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Abstract. The second-quantized Dirac and Klein-Gordon equations with
external fields are solved. It is shown that the interpolating field is local and
satisfies the Yang-Feldman equations. The Capri-Wightman approach and the
Friedrichs-Segal approach are shown to lead to the same unitary S-operator.
The evolution operator and ^-operator are studied. A divergence-free per-
turbation expansion of the S-operator is derived and the connection with the
Feynman-Dyson series is established.

1. Introduction

In a previous paper [1] (which we shall refer to as I) a number of perturbation-
theoretic results were obtained which were applied to the classical Dirac and Klein-
Gordon equations with external fields. The quantized theories will now be
considered.

As detailed in [2] (referred to as B), one can treat the external field problem in a
rigorous way by using the operators from the classical theory to generate
transformations of the field operators on Fock space which amount to Bogoliubov
transformations. If such a transformation is implementable the resulting Fock
space operator is regarded as the physical operator corresponding to the unphysical
operator on the classical Hubert space. This approach, which goes back to
Friedrichs [3], was further developed in [4-8,2]. A closely related but more
algebraic approach, inspired by the ideas of Segal [9], was used in [10-17].

A rather different strategy, based on the Yang-Feldman equations, was initiated
by Capri [18] and further developed by Wightman [19] it can be used for any
generalized Dirac equation. Yet another treatment, using ideas from re-
normalization theory, was recently given by Bellissard [20,21].

On a formal level the scattering of (especially spin-|) particles at external fields
has been considered some time ago. Some references are [22-24]. Detailed accounts
of the formal theory can be found in the books by Schweber [25] and Thirring [26].

One of the main results of this paper is that for (massive, relativistic, charged)
spin-0 and spin-^ particles in external fields which are test functions on space-time
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the Friedrichs-Segal and Capri-Wightman approaches lead to the same S-operator,
and that the divergence-free perturbation expansion of this unitary S-operator
corresponds in a quite natural way to the formal Feynman-Dyson series. (Earlier
results going in this direction can be found in [20].) In particular, the relative (cf.
[22,25]) S-matrix elements are the same in the rigorous and the formal theory, while
the vacuum-to-vacuum transition amplitude resp. its modulus are equal in a formal
sense to be specified below.

In Section 2 the Dirac theory is treated. Subsection A contains definitions of
various field operators, the equations they satisfy and their interrelationship. It is
proved that the interpolating field is local and satisfies the Yang-Feldman
equations, and the equivalence of the Capri-Wightman and Friedrichs-Segal
approaches is established. In Subsection B the evolution operator and 5-oρerator
are studied. Explicit expressions are derived and various continuity and analyticity
properties are proved. The S-operator is shown to be Lorentz covariant and causal
up to a phase factor. In Subsection C perturbation expansions are derived, the
connection with the Feyman-Dyson series is established, and the analogue of
Furry's theorem is proved. In Section 3 the Klein-Gordon theory is treated along
the same lines as the Dirac theory. The paper ends with Section 4, which contains
concluding remarks.

In Sections 2 and 3 it is assumed that the external fields are real-valued test
functions on space time. As in I, several results could easily be extended to more
general functions, but we shall not consider this.

2. The Quantized Dirac Theory

A. Field Operators

In this section and the next one we shall make extensive use of the notation and
results of I and B. Thus [cf. B(2.9)], we have field operators on J^pf ) , defined by

Φ(v) = a(P+v) + b*(FΊϊ) VϋeJf (2.1)

where P+(P_) is the projection corresponding to the positive (negative) part of the
Dirac Hamiltonian Ho acting on the classical Hubert space Jf (cf. I § 3 A). Clearly,

[Φ(u\ Φ*(v)-] + = (u, v) Vu,ve3f (2.2)

where

Φ*(ί))Ξφ(i)f. (2.3)

Defining

xp?(f) = Φ(exp(ιΉoί) W- 7 ) V/e i f (2.4)

one has the formal relation

Ψ?U) = idxf(x).ψ%x) (2.5)
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where ψ°(x) is the usual formal free Dirac field

ψ°(x) = (2π)" 3 / 2 Σ j dp(m/Epy
2 (a^u^p) exp( - ίpx)

i

(2.6)

with our conventions for the M; and vt [cf. I (3.6-7)]. To see this, use I (3.4), (3.10) and
set, e.g. [cf. B (4.6)],

(2.7)
i

If feD(H0), then

(2.8)

where the differentiation is in the norm topology. Note that if one smears the formal
relation

β{-tf + m)ψ°(x) = 0 (2.9)

with J(jc) and uses partial integration and (2.5) one obtains (2.8). One can therefore
regard (2.8) as a rigorous analogue of (2.9). Similarly, the relation

ίψ?(flψ?(gn+ =(f,g) v/,#e if (HO)

is the analogue of

lΨΪ&x)9ψ°β*(t,xyi+=δaPδ(x-x'). (2.11)

Since exp(zΉoί) acts as multiplication by Qxp(ίEpt) on J f + and by exp( — iEpt) on
Jf_ it follows from (2.1) and (2.4) that

ψ?(f) = exp(iBot)ψ°o(f) exp( - iJ50ί) (2.12)

where

B0 = Ω(qH0). (2.13)

Bo is by definition the free Fock space Hamiltonian. It is the sum operator derived
from the operator qH0, which acts as multiplication by Ep both on the one-particle
space J"f+ and on the one-antiparticle space Jf_. Thus, Bo is a positive self-adjoint
operator on ^ ( ^ f ) with continuous spectrum in [m, oo) and eigenvalue 0 on Ω, the
vacuum. On physical vectors (cf. B § 2) built up from vectors in D(H0) one has
(cf. B§4)

Bo = f dpEp(a*(p)a(p) + 6*(p)fe(p)) (2.14)

which is of course the usual expression (the spin indices are suppressed).
More generally, the transformation

Φ(v)-*Φ(U*(a,Λ)υ) (2.15)
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where U(a, A) is the representation of iSL(2, C) in Jf [see I (3.44)] is implemented by
unitary operators

(2.16)

in which

(U(a, Λ)υi(p) = exp(φα) ({A ' 1p)o/Po)1/2

^ i ^ (2.17)

Thus, °U{a, A) acts in the same fashion on particle and antiparticle states.
One also verifies that the gauge transformation

Φ(ι?)-+Φ(exp(ΐφ) (2.18)

is implemented by the unitary operator exp(iβα), where Q is the charge operator

Q = SKq) (2.19)

Moreover [cf. 1(3.11)],

Φ*(Cι;) = (ίfΦ(u)«'*, (2.20)

where ^ is the Fock space charge conjugation operator, given by

% = Γ(C) (2.21)

where

(2.22)

(2.23)

