2.3)

which is the electrostatic inequality for non-overlapping charges in two dimensions.
An accurate upper bound may be given to the integral (2.2) by the following

procedures.
1. Remove from the region of integration all points in which two or more of the

separations \S( — Sj\ coincide. This set of points has measure zero. In the remaining
domain of integration Ω, each point St has a unique nearest neighbour SF(i), where
F(ί) depends on the particular configuration of points (S l 5 . . . , S2JV) chosen.

2. The 4iV-dimensional domain Ω is partitioned into disjoint subsets {I/}, where
each U consists of all configurations with the same nearest neighbour function
ί-+F(i). Thus there is one subdomain U for each nearest neighbour function on the
index set {1,..., 2N}. The union of the over all possible nearest neighbour function is
just Ω.

3. We construct a uniform bound for the integrations over the subdomains U
and an estimate of the number of such subdomains to give an overall estimate of the
integral (2.2).

2.2. Upper Bound for (2.2)

By making use of the electrostatic inequality (2.3) we can write

2N I 2N \

Q*2Nί ί ...J Π d^exp [β/2 Σ <Z2log iMinlS.-S l) (2.4)

consider now the integral

2N I 2N \

W J Π ^ exp -ββ Σ ^ l o g ^ -S^I) (2.5)
u ί = i \ i=i I

where U is a subdomain associated with the nearest neighbour function i-+F(i), and
ISj — SF{i)\ represent the distance between i and its nearest neighbour. The function F
is conveniently represented by a directed graph (digraph) and is of the form:

i.e. a graph of 1 to AT connected components each of which is composed of a cycle of
two lines, together with trees attached to the two nodes on the cycle. The nearest
neighbour condition forbids cycles with three or more lines. Each distinct labelling
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of the 2N nodes gives a different nearest neighbour function. The geometrical
restrictions of two-dimensional space prohibit any point being the nearest
neighbour to more than five other points.
Case a). The graph has only one component (i.e. is connected). We may suppose,
without loss of generality, that S2N and S2N_ x are the points on the cycle. Then we
may perform the following change of variables in the integral (2.5)

S: —>U:

S2N ~^U2N —2$2N

The Jacobian of the transformation is 22N. Hence

d2uv..d
2u2N

L u = *
i f " " 1 " '* "2N

 r (2 6)

where D is a suitably enlarged domain for the [/-integration variables, chosen so
that the integral becomes easier to evaluate. We take the domain

{2 J V - 1

Σ I

Because |S f | ^ 1 and jS2N = u2N then \u2N\ ̂ \. Also \u{\ is \ the nearest neighbour
distance from the ith point. Hence the set of discs

[set of points in R2 at a distance from St not exceeding |uf|,'

form a non-overlapping set of total area
2 J V - 1

π Σ l«. l2

confined into a disc of radius at most 2 in the s-plane. Hence
2N-1

and, in terms of the original 5-variables, D includes U.
Using a standard integral [3, page 258] we get

T <

Case b). The graph has k components. Likewise, for nearest neighbour functions
with k connected components we have an estimate

I <(2π)2N4~k 22i2N~2knί~iβq2)'22kil~zβq2)

= 7(1 -ϊβq2)2N-2kX(l - W ) 7 Γ [ ( 2 i V - k)- (N/2)βq2 + 1 ] (2.7)

where Y(u) and X(u) are N and k-independent functions.
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We now need an estimate of the number of nearest neighbour functions with k
components. So we enumerate the nearest neighbour regions U. This can be carried
out using standard techniques for graphical enumeration [4, pp. 8, 20, 69].

The exponential generating function for the number of labelled connected
functional digraphs with cycle of order 2 is

Z w = l

and the exponential generating function for the number of labelled functional
digraphs with exactly K' components is

\κ>

)

By comparison with formula (A.4) of appendix and setting K = 2Kf, we have

1 °o ίπ_ \\\nn-2Kft

so the number of graphs of the above type with precisely K-components and 2N
nodes is

2 ] V - 2 K Γ(2iV+l)(2iV)2iV-2K
2(2iV-l)!(2iV)2]V-2K

 < Γ(2iV+l)(2iV)

2K(K-\)\{2N~2K)\ = 2KΓ(K+1)Γ(2N-2K + 1)' ( < )

Thus, multiplying (2.7) by (2.8) and summing the result over K we obtain the
following upper bound for Q%N

-(βq2)/2)~]κ(2Y)-κS(2N)iβq2N)/2 exp(2N)[7 + (X/2y)]2]V (2.9)

using Newton's binomial formula.
With the help of definition (1.2) and formulas (2.1) and (2.9) we obtain

immediately for the free energy per particle.

eY+
eX

27
(2.10)

It should be noted that (2.10) does not make sense for T^Tc = q2/2kB. The
function Y diverges for T=Tc. As Knorr [10] has shown the partition function does
no longer exist for T^TC and the system collapses in configuration space.

