On the ζ-Function of a One-dimensional Classical System of Hard-Rods

D. H. Mayer
Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France
K. S. Viswanathan
Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

Abstract

The ζ-function of a one-dimensional classical hard-rod system with exponential pair interaction is defined as the generating function for the partition function of the system with periodic boundary conditions. It is shown, here, that the ζ-function for this system is simply related to the traces of the restrictions of the Ruelle's transfer matrix, and related operators to a suitable function space. This ζ-function does not, in general, extend to a meromorphic function.

Introduction

The new interest in classical one dimensional models of statistical mechanics has its origin in the work of Sinai [1] who found an interesting connection of these models with certain measure theoretic problems in the theory of dynamical systems. By constructing symbolic dynamics [2] for Anosov diffeomorphisms and flows on a compact manifold with the help of Markov partitions [3] he was able to apply the methods developed in the study of one dimensional models and to get interesting new results. A special role in the study of dynamical systems is played by the ζ-function of such a system introduced by Artin and Mazur [4]

$$
\zeta(z)=\exp \left(\sum_{n=1}^{\infty} z^{n} N_{n} / n\right)
$$

where N_{n} is the number of fixed points of the mapping f^{n}, where $f: M \rightarrow M$ is a diffeomorphism on some compact manifold M. They could show that the function $\zeta(z)$ has a non-vanishing radius of convergence for almost all diffeomorphisms f. To study the possible relevance of this ζ-function for statistical mechanics, Ruelle [5] introduced generalized ζ-functions in the following way:

Let M be some topological space and $f: M \rightarrow M$ a mapping. Let $A: M \rightarrow \mathbb{C}$ be a complex valued function on M. Then consider the formal expression

$$
\begin{equation*}
\zeta\left(z, e^{A}\right)=\exp \left[\sum_{n=1}^{\infty} \frac{z^{n}}{n}\left\{\sum_{x \in \mathrm{Fix} f^{n}}\left(\exp \sum_{k=0}^{n-1} A\left(f^{k} x\right)\right)\right\}\right] . \tag{1}
\end{equation*}
$$

Properties of this function were studied in [5] and [6] and it was shown that this function extends in certain cases to a meromorphic function in the whole z plane.

Looking at the expression $\sum_{x \in \operatorname{Fix} f^{n}} \exp \left(\sum_{k=0}^{n-1} A\left(f^{k} x\right)\right)$ in the special case where f is the shift operator τ on the configuration space K of a one dimensional classical lattice gas system, then this is nothing else but the partition function Z_{n} of this system with periodic boundary conditions and interaction function A [7]. In this case the function ζ in (1) can be written

$$
\begin{equation*}
\zeta(z, A)=\exp \sum_{n=1}^{\infty} z^{n} Z_{n}(A) / n \tag{2}
\end{equation*}
$$

and ζ is just the generating function for Z_{n}.
By applying the transfer matrix method, one of us [8] studied the above function for a one dimensional classical lattice gas system with exponentialpolynomial pair interactions and showed that in this case ζ is holomorphic in a neighbourhood of $z=0$, a fact which is closely related to the existence of the thermodynamic limit. Furthermore we showed that the function ζ extends to a meromorphic function in the whole z plane.

In this paper we study the ζ-function of a one dimensional classical hard core system with exponential pair interaction. We also apply the transfer matrix method here and show the following:

The partition function Z_{n} of a system of hard rods of length a with periodic boundary conditions and exponential pair interaction $\Phi(y, x)=c \lambda^{|y-x|}$, can be written as

$$
Z_{n}=\left(1-\lambda^{n a}\right) \operatorname{tr} \mathscr{L}_{0}\left(\mathscr{L}_{0}+\mathscr{L}_{1}\right)^{n-1}
$$

where $\mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{1}$ is the transfer matrix of the system. The operator $\mathscr{L}_{0} \mathscr{L}^{n}$ is a trace class operator for all $n \geqq 0$ in the Banach space $B=C(I) \hat{\otimes}_{\pi} A_{\infty}\left(D_{R}\right)$ on which \mathscr{L} acts. In the next chapter we determine the trace of the operators $\mathscr{L}_{0} \mathscr{L}^{n}$ and show the connection with the partition function Z_{n}. In a final chapter we discuss some properties of the ζ function of the hard core system.