In (2.23) V(x) = βB(x) is by definition a function from # 4 to the Hermitean 4 x 4
matrices, the matrix elements of which belong to S(R4). Smearing with/(jc)eif and
partially integrating one obtains as rigorous analogues:

dψt(f)/dt = Ψt(iH(t)f) V/e D(H0), (2.25)

+ = (/, g) VLgeJ?. (2.26)

It should be noted that # is unitary, whereas C is anti-unitary.
The formal perturbed Dirac field should satisfy

We assert that for any aeR

Ψt.JJ)Ξ W*(t, a) exp(ίHot) W~ 7 ) (2.27)
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is a solution to (2.25) and (2.26), where U is the interaction picture evolution
operator corresponding to V(x) (cf. I § 3B). Indeed, the verification of (2.26) is trivial
and (2.25) follows from the relation

t/*(ί,α)=l/(α,ί) (2.28)

and I (2.23).
Evidently,

lim ψt>_00(exp( — iHot)f) = Φ(W~1f), (2.29)
ί - > - oo

lim ψu _ oc(exp( - iHoήf) = Φ(S* W~ 1f) (2.30)
ί->00

where the limits are norm limits and S is the classical S-operator on f̂. Hence, we
set

(2.31)

iHot)f)9 (2.32)

(2.33)

where int stands for interpolating. In a formal sense, ψinUt is the interaction picture
analogue of the Heisenberg picture field ip^-^.

We now define field operators, smeared with test functions FeS{R4)4 by

ψe\F) = ί dtψex(exp(iHot)F(t, )), (2.34)

ψin\F) = j dtψtt _ J F f o )), (2.35)

where the integrals are Riemann integrals in ££(3*^ and ex = in, out. To conform to
common usage these field operators depend linearly on F. Clearly, we can also write,

S )), ^ (2.36)
ψ*»\F) = Φ(J Λ U*(t, - oo) exp(iffoί) W~ xF(ί, )), (2.37)

where the integrals are strong Riemann integrals in jfc resp. Jf. The relation

ψ™(F) = J dxF(x)ψ°{x) (2.38)

now follows in the same way as (2.5). One also verifies that

φ e x (W Γ + m)F) = 0, (2.39)

ψint((i$ τ + m - BT)F) = 0. (2.40)

Thus, φex(x)and ψmt(x) satisfy the free resp. perturbed Dirac equation in the sense of
operator-valued distributions. Moreover, we have

Theorem 2.1. The interpolating field ψint is local and satisfies the Yang-Feldman
equations:

ψial(TRF)=ψin(F), (2.41)

ψ™\TΛF) = ψ°»XF), (2.42)
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where

(TIF)(x) = F(x)-$dyF(y)SI(y-x)B(x) I = R,A. (2.43)

Proof. If suppi7 and suppG are spacelike separated:

[ψint(F),ψint(G)*] + = (jΛtf*(r, - oo)exp(iH0t) W^h, -),\dt'U*(f, - oo)

= \dtdt\F(t, )Mt,t')G{t',-))

/G)=0 (2.44)

where we used (2.28) and I (2.21), (2.27), Theorem 3.2.
To prove (2.41) we note that

(%F) (x) = F(x) - y°B(x) J dySA{x - y)y°F(y) (2.45)

= F(x) + iV(x) [ j df exp(- ιΉ 0(ί- t'))F(f, )j (*) (2.46)

where we used the well-known relation

S*R(y-x) = γ°SA(x-y)y0 (2.47)

and I Theorem 3.2 [for V(x)=O]. Thus,

U ^ t , )=\dtΰ*{t, -oo)exp(ίH0ί)f(ί, •)

i £ (-0" ? Λ ί dt,...n(dtβ{tn)...b{Φ{t)
n = O — oo — oo — o c

jίίί'exp(iHoί')%, )
ί

', -oo)exp(M0t')F(t', ) + i J (-/)" ί df J dί
— o c — o c —oo

• '"j IdtnO(tn)...0(t1)0(ί)exp(iHot')%, •)
— oo

= Jdtexp(i#ot)F(t, ). (2.48)

Hence, (2.41) holds. Similarly,

\dtϋ*{t, - ao)esp(iHot)(T^F){t, -)=$dt'U*(t', - co)exV(iH0f)F(t', •)

- i Σ (-0" J AM ί - J A ί d^...
n = 0 —oo V—oo —oc/ — oc

• '7'Λnd(ίπ)...d(ί1)0(ί)exp( ίΉoί')F(t', •)

>, - oo) exp(ϊΉoί)F(ί, ). (2.49)

Thus, (2.42) holds. •
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We note that, if F(x)φO, ψin and φ i n t cannot be unitarily equivalent. (If they
were, one would have

[φ i n t(F)? ψ
int(G)*] + = [t//%F), φ in(G)*] + VF, GE S{R*f (2.50)

so

U(t9f) = ί Vt,t'eR2 (2.51)

from which it follows by I (2.22) that V(x) = 0.) However, this does not imply that φ i n

and ψint t are unitarily inequivalent.
In contrast, if ^ is a unitary operator on <Fa such that

4 (2.52)

then also

έ (2.53)

and vice versa. This is an easy consequence of (2.36), (2.31), and (2.33). Evidently,
existence of the Fock space S-operator is in turn equivalent to the implementability
of the field operator transformation

Φ(v)-+Φ{S*v). (2.54)

Following Capri [18] and Wightman [19] one can define, provided that 7^, TA are
bijections of <S(K4)4, an out field by

ψZ\F) = ψiΆ(TR -' TAF) VFeS(R4)4. (2.55)

It easily follows from I Theorem A.I that this condition is satisfied (use (2.45) and its
analogue for TA and observe that AI = ΔI, I = R,Λ). Using (2.41-42) we now
conclude

ψ2t(F) = ψ™\F). (2.56)

Thus,

Theorem 2.2. The Capri-Wightman approach and the Friedrichs-Segal approach lead
to the same S-operator. M

Using (2.16) and I (3.46) one verifies that

*(α, Λ)ψ[n(F)W*(a, A) = ψin(Fa>Λ) (2.57)

where

Fa>A(x) = S(Λ~ 1)ΓF(τl" \x - a)). (2.58)

Hence, ψin satisfies the Wightman axioms [27].
We finally observe that if one chooses a different representation of the y-algebra,

{γμ'}, and proceeds in the same way as we have done (defining, e.g.,

W' = MW (2.59)
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where M is the unitary matrix which connects the representations), then the
resulting field xpin> is not unitarily equivalent to ψin. Indeed, if it were, (2.50) should
hold with ψint-+ψin>. However, S{x — y)y° and S'(x — y)γ0' are different distributions.
Even the Wightman axioms do not determine the free field up to unitary
equivalence. Indeed, there exist different representations of the γ-algebra having the
same {S(A)}, since the {S(A)} have a non-trivial commutant.