3. Basic Inequality for Classical Systems

Consider two sub-domains Ω' and Ω" with non overlapping volumes [7] but lying
within the volume of a domain Ω. We will derive an inequality between the partition
functions for Ώ, Ω\ and Ω". Firstly, remembering that the integrand of the
configurational integral (1.1) is positive, reduce the domain of integration of each rt
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to Ω' + Ω". Next split up the total 4iV-fold domain of integration in all possible ways
into combinations of Ω' and Ω" keeping always an equal number of positive and
negative charges in Ω' and Ω". This yields the inequality

A-8N (2AMΪ 2 2N> 2N"

2N' + 2N" = 4JV l i V ') K^ ! ) Ω' i = 1 Ω" i = 1

• exp C - βU2N, - βU2N» - βU2N,f2N,,-]. (3.1)

Since all terms in the sum are positive the inequality remains true if we keep only
one.

Introducing the measure

aμ — 2 F 2ΛT

ί ί Π rf2rJί Π d2riexpβ[U2
Ω' i = 1 Ω" i=l

We can write (3.1) in the form

Z(β9 AN, Ω) ̂  Z(β, 2ΛT, Ω')Z{β9 2N", Ω") J dμ exp βU 2N. t2N.. (3.2)

and using Jensen's inequality we obtain

Z(β9 4N9 Ω) ̂  Z{β9 2ΛT, CΪ)Z{β9 2ΛT, Ω") expβ J dμ U2N.t2N». (3.3)

If we take the term in (3.1) such that the charges in Ωr or Ω" are conjugated to the
ones in (3.3) we get the inequality.

Z(β, 4N9 Ω) ̂  Z(β9 2N\ Ω')Z(β9 2N\ Ω") exp( - β j dμU2N,aN,,) (3.4)

therefore from (3.3) and (3.4) we obtain the basic inequality

Z(β9 4N9 Ω) ̂  Z(β9 2N\ CΪ)Z(β9 2N"9 Ω"). (3.5)

This charge conjugation trick is due to Griffiths [13]. If this symmetry is not present
the more general method of Lieb and Lebowitz [14] can still be used.

4. Limit for Standard Cubes

Up to this point we have used spherical domains. To simplify calculations we now
introduce a standard sequence of cubic domains [7] Γk(k = 0,1,...) which could be
used to compare with more general sequences of domains. This brings no difficulty
because for an upper bound one can always embed a cube in a sphere.

Let the edge of the cube Γk be

dk = 2kd0, dk+ί=2dk

so that the volume is

Vk = V(Γk) = 4 V - 2vkdl (v = dimension).
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In the following we shall fill the standard cubes with particles observing the
convention: each cube will have charge neutrality.

For brevity write for the free energy density

g(ρ,Γk) = gk(ρ).

Then on applying the basic inequality (3.5) with \T cubes Γ at density ρ' and \T
at density ρ" we find

(4.1)

with

For ρ' = ρ" = ρ (4.1) yields the single inequality.

9k+i(Q)t9k(Q)

Thus gk is a monotonic increasing sequence bounded through (2.10) and (1.2). So
the limit exists.

5. Properties of the Free Energy

The previous section establishes the existence of the limiting free energy for a
sequence of cubes for all densities at which the partition function of a sufficiently
large cube is non zero.

As we have seen before, the volume dependence of Z(β, 2N9 Ω) may be separated
out with the aid of the scaling procedure. Consequently it is not difficult to
determine the following dependence, on the density, for the free energy

Λ2(JV!)1/iy(2JV)'

so, for (βq2)/2<ί, we have the sequence g(β,ρ,Ωk) as convex functions of ρ.

5.1. Limit for General Domains

By using the basic inequality to compare the partition functions for a general
sequence of domains Ωk with those for the standard cubes contained within Ωk and
containing Ωk it is possible to show that the free energy is independent of shape.

5.2. Grand Canonical Ensemble

Assuming the existence of the limiting canonical free energy the limiting grand
canonical potential can be shown to exist and to yield equivalent results.
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53. Field Theory

The sine-Gordon theory is defined by the formal Lagrangian density [11]

^ = i dμφd"φ + (ao/β2) cosβφ + γ0.

It is possible, using Euclidean Field Theory [12] to establish an isomorphism
between the sine-Gordon theory and the Coulomb gas. This isomorphism allow us
to use the bounds calculated above and prove the existence of the ground state
energy density when the space cut off is removed.

Appendix. Some Generating Functions

1. Lagrange Series [3, page 133]

Let f[z) and φ(z) be analytic inside and on the contour C containing the point a and
such that

\tφ(z)\<\z-a\ on C.

Then

has one root (ζ) inside C. And for any / as above

/(0=/(α)+ Σ
f id

n= 1 "Σ
= 1 "

n-ί

(A.2)

Application

1. Set φ(z) = e\a = O than the Equation (A. 1) becomes ζ = teζ and the series (A.2) for

r r
- Σ - - ^ («>

ι = O w = l

this converges for | ί |< -.
e

2. Let f(z) = zκ, then ζ = teζ gives

00 tn (dY"1

r = 0
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