I. The Transfer Matrix \mathscr{L}

We use the terminology which was introduced in the paper on classical hard core systems by Gallavotti and Miracle-Sole [9]. Let K be the set of all allowed configurations X of the system, where X can be described by a sequence $X=\left(x_{1}, x_{2}, \ldots\right)$, where $x_{i} \in \mathbb{R}_{+}=\{x \in \mathbb{R}: x \geqq 0\}$ describes for instance the left corner of a rod of length a and $\left|x_{i}-x_{j}\right| \geqq a$ for $i \neq j$. We restrict ourselves to the case where the rods interact via an exponentially decreasing pair potential

$$
\Phi_{k}(X)=\left\{\begin{array}{lll}
0 & \text { if } & k \neq 2 \tag{3}\\
c \lambda^{\left(x_{2}-x_{1}\right)} & \text { if } & k=2
\end{array}\right.
$$

for $X=\left(x_{1}, \ldots, x_{k}\right) \in K, 0<\lambda<1$ and c some constant. The transfer matrix $\mathscr{L}[9,10]$ is defined as a linear operator on the Banach space $C(K)$ of all continuous functions on the compact space K as follows:

$$
\begin{equation*}
(\mathscr{L} f)(X):=\int_{Y \subset[0, a)} e^{-U(Y \mid \tau X)} f(Y \cup \tau X) d Y \tag{4}
\end{equation*}
$$

where $f \in C(K)$ and τ is the shift operator acting on K by $\tau X=X+a$. The interaction energy $U(Y \mid W)$ for $Y, W \in K$ is defined as

$$
U(Y \mid W)=\sum_{\substack{\Phi \neq \subset \subset Y \\ T \subset W}} \Phi_{2}(S \cup T)
$$

Using (3) we get the expression

$$
\begin{align*}
(\mathscr{L} f)\left(x_{1}, x_{2}, \ldots\right)= & f\left(x_{1}+a, x_{2}+a, \ldots\right) \\
& +\int_{0}^{x_{1} v a} f\left(y, x_{1}+a, x_{2}+a, \ldots\right) \exp \left(-c \sum_{i} \lambda^{\left(x_{1}+a-y\right)}\right) d y \tag{5}
\end{align*}
$$

with $X=\left(x_{1}, x_{2}, \ldots\right)$ and $x_{1} \vee a=\min \left(x_{1}, a\right)$.
It is known that \mathscr{L} is continuous but not compact on $C(K)$. The problem is to find an operator \mathscr{L}^{-}on a space B in which it has "good" properties such as for instance a trace. In particular we want the functions $f \equiv 1$ and the principal eigenvector h of \mathscr{L} belong to B. Now h can be written as

$$
h\left(x_{1}, x_{2}, \ldots\right)=\int_{Y \subset\left(-\infty, x_{1}-a\right) \cap \mathbb{R}_{-}} d \mu(Y) \exp \left(-c \sum_{i, j} \lambda^{\left(-y_{j}+x_{1}\right)}\right)
$$

where $Y=\left(y_{1}, y_{2}, \ldots\right)$ and where $d \mu(Y)$ denotes the Gibbs measure on the negative real axis, we see that h depends analytically on $\sum_{i} \lambda^{x_{i}}$ and is a continuous function of the coordinate x_{1}, as long as $x_{1} \leqq a$, whereas for $x_{1}>a$, it does not depend on x_{1} except through $\sum_{i} \lambda^{x_{i}}$. One is therefore led to a space of functions which depend continuously on a variable $x=x_{1}$ and analytically on a variable $z=\sum_{i} \lambda^{x_{i}}$.

The action of \mathscr{L} on such functions can then be written as

$$
\begin{equation*}
(\mathscr{L} f)(x, z)=f\left(a, \lambda^{a} z\right)+\int_{0}^{x} f\left(y, \lambda^{y}+\lambda^{a} z\right) \exp \left(-c \lambda^{a-y} z\right) d y . \tag{6}
\end{equation*}
$$

Here we have used the fact that the function f does not depend on x for $x>a$ and we therefore can restrict ourselves to functions which are defined and are continuous in the interval $I=[0, a]$.