B. The Evolution Operator and S-Operator in

We now assume that only the timelike component of the vector field (i.e. the electric
field) and/or the pseudovector field are non-zero. It then follows from I Theorem 3.3
that the hypothesis of I Theorem 2.8 is satisfied, and from I Corollary 3.4 that
l/λ(T2, Tλ) is implementable in #"α for any (λ, T2, TJeR x R2. Denoting the resulting
three-parameter family of unitary operators by %λ(T2, 7i), it follows in particular
that

. ί, ~ oo) Ίfek VteR. (2.60)

If (A, T^Tj) is such that

(Ω,^(T2,Ti)Ω)Φ0 (2.61)

then we normalize ^ by requiring

(Q,φβ)>0. (2.62)

In the next theorem the set E(T2, Tx) is defined in I Theorem 2.8, and the operator A
by I (2.57).

Theorem 2.3. (i) For any fa^TJeBSE^TJxR2 (2.61) holds true. For these
values of the arguments one has for any φeD:

+ A_+ba):φ. (2.63)

(ii) Wλ(T2, Tx) is strongly continuous on R2 for anyλe(-l, /), and on R\E(T2, Tλ)
foranyiT^T^eR2.

(iii) On(-l,l)xR2:

%(T9T) = ί

%{T3, T2)%(T29 T1) = exp(iχ(λ, T3, T2, T1))Φλ(T3, Tx) (2.64)

where χ is a real-valued function.

(iv) For any (T^TJeR2 and φeD the vector-valued function °Uλ(J2,Ί^φ on

( —/, Z) has a unique analytic continuation to AE ( T 2 T l)
 w n e r e

J£Ξ=dist(JE,{0}) (2.65)

and α, possibly two-valued, analytic continuation to C\E(T2, Tx).
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Proof. It follows from B that (2.61) is equivalent to existence of a uniquely
determined bounded operator A on Jf, satisfying

{U-1)-Λ-(U-1)P_Λ = (U-1)-Λ-ΛP_(U-1) = O. (2.66)

Comparing (2.66) and I (2.60) we conclude that the first statement of (i) holds true.
The second one then follows from (2.62) and B (4.18).

Since ^λ(T2, Tx) is unitary its strong continuity will follow if we prove that the
function M(λ, T2, 71), defined by

M(Λ, T2, Iί)= (ft * * ω Π b*(gj)Ω,nT2, 71) fl a*(fd fl *>*%

n,r,ri,rΈN &,/[€#+ g^eX- (2.67)

is continuous on R2 for any λe( - /, /) and on R\E{T2, 71) for any (T2, 71)e£2. Using
(2.63) and the CAR one easily sees that M(λ, T2, Tx) is equal to a finite sum of tςrms,
each of which is the product of (+• or —) det (...)"* and a finite number of terms of
the form (fi9Λ+ _#,), (fbΛ+ + /;.), foj, yl_ _ ^ ) , (flfj, yl_ + /}), (fi9 /}) or (#;, ^ ). Since det
(1 + •) is a continuous function on the trace class [28] we conclude from I Theo-
rem 2.8 that det (.. . ) " * has the required continuity properties. The same conclusion
for the remaining terms follows from the norm continuity of Λλ(T2, 71) in λ and
(T2, 71). Thus, M has the required properties.

(2.64) is an easy consequence of I (2.21) and the irreducibility of the field
operators.

To prove (iv) we first observe that

E(T2, T1) = E(T2, 71) V(T2, 7i)eR 2 . (2.68)

Indeed, Uλ__ is singular if and only if Vj is, since

VΊ__ = Uf__ MλeC. (2.69)

[To see this, use I (2.39) and the unitarity of Uλ for λeR.'] We then note that on
(-U)x£ 2 [c f .B(3.2)]

_*Λ+_ = l / * _ l / _ _ ( 2 7 0 )

so

( l _ _ + Λ + _ M + _ ) ( l _ . - l 7 . + l7_ + * ) = l _ _ . (2.71)

It follows from I Theorem 2.8 that (2.70-71) can be continued to C\E and that
Λj+ _ *Λλ+ _ and Uλ_ + Uj_ + * are || || 1 -analytic functions in C\E resp. C. Hence (28),

flf(A) = d e t ( l . - + y l ϊ + _ M λ + J - 1 = d e t ( l . . - l / λ . + l7 I . + *) (2.72)

is an entire function which only vanishes on E. Denoting its positive square root on
( — /,/) by v(λ) it follows from the monodromy theorem that v(λ) has a unique analytic
continuation to D1E. Clearly, v(λ) can be analytically continued to an, in general two-
valued, function on C\E. We assume first that v(λ) can be continued to an entire
function.
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We define for any (T2, TJeR2, λeC\E(T2, TJ and φ of the form

Φ=f\ a*(fd Π b*%)& n,reN ftejr+ g}e#_, (2.73)

-exp(Aλ+_a*b*)Ω. (2.74)

The products in (2.73-74) are by definition in the natural order of the indices. It
follows from B that the r.h.s. of (2.74) belongs to J ^ and that it is equal to <%λφ iϊλe
(— /, /). Choosing λ0 e C\E and an open ball Oλo with center λ0 such_that Oλor\E = 0, it
follows from I (2.13) and B (3.47) that \\%φ\\ is bounded on 0^ . Hence, ̂ fAφ is
analytic in λ0 iϊ(ψ, tfίχφ) is analytic in Oλo for any ψeD. However, this follows from
the analyticity of υ(λ\ Uλ and Λλ+ _ in C\E by the same argument that we used to
prove the continuity properties of *%.

It is clear from the above that (iv) holds as well if some points of E are branch
points of v(λ). In this case the continuation to C\E is two-valued. •

Using results recently obtained by Bellissard [20,21] and Palmer [17] we shall
now study the Fock space S-operator, which corresponds to a function V(x) as
considered in Subsection A, multiplied by a real coupling constant λ. It is by
definition the unitary operator £fλ satisfying

Φ(S*υ) = 5ffΦ{v)yλ MυeJ? (2.75)

(if such an operator exists, cf. B). We denote by /s the supremum of the numbers α > 0
such that iSλ±τ are || ||2-analytic in Da. It follows from (20, Lemmas A 5.4, A 5.6),
using the Neumann series argument of [21,Theorem II 1.1], that / s>0. Since each
term of their perturbation series is H.S. and the series converges in norm, Sλ±ψ are
compact for any λe C. Thus, arguing as in the proof of I Theorem 2.8, it follows that
E = E(oo, — oo) is a discrete set outside Db and that Λλ = Fλ(co, — oo) can be
continued to C\E. It moreover follows from [17] that Sλ ± τ are H.S. for any λe R, so
^λ exists for any λeR and Λλ±ψ are H.S. for any λeR\E. If λeR is such that

(2.76)

then we require

{Ω,^λΩ)>0. (2.77)

Setting

lc = mm(lEJs) (2.78)

we have

Theorem 2.4. (i) For any λeR\E (2.76) holds true. For these λ one has for any φeD:

+ Λ_+ba):φ. (2.79)
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(ii) Sfλ is strongly continuous on R\E.
(iii) For any φeD the vector-valued function £fλφ on( — lc, lc) has a unique analytic

continuation to Dι if ls > lE it has a, possibly two-valued, analytic continuation to
Dls\E.

(iv) For any λe R\E έ?λ is causal, up to a phase factor, and Lorentz covariant for
any λe RnE £fλ is causal and Lorentz covariant, up to a phase factor.

Proof In view of the above it suffices to prove (iv). However, this statement is an
easy consequence of I Theorem 3.1. •

We remark that, by I Theorem 3.3,3.1, ls = oo for any V(x) which, in some inertial
frame, is equal to the sum of an electric and a "pseudo-electric" field. Thus, lc = lE for
these V. We further note that if the vacuum-to-vacuum transition amplitude
(Ω, &>λΩ) = 0, i.e. if λe R^E, then Sfλφ is given by the r.h.s. of B (5.15), with U-*Sλ (up
to a phase factor). Finally, we mention that Schwinger [24] formally obtained the
expression (2.79) for Sfλ in the case of an electromagnetic field.

C. The Connection with the Feynman-Dyson Series

According to Theorem 2.4 6^λφ can, for any φeD,bQ expanded in a power series, the
convergence radius of which is greater than or equal to lc. In this subsection we will
derive explicit expressions for the expansions of

λeDlc (2.80)

and of

0tλφ = Srλφ/υ(λ) φeD λeDlc (2.81)

and compare the result with the expressions which one obtains from the formal
Feynman-Dyson (F.D.) series for the Fock space S-operator [25,26].

We set for any λeDlc (cf. B §4)

(2.82)

From I § 3B we have, explicitly exhibiting the spin indices,

Λ£ (p,q)= Σ λnΛin)i£(p,q) (2.83)
« = i

where

$ { ^ * t f - k 2 )

[^j (2.84)

Clearly,
N

:Mλ:φ = sΊim £ λn:Min)\φ MφeD (2.85)
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where

M(n) Ξ Λ(n) + _ α * £ * + Λ(n) + + α * α + Λ(n) _ _ fofo* + ^(n) _ + b α ( 2 g 6 )

In (2.86) we again suppressed the spin indices. It follows from (2.79) (cf. B §4) that

JV

(2.87)

where, explicitly,

:M/:= i (L\/i\j\k\l\)Λλ\_Λλi+(-Λλ

τ_fΛl +
i,j,k,l = θ

ί+j+k+l=L

.a*
ib*ia*5b*kbkbιaιa>. (2.88)

Using arguments familiar by now we conclude that :Mλ

L: φ is analytic in Dlc for any
φeD. In fact, one easily sees that

N

:Mλ

L:φ = s lim £ λn:MM):φ L^l (2.89)

where

M(n,D = " Σ fl M^ n^L^l. (2.90)

J i , . , J . L = l 1 = 1

Thus,

®xΦ = Φ+ Σ (^O"1 Σ λn\M^L):φ VφeD. (2.91)
L = l M = L

We now have

Theorem 2.5. For any φeD and λeDlc:

@λφ = s lim Σ λnM{n)φ (2.92)

where

J (2.93)
L = l

Proof, Since ^ Λ φ is analytic it suffices to show that

Σ λn(ψ,^π)φ) = (ψ,3iλφ) VφeD. (2.94)

However, as φ,ψeD, there exists a K < o o such that

(V>,«AΦ) = (V>,Φ)+ Σ ( ^ O " 1 £ λn(w, :M ( w ' L ) :φ) (2.95)
L=l n=L

where we used (2.91). Hence, (2.94) follows. •
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With our conventions for the Dirac equation and the field operators [cf. (2.23)
and (2.6)] the F.D. S-operator is given by

)) (2.96)

where

°°:. (2.97)

Expanding the exponential and using Wick's theorem the fully contracted factors
sum up to the well-known multiplicative divergent factor (Ω, Sf*'ΌΏ) by the usual
arguments [25] omitting this factor one obtains $¥

λ'
Ό\ We denote the term of the

coefficient of λn in its expansion (n ̂  1) which has L uncontracted ψ and ψ (1 ̂  L ^ ή)
by (L!)" 1 Λf£#. Using the relation [cf. (2.6) and I §3A]

(β, T(ψ°a(x)xp°β(y))Ω) = - ίSF(x-y)aβ (2.98)

and a combinatorial argument it then follows that

jι + . +JL = n

: lψ%x1)B(x1)SF(x1-x2)B(x2)...SF(xjί_ί-xjί)B(xh)ψ°(xh)-]

•••[^VJ1 + . . . + J L _ 1 + I W ^ 1 + ... + ^ _ 1 + I ) . . . ^ > V J ] : . (2.99)

However, from (2.6), (2.84) and (2.86) it easily follows that

iμx1..Jxιψ%x1)B(xι)SF(xι-x2)...B(xι)xp°(xι) = M^. (2.100)

Thus, using (2.90),

M ^ } = : M ( n ' L ) : (2.101)

so

Of course, the r.h.s. of (2.99) is a priori not defined in a rigorous mathematical
sense. What we have shown by the formal calculations leading from (2.96) to (2.102)
is that expressions like (2.99) can be associated in a quite natural way with well-
defined operators mapping the subspace of physical vectors D into Df and that, with
this association, the relative F.D. S-operator acts in the same way on physical
vectors as Mλ. Thus, the formal relative S-matrix elements, given by

κDί
- Π **(ft) Π *•(*,)«,«ΓD Π **(Pί) Π b*(q'j)Ω) (2.103)

(n,r,ri,rf = 0,1, ...\ are equal to their rigorous counterparts, viz. the tempered
distributions ^λ(p^ ...,/>„, q^ ...,qr\p\, ..,p'n, q\, ...,^^)which are defined by the
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requirement

®λ(fl>'~>fn>9l> '>9r'>fΊ>-> fή >βΊ>->9'r')

= (ft **Φ Π b*{g}Ω,aλ ft a*(fd fl &*foj)

j j 2 . (2.104)

We further note that the Λ.(n)*g,(p,#) (which together with the ^-function are the
constituents of the terms of the perturbation series of any relative S-matrix element)
are functions in S(R3) in p and q separately (cf. I §3B) whereas the complete
amplitudes Λλ*,(p, q) are tempered distributions which are not necessarily func-
tions.