Next we want to construct a Banach space B on which the mapping \mathscr{L} as defined in (6) is a well defined operator. Let $I=[0, a]$ and $D_{R}:=\{z \in \mathbb{C}:|z|<R\}$. We denote by $C(I)$ the Banach space of all continuous functions on I with the sup norm. Let further $A_{\infty}\left(D_{R}\right)$ be the Banach space of all holomorphic functions on the open disc D_{R}, with the usual sup norm. Then we consider the projective topological tensor product [11] $C(I) \hat{\otimes}_{\pi} A_{\infty}\left(D_{R}\right)$ together with the π-norm introduced first by Schatten [12] (see also Appendix A). In [11] the following fundamental Theorem is proved:

Theorem 1. Let E, F, G be Banach spaces and $T: E \times F \rightarrow G$ a bilinear continuous mapping of the direct product $E \times F$ into G. Then there exists a unique linear, continuous mapping $T^{-}: E \hat{\otimes}_{\pi} F \rightarrow G$ such that $T^{-} u=T(e, f)$ if $u=e \otimes f$ and $\left\|T^{-}\right\|=\|T\|$.

From this we get immediately
Lemma 1. Let $R>\frac{1}{1-\lambda^{a}}$. Then the operator \mathscr{L} as defined in (6) is a linear, continuous operator in the Banach space $B=C(I) \hat{\otimes}_{\pi} A_{\infty}\left(D_{R}\right)$.
Proof. For $\varphi \in C(I), \psi \in A_{\infty}\left(D_{R}\right)$ define the operators $T_{i}: C(I) \times A_{\infty}\left(D_{R}\right) \rightarrow B$ as follows:

$$
\begin{aligned}
& {\left[T_{1}(\varphi, \psi)\right](x, z):=\varphi(a) \psi\left(\lambda^{a} z\right)} \\
& {\left[T_{2}(\varphi, \psi)\right](x, z):=\int_{0}^{x} \varphi(y) d y \psi(z)} \\
& {\left[T_{3}(\varphi, \psi)\right](x, z):=\varphi(x) \psi(z) \exp \left(-c \lambda^{a-x} z\right)} \\
& {\left[T_{4}(\varphi, \psi)\right](x, z):=\varphi(x) \psi\left(\lambda^{x}+\lambda^{a} z\right) .}
\end{aligned}
$$

Theorem 1 tells us that all $T_{i}, i=1, \ldots, 4$ define unique mappings

$$
T_{i}^{-}: C(I) \hat{\otimes}_{\pi} A_{\infty}\left(D_{R}\right) \rightarrow B
$$

The operator \mathscr{L} is then easily seen to be given by

$$
\mathscr{L}=T_{1}^{-}+T_{2}^{-} T_{3}^{-} T_{4}^{-} \quad \text { which we will write as } \quad \mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{1}
$$

with

$$
\mathscr{L}_{0}=T_{1}^{-} \quad \text { and } \quad \mathscr{L}_{1}=T_{2}^{-} T_{3}^{-} T_{4}^{-},
$$

where
$\left\|\mathscr{L}_{0}\right\| \leqq 1 \quad$ and $\quad\left\|\mathscr{L}_{1}\right\| \leqq a \exp |c| R$.
Let us next study the operators \mathscr{L}_{0} and \mathscr{L}_{1} more carefully.
Lemma 2. The operator $\mathscr{L}_{0}: B \rightarrow B$ is nuclear of order 0 .
Proof. Let $u_{1}: C(I) \rightarrow C(I)$ be defined by $\left(u_{1} \varphi\right)(x)=\varphi(a)$ and $u_{2}: A_{\infty}\left(D_{R}\right) \rightarrow A_{\infty}\left(D_{R}\right)$ by $\left(u_{2} \psi\right)(z)=\psi\left(\lambda^{a} z\right)$. Then the operator \mathscr{L}_{0} is given by $\mathscr{L}_{0}=u_{1} \otimes u_{2}$, the tensor product of the two mappings u_{1} and u_{2}. It follows from [6] that u_{2} is nuclear of order 0 . Because u_{1} is a finite rank operator it is also nuclear of order 0 . But then it follows [13] that the tensor product $u_{1} \otimes u_{2}$ is also a nuclear operator of order 0 on B and has therefore a unique trace.

Because the operator $\mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{1}$ is bounded and the set of nuclear operators of order 0 is a two-sided ideal in the algebra of bounded operators on any Banach space we get from Lemma 2 as an immediate consequence that for every $n \geqq 0$ the operator $\mathscr{L}_{0} \mathscr{L}^{n}$ is nuclear of order 0 . Therefore the operators $\mathscr{L}_{0} \mathscr{L}^{n}$ all have a well defined trace which is given by the sum over the eigenvalues counted according to their algebraic multiplicity [6].