We shall now show that the coefficients of the expansion of v(λ) easily follow
from the L2(R6) functions Λ{n)i+_(p, q). Indeed, denoting by [x] the greatest integer
less than or equal to x, we have

Theorem 2.6. For any λeDlc:

t*λ)= Σ dnλ\ (2.105)

(2.106)

k-2n+l

V Σ TrΛ(h)

+_*ΛUί)

+_...Λii")

+_*Λu«\_ k^2. (2.107)
n=i 2n ίu...jn=i

il + ...+Jn = k

Proof. Since Λλ _ is || || 2-analytic in Dι and Λo = 0 we have, if \λ\ is small enough
[28],

n

where

do^l

ndn =

and

n ~ \

= 0

n

Σ kakdn-k

k] ( _\n k

( Σ (2.108)
\ n = l /

where

σB(A) = T r μ τ + . M A + _ r / (2.109)

Clearly, f(λ) is analytic in Dlc and

Thus, differentiating the identity

(2.111)

at both sides and equating coefficients, (2.106) follows. •
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The F.D. analogue of ak is given by

alΌ=-k-1$dxί...dxkΎrB(xί)SF(x1-x2)B(x2)...SF(xk-x1) fc^2. (2.112)

Formally Fourier transforming to time-momentum variables the integrand beco-
mes a measurable function, since SF(t,p) is. However, one easily sees that the
integral is not absolutely convergent for fc = 2. For higher k it presumably does not
converge either, but this is difficult to prove. Transforming to energy-momentum
variables and replacing SF by Sδ

F with δ > 0 [cf. I (3.19)] it might be convergent for
fc^5, but it is not clear whether the limit <5jO then exists. If it does, one could
probably obtain any other number by choosing a different sequence of functions
approximating SF (in the sense of distributions). We also note that two re-
normalizations (in the sense of Hepp [29]) of the undefined product of the SF in
(2.112) differ in general by a finite renormalization which gives a non-zero
contribution.

The same remarks apply to the real part of aζ D>, given by

-x2)...SF(xk-xί)-]> (2.113)

which of course is the "observable" part, since the imaginary part only gives rise to a
phase factor. In particular, we have not been able to show that one obtains ak if one
evaluates Rea^D" by the usual Feynman techniques.

However, it should be realized that in view of (2.102) one ought to require

|(O, ^ I D Ω)| = v(λ) Vλe ( - Zc, lc) (2.114)

if £f\Ό' is to correspond to a unitary operator on Fock space. Since v(λ) is analytic
this requirement can only be satisfied if

D (2.115)

As noted above, we could not obtain a satisfactory definition of the r.h.s. of
(2.113) which implies (2.115) or, equivalently, (2.114). We shall now show that,
nevertheless, (2.114) can be formally derived.

Substituting

SP = SR + S- (2.116)

in (2.112) and multiplying through, the term without S_ drops out since the
integrand is zero a.e. The sum of the remaining terms can be written as

k k-n+ί

alΌ'=-i Σ n~1 Σ ϊdxdxί...dxkΎτS_(x-x1)B(x1)SR(x1-x2)
n=ί ί i , . . . , i n = l

...B(xk_iJS_(xk_in — xk_in + 1)B(xk_in + 1)SR{xk_in+1 —xk_in+2)

...B(xJS-(xk-x)γ0. (2.117)

(To see this, first use [cf. I (3.28)]

xk-x)y°S_{x-x1) = S4xk-x1). (2.118)
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Observe then that two terms with the same n but with {ii9 ...,*„} which differ by a
cyclic permutation give the same contribution. A moment's reflection now shows
that the number of such terms, multiplied by rΓ \ equals the number of such terms
in the expansion of (2.112), multiplied by k~1. Thus, (2.117) follows.) We now note
(cf. I § 3B) that the r.h.s. of (2.117) is formally equal to the coefficient of λk in the
expansion of

£ (-)B + 1n" 1TrRA__Λ. (2.119)
n=ί

(This would be rigorously true if Rλ _ were || || ̂ analytic in a neighbourhood of the
origin, which it is not in the present case.) Thus,

(Ω,«5^ D Ό) = d e t ( l _ _ + & ; u J (2.120)

so

(2.121)

where we used I (2.55), some properties of infinite determinants [28] and (2.70).
Of course, this derivation is purely formal. Nevertheless, we have the following

analogue of Furry's theorem, which closes this section.

Theorem 2.7. Let V(t) be such that there exists a conjugation C, satisfying

CV(t) = V(t)C VίeR,

CH0= —H0C.

Then

a2n+i=Q \/neN\

Proof It follows from (2.123) by the functional calculus that

Thus, using I (2.8),

CΛλC=-Λ* VΛe(-U)

(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

Hence [cf. (2.109)]

U). (2.127)

In the last step we used the fact that Λ+_A+_* has the same eigenvalues, including
multiplicities, as Λ+ _*A+ _. From (2.108) and (2.127) it clearly follows that f(λ) is
even, so (2.124) holds true. •

The theorem holds in particular for electromagnetic fields, since the charge
conjugation operator then satisfies (2.122-123).
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3. The Quantized Klein-Gordon Theory

A. Field Operators

The basic field operators on ̂ s{^) are defined on D by (2.1) (cf. B § 2). The analogue
of (2.2) is

[Φ{u\Φ*{v)]_={u,qv) Vu,ve^f (3.1)

where Φ*(v) is the restriction of Φ(v)* to D; (3.1) holds on D^.
One could now, in analogy to the spin-f case, introduce a formal two-

component Klein-Gordon field

(3.2)

and an adjoint field

^ ) E E ( 2 π Γ 3 / M ^ * ( P ) ^ ^ (33)

(cf. I § 4A). It can be seen that the interaction Lagrangean

^x)= :ψ°(x)B{x)ψ°(x): (3.4)

[cf. I (4.44)] leads to the same Feynman-Dyson S-matrix as the one obtained from
the usual theory. However, since one of our main goals is to establish the relation of
the rigorous theory with the customary formal theory, we shall not consider these
fields any further.

The usual free fields are [25]:

π°(x) = δtφ°* (x) π°*(x) = dtφ°(x). (3.6)

They satisfy the relations

φ°(x) = 0, (3.7)

\π%x')-]_=ίδ(x-x>)

),ψo*(ί,x')]- =[Ψ°(ί,x),πo*(ί,x')]- =[π°(ί,x),πo (ί,x')]- = 0 l ' }

and the adjoint relations (i.e. the relations obtained by taking formal adjoints).

We define for any fe W1/2(R3)

φ?(f) = Φ(oxp(iHot) \H0\ ~1W- 7 ) , (3.9)

π?(f) = Φ*(i εxV(iHot)qW- 7 ) (3.10)

where, at the r.h.s.,
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The operators φ?*(f\ π?*(f) are defined in the obvious way. Clearly,

(3.12)

π?(*\f) = ($dxf(x)π°(t,x)ϊ*\ (3.13)

Moreover, for any ψeDf9

π?(f)ψ = j t φ?*(f)ψ V/e W1/2(R*), (3.14)

^φ?(f)ψ = φ?((Λ-m2)f)ψ V/e W5/2(R3). (3.15)

The time differentiations are in the strong sense, and A acts in the sense of
distributions. One also verifies, using (3.1), that on D^

lΦ°{f),π°{g)-\-=i\dxf{x)g{x)

= ίφ?(f) π?*(g)-] [π°(/) π?*^)] 0 K' >_ = ίφ?(f), π?*(g)-] _ = [π(°(/), π?*^)] _ = 0

for any /, ge Wlj2{R2>). The relations (3.14-16) and their adjoints can be regarded as
rigorous analogues of the relations (3.6-8) and their adjoints.

The analogue of (2.12) is

ψ?(f) = exp(ίBot)ψ°o(f) exp(- ίJ50ί) ψ = π9φ (3.17)

where Bo is the free Fock space Hamiltonian, defined by (2.13). It clearly has the
same properties as in the Dirac case [in particular (2.14) holds true in the same
sense]. Similarly, the field operator transformation (2.15), where U(a,Λ) is the
representation of the Poincare group in Jf, given by I (4.55), is implemented by
unitary operators ^(α,τl) given by (2.16), in which

(^(α,yl)ι;)ε(p) = exp(ipα)((yl-V)o/Po) 1 / 2 ^(^) Vi e J f . (3.18)

Also, the gauge transformation (2.18) is implemented by exp(ΐgα), where Q is the
charge operator (2.19). It follows from I (4.17) that (2.20-21) hold true as well, with

(3.19)

Again, # is unitary while C is anti-unitary.
The perturbed Klein-Gordon fields should satisfy

K(x))φ(x) = 0, (3.20)

φ) = dtφ*{x) + iA0{x)φ*{x) (3.21)

and (3.8) with the o's omitted, and the adjoint relations. [In (3.20)

K = iAμd
μ + idμA

μ + AμA
μ + A4 (3.22)

where Aι (/ = 0, ...,4) are real-valued functions in SCR4).] Smearing with f(x) resp.
f(x) and partially integrating one obtains

d2φt(f)/dt2 + dφt(2ίAof)/dt + φt(( -A+m2- K)f) = 0 (3.23)

iAof) (3.24)
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and (3.16) with the o's omitted, and the adjoint relations. We assert that for any ae R

Φtjf) = *{U*(t, a) exp (iHot) \H0\~* W~ V), (3.25)

Haif)Ξ Φ*(}U*{t9 a) txp(ίHot)qW-7) (3.26)

and their adjoints are solutions to (3.23-24), commutation relations and adjoint
relations in the sense specified before [cf. (3.14-16)]. [In (3.25-26) U is the
interaction picture evolution operator corresponding to {̂ 4Jf= 0 (cf. I § 4B).] Indeed,
the commutation relations follow from (3.1) and the pseudo-unitarity of U while on
D(H0)9 by I (2.23),

d/dtU*(t, a) exp(iHot) = d/dtqU(a, t)q exp(/#oί)

= iU*(t9 a) exp(ίHot)qH(t)q. (3.27)

It therefore remains to show

(3.28)

i ί l l ] =iqH(t)q\HoΓlU +i\H0\-1(A°Λ (3.29)

The verification of (3.28-29) is straightforward.
Clearly, on Df,

S' lim φt,_JQχp(-ίHot)f) = Φ(\Ho\-1W-1f), (3.30)
ί-» - oo

S lim</.t;_Jexp(-iHoί)/) = Φ(S*|fίo |-1W-7). (3.31)
ί-»oc

Similar relations hold for π ^ . ^ / ) . Therefore we set

- '

The adjoints are defined in the obvious way. We note that, if/ranges over Wί/2(R3),
the arguments of the Φ and Φ* in e.g. (3.32) and its adjoint range over a dense
subspace of J-f, which ensures the irreducibility of the field operators. [Properly
speaking, of e.g. the set of unitary operators Qxp(ί(φin(f) + φ?n(/))), exρ(f(πin(/)

T7
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We now define field operators smeared with test functions FeS(R4) by, e.g. [cf.
(3.32-34)],

i ))

-1W-1F(t, •)) (3.36)

etc. adjoints are defined by, e.g.,

(^
Λ*{F) = φiΛ{F)*\D. (3.37)

Thus these field operators depend linearly on F. Clearly, (2.34-35) hold with ψ
= π, φ if the integral is interpreted as a strong Riemann integral on Df. One easily
verifies the relations

φio(F)=μxF(x)φ°(x), (3.38)

φex({D + m2)F)=Q, (3.39)

πex(F) = φex*(-8tF), (3.40)

φiM({Ώ+m2-K)F)=0, (3.41)

πί«'(F) = φ^*(( -dt + iA0)F). (3.42)

[Use (3.27-29) to obtain (3.41-42).] Thus φcx, π e x, φin\ π i n t satisfy (3.7), (3.6), (3.20),
(3.21) in the sense of operator-valued distributions. Notice that the φexi*\F),
φint{*\F) form an irreducible set of operators, in contrast to the sharp time fields
ΦWif), 4fclM Furthermore:

Theorem 3.1. The interpolating field φlM is local and satisfies the Yang-Feldman
equations:

φiM(TRF) = φin(F), (3.43)

φiM(TAF) = φ°"\F) (3.44)

where

(TIF)(x) = F(x)-\dyF(y)AI{y-x)k(x) I = R,A. (3.45)

Proof. If suppF and suppG are spacelike separated one has on Dx:

ψ, - TO)exp(ϊΉoί)|HoΓ^"^(f, •))

=(-iGR + iGA)(F,G)=0 (3.46)

where we used I (2.21), (2.27), Theorem 4.3.
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To prove (3.43) we observe that

(TRF) (x) = F(x) - K(x) J dyΔA{x - y)F(y). (3.47)

Using (3.27) and I Theorem 4.2 [for K(x)=0] it then follows that

= \dtV*(t, -«)exp( iH o ί ) |H o Γ 1 F(ί , •)

QC OC t tn- i

- Σ (-0" ί dt f at,... \ dtnqO(tn)...0(ti)cxp(iH0t)Ho'1
n = 0 — o o — o o — o o

(AμA% ) + iV A(t, ) + iA(t, -) V + A4(t, ))\dx'ΔA{t-t', • -x')

0

JiA0(t,-)$dx'llA(t-t',--x')F(x')'

\ 0

= ...-Γ...O(ί1)exp(iHot)

/ A0(t,-)$...ΔA...

\iA0(t, ) ί ...ΔA... +(-A2(t, •)+ ... + A4(t, ) ) ί ...ΔA...]

= ...+iΣ...O(t1)exp(iHot)V(t)Ho-
ι]dt'exp(-iHo(t-t'))F(t',-)

t

1 ^ ). (3.48)

The proof of (3.44) is similar [cf. the proof of (2.42)]. •

It is easily seen that φin and φint cannot be unitarily equivalent if X(:x)Φ0, and
that φout and φin are unitarily equivalent if and only if ψout and ψin are (ψ = π, φ), and
if and only if the transformation (2.54) is unitarily implementable.

Since, by I Theorem A.I, T^ A are bijections of <S(R4), one can define an out field
by

ΦZ\F) = φin(TR ~' TAF) VFeS(R4). (3.49)

From (3.43-44) it then follows that

φ2\F) = φ™\F). (3.50)

Hence,

Theorem 3.2. The Capri-Wίghtman approach and the Friedrίchs-Segal approach lead
to the same S-operator. •

We finally note that on D

%{a, Λ)φin{F)W*(a, A) = φin(Fa>Λ) (3.51)
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where

Fa>Λ(x) = F{A~\x- a)). (3.52)

Thus φin satisfies the Wightman axioms. Note that in view of (3.40) π i n is Lorentz
non-covariant.

B. The Evolution Operator and S-Operator in

We now assume that the magnetic field vanishes. It then follows from I Theorem 4.4
that the hypothesis of I Theorem 2.8 is satisfied, and from I Corollary 4.5 that
Uλ(T2>τi) i s implementable in «Fs(Jf) for any (λ, T2, TJeR x R2. Denoting the
resulting 3-parameter family of unitary operators by %λ(T2, Ti) it follows in
particular that on D, for any fe W1/2(R3) and teR,

Ψint,tU) = V*(t>-n)ψ*nU)%(t>-<x>) Ψ = π,Φ (3.53)

If (λ, T2, Ti) is such that (2.61) holds then we require that (2.62) hold. The operator A
in the next theorem is defined by I (2.49).

Theorem 3.3. (i) For any (λ, T2, TJeRx R2 (2.61) holds true. For these values of the
arguments one has for any φeD:

+ Λ_+ba):φ. (3.54)

(ii) Φλ(T2, Ti) is strongly continuous on R2 for any λeR and on R for any
( J 2

(iii) OnRxR2 (2.64) holds true.
(iv)Forany(T2, TJeR2 andψ,φeD the function (ψ,%(T2, T1)φ)on(-^l,\ΐ)has

an analytic continuation to D^x.

Proof The statements (i)—(iii) follow from I and B by the arguments used in the
proof of Theorem 2.3. To prove (iv) we first note that on R x R2

i..-A+^A+_=Ut.~lU__-1 (3.55)

so

( l _ _ - Λ + . M + _ ) ( l _ _ + t / . + l7_ + * ) = l _ _ . (3.56)

Continuing (3.55-56) to Dι we conclude that

_ + C/λ_ + C/ I_+*)-1 (3.57)

is a non-vanishing analytic function in Dt. Thus, its positive square root on ( — /, I)
has a (unique) analytic continuation to Db which we denote by v{λ).

We now observe, using I (2.8), that for any λeD¥,

M Λ + - I I < 1 . (3.58)
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Thus, defining for any (λ, T2, T1)ED¥ X R2 and φ of the form (2.73)

% Φ = <λ) Π ( f i * ( U λ + + β - b ( U λ _ + β ) Π Φ * ( V χ - - Q j ) j
i=l 7 = 1

-exp(Λλ+_a*b*)Ω, (3.59)

it follows from B that the r.h.s. of (3.59) belongs to # , and equals %φ if λe(-^ϊ).
The statement now easily follows. •

Of course, (ψ, %λ(T2, Tx)φ) can be analytically continued to a larger set which is
determined both by E(T2, Tx) and by the requirement (3.58), but we shall not pursue
this.

Using the properties of D^ mentioned in B and relations like B (2.6), (2.8), it can
be seen that tfίλφ is analytic in D^ if for any keN+ and a<^l

sup ||AΓfeexp(ylA α*6*)Ω|| < oo . (3.60)

However, we do not know whether (3.60) holds true.
We further observe that %λΩ is analytic in D^, but that it has no analytic

continuation to C unless

Uλ±ψ=0 VΛeC. (3.61)

[Indeed, if it has, Λλ+_ is || ||2-entire and satisfies (3.58) on C, so by Liouville's
theorem,

Λλ+_=0 VλeC, (3.62)

from which (3.61) easily follows.]
We shall now consider the Fock space S-operator, defined by (2.75) (which

should hold on D), which corresponds to (real-valued) scalar and electromagnetic
fields in S(R4). It follows from [20,21, I.e.] that J s>0, where ls is defined as in
Subsection 2B. Thus, <fλ exists for λe ( - /s, ls). If λe ( - ls, ls) is such that (2.76) holds
then we require (2.77). Denoting the supremum of the numbers α > 0 such that

(3.63)

(cf. I (4.36)) by /; and setting

lc = mm(l',ls) (3.64)

we have

Theorem 3.4. (i) For any λe{—ls,ls) (2.76) holds true. For these λ one has for any
φeD:

_ _ -Λ+ _*Λ+ _Ϋ:εxp(Λ+ _a*b* +Λ+ +a*a + Λ__bb*
+ Λ_+ba):φ. (3.65)

(ii) £fλ is strongly continuous on { — 1SJS)
(iii) For any ψ,φeD the function {ψ, ̂ λφ) on (— lc, lc) has an analytic continuation

to Dlc.
(iv) For any λe( — ls, ls)^λ is causal, up to a phase factor, and Lorentz covarίant.
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Proof. It suffices to prove (iv). However, this statement easily follows from I
Theorem 4.1. •

We remark that, by I Theorems 4.4, 4.1, Zs= oo if Aμ is such that A = 0 in some
inertial frame. Hence, lc = ΐ for these fields.

We further mention that Bellissard [20] arrived at the expression (3.65) for £fλ by
using renormalization theory. He then showed that it can be defined on coherent
states and proved several properties, like unitarity, causality up to a phase factor,
Lorentz covariance and analyticity.

C. The Connection with the Feynman-Dyson Series

According to Theorem 3.4 (\p^λφ) can, for any ψ,φeD, be expanded in a power
series in λ, the convergence radius of which is greater than or equal to lc. We will now
derive explicit expressions for the expansions of υ(λ) [defined by (2.80)] and of
(ψ, 0lλφ) [where 0lλ is defined by (2.81)], and compare the result with the expres-
sions obtained from the F.D. series [25].

We introduce a formal operator Mλ (λeDlc) by (2.82), in which

Λ^{p9q)= £ λM<»>8β,(j>,*) (3.66)
n = l

where

h-u ε'«) + a 1 1 ^ " - c o n t r a c t i o n s ] (2Eq) ~ * (3.67)

V{k, k')=Aμ{k - k') (fc" + fc'Ό + AA{k - k) (3.68)

[cf. I §4B, I (2.49)]. Arguing as in Subsection 2C one infers that (2.85-91) hold true,
with - Λl- -->Λl-- in (2.88). Hence,

Theorem 3.5. For any ψ,φeD and λeDlc:

{ψ,®λφ)= lim X λ"(ψ,^φ) (3.69)
JV-*oo n = o

where 0ί{n) is defined by (2.93). •

The F.D. S-operator is given by (2.96), where (cf. [25])

φ°(x):, (3.70)

V= -id^ + iA^ + A^ (3.71)

and

(Ω, T(dlφ°(x)dlφ°*(y))Ω)^dk

x/ySΩ, T(φ°(x)φ°*(y))Ω)

fc,/=0,l. (3.72)
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Proceeding as in Subsection 2C, one obtains as the analogue of (2.99), using the
relation

(Ω, T(φ°(x)φ°*(y))Ω) = - iΔF(x-y) (3.73)

and combinatorial arguments,

n-L+l

M^] = ίL Σ ίdx1...dxnl:(φ°*(x1)V{x1)AF{x1-x2)V(x2)

... V{xn) φ°(xn)): + all ^^-contrac t ions] . (3.74)

An ^4μ,4
μ-contraction of the term in brackets is by definition the same term where

one or several different triplets V(xi)ΔF(xi — xi+1) V(xί + 1) are replaced by Aμ(xi)δ(xi

-xi+1)Aμ{xi+ι) (z = l , . . . , n - l ) . Since

ijdx1...dxιlφ°*{x1)V{x1)ΔF{x1-x2)...V(xdΦ°(xι)

+ all ^^-contract ions] = M(ι) (3.75)

(2.101) follows. Thus, (2.102) holds. Regarding the meaning of this equality and
regarding the relative S-matrix elements the same remarks can be made as in
Subsection 2C.

The analogue of Theorem 2.6 is:

Theorem 3.6. For any λe Dlc v(λ) is given by (2.105), where dn is defined by (2.106), and

[£fc] k-2n + l

ak= Σ -W1 Σ Tryl ( i l )

+_M u l )

+_...^ ( W

+ .M c w

+_ fc^2.(3.76)
n = l ι ' i , . . . , j n = l

ii+ ...+jn = k

Proof. This follows as in Subsection 2C from the relation (for |λ| small enough)

(3.77)

where σn is defined by (2.109). •

As the analogue of (2.112) one obtains

aF

2'
Ό- = 2-ίμx1dx2V(xί)AF(x1-'X2)V(x2)AF(x2-xί), (3.78)

alΌ=k-ίμx1...dxklV(x1)AF(x1-x2)V(x2)...AF(xk-xί)

+ all ,4μ.4
μ-contractions] fe ^ 3. (3.79)

In time-momentum variables the integral is absolutely convergent if /c^4 and Aμ

= 0. However, we do not know whether in this case its real part equals ak. But for
this circumstance, similar remarks on (Re)α^D> and |(Ω,Sf\ΌΏ)\ can be made as in
Subsection 2C. In order to see that (2.114) holds, transform (3.78-79) to energy-
momentum variables and substitute

A F = A R + A _ . (3.80)
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Using the relation

A_(p) = 2πiθ{-p°)δ{p2-m2) (3.81)

[cf. I (3.17)] and I (4.47) it then follows as in Subsection 2C that

FΌ J-ί. (3.82)

(Again, Rλ_ is actually not || || ̂ analytic in a neighbourhood of the origin.) Thus,
in view of Γ(2.47) and (3.55), (2.114) holds true.

We close this section with the following Furry type theorem.

Theorem 3.7. Let A4 = 0. Then (2.124) holds true.

Proof. If Λ4 = 0 then the charge conjugation operator satisfies (2.126), with — Λ-+Λ
at the r.h.s. (cf. I §4B). Thus, using (2.127), (2.124) follows. •

4. Concluding Remarks

(1) It follows from I that time-independent electric and "pseudo-electric" fields (in
the spin-| case) resp. electric and scalar fields (in the spin-0 case), which are real-
valued functions in S(R3\ give rise to an evolution operator Uλ(T2, Tt) which is
implementable in $Fa resp. $FS for any (λ,T2,T1)eR3.lt is easily seen that the resulting
Fock space evolution operator (after normalization) has properties analogous to
those mentioned in Theorems 2.3, 3.3 (mutatis mutandis: / now depends on \T2

— Til). Similarly, the (pseudo-)unitary 1-parameter group exp( — iHt) [H = H(1\ cf.
I (2.104)] leads to a family of unitary operators °U(t\ forming a projective
representation of R\ after normalization %(t) is strongly continuous for
£eΛ(|ί| < || V\\ ~ *) in the spin-0 (spin-χ) case. Since such a representation is equivalent
to a vector representation [30] there exists a phase function c(t) such that

c(t)Φ(t) = exp(-iBί) VίeR (4.1)

with B self-adjoint. B can be regarded as the perturbed Hamiltonian in Fock space.
Provided that the classical iS-operator

S = s lim U{t, 0) s lim 1/(0, t') (4.2)

ί->OC t'-*• — OC

exists and is unitary (and, in the spin-0 case, pseudo-unitary as well), one has

S±+ =0 (4.3)

so the Fock space S-operator ίf then exists and

(4.4)

[cf. B (4.23-26)]. Thus, for time-independent external fields, perturbation theory for
y amounts to investigating the Born series connected with S. It can be seen that the
Feynman-Dyson series formally leads to the same result if vacuum diagrams are
omitted.
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(2) There exists a remarkable symmetry between the operators R and F (cf. I § 2): If
for some (A, T2, T1)e( — I, l)xR2 Uχi^T^ is implementable in Fock space the
operator Uf

λ(T2, Tt) defined by I (2.50) resp. I (2.58) is implementable in the "wrong
statistics Fock space" in virtue of I Theorems 2.10-11 and B (and vice versa). The
resulting unitary operator Ψ is given by the r.h.s. of (2.63) (spin-0) resp. (3.54) (spin-
\) with Λ-+A\ where A1 is defined by I (2.51) resp. I (2.59). Clearly, one could prove
analogues of Theorems 2.3-4 resp. Theorems 3.3-4 for %'. Observe that °lί' does not
satisfy (2.64) and that the wrong statistics "S-operator" Sf' is Lorentz covariant, but
non-causal the perturbation expansion of its matrix elements is determined by the
functions at the r.h.s. of (3.67) resp. (2.84) with ΔF resp. SF replaced by ΔR resp. SR.

(3) It would be worthwhile to use second-quantized operators like the momentum
cutoff interaction Hamiltonian as starting point for an investigation of the
problems considered in this paper. (In the time-independent case an interesting
result in this context has been obtained by Palmer [16].) The methods and ideas
from constructive quantum field theory which could then be used might in
particular lead to a deeper understanding of the Feynman-Dyson series (especially
of the divergent vacuum diagrams).
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