For the operator \mathscr{L}_{1} we have
Lemma 3.The operator $\mathscr{L}_{1}: B \rightarrow B$ is quasi-nilpotent.
Proof. From Lemma 1 we know the action of \mathscr{L}_{1} on any element $\varphi \otimes \psi \in B$:

$$
\left(\mathscr{L}_{1} \varphi \otimes \psi\right)(x, z)=\int_{0}^{x} \varphi(y) \psi\left(\lambda^{y}+\lambda^{a} z\right) \exp \left(-c \lambda^{a-y} z\right) d y
$$

and therefore $\left|\left(\mathscr{L}_{1} \varphi \otimes \psi\right)(x, z)\right| \leqq x\|\varphi\|_{C_{(I)}}\|\psi\|_{A_{\infty}} M$, where

$$
M=\sup _{x \in I} \sup _{z \in D_{R}}\left|\exp \left(-c \lambda^{(a-x)} z\right)\right|
$$

By induction we then get

$$
\left|\left(\mathscr{L}_{1}^{k} \varphi \otimes \psi\right)(x, z)\right| \leqq \frac{x^{k}}{k!} M^{k}\|\varphi\|_{C(I)}\|\psi\|_{A_{\infty}}
$$

and therefore $\left\|\mathscr{L}_{1}^{k}\right\| \leqq C^{k} / k$! with $C=a M$. But then the spectrum of \mathscr{L}_{1} can only contain the point $\varrho=0$ and \mathscr{L}_{1} is therefore quasi-nilpotent.

Next we are going to determine the trace of the operator $\mathscr{L}_{0} \mathscr{L}^{n}$. To do this we make use of the results we have obtained above. One need not know if the operator \mathscr{L}_{1} itself has a trace on the Banach space B. By using the theory of p-summing operators one can indeed find a Hilbert space H on which \mathscr{L}_{1} is 2-summing, which implies that for all $n \geqq 2$ the operator \mathscr{L}_{1}^{n} has a well-defined trace. Because we do not need this for the subsequent discussion, we do not treat this further.

II. The Trace of the Operator $\mathscr{L}_{0} \mathscr{L}^{n}$.

Using the decomposition

$$
\begin{equation*}
\mathscr{L}=\mathscr{L}_{0}+\mathscr{L}_{1} \tag{7}
\end{equation*}
$$

we get for $n \geqq 1$

$$
\begin{equation*}
\mathscr{L}_{0} \mathscr{L}^{n}=\sum_{i_{1}=0}^{1} \ldots \sum_{i_{n}=0}^{1} \mathscr{L}_{0} \mathscr{L}_{i_{1}} \ldots \mathscr{L}_{i_{n}} \tag{8}
\end{equation*}
$$

For the term \mathscr{L}_{0}^{n+1} in the expansion (8) we get using the representation $\mathscr{L}_{0}=u_{1} \otimes u_{2}$ of Lemma 2: $\mathscr{L}_{0}^{n+1}=u_{1}^{n+1} \otimes u_{2}^{n+1}$ and therefore [15] $\operatorname{tr} \mathscr{L}_{0}^{n+1}=\left(\operatorname{tr} u_{1}^{n+1}\right)\left(\operatorname{tr} u_{2}^{n+1}\right)$. Because $\operatorname{tr} u_{1}^{n+1}=\operatorname{tr} u_{1}=1$ and $\operatorname{tr} u_{2}^{n+1}$ is given according to a general formula in [6] and [10] by $\operatorname{tr} u_{2}^{n+1}=\left(1-\lambda^{(n+1) a}\right)^{-1}$ we have $\operatorname{tr} \mathscr{L}_{0}^{n+1}=\left(1-\lambda^{(n+1) a}\right)^{-1}$ (see also Appendix B). Now the general term in expansion (8) can be written as

$$
\begin{equation*}
T_{\alpha, \beta}=\mathscr{L}_{0}^{\alpha_{1}} \mathscr{L}_{1}^{\beta_{1}} \ldots \mathscr{L}_{0}^{\alpha_{e}} \mathscr{L}_{1}^{\beta_{e}} \tag{9}
\end{equation*}
$$

where $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{\varrho}\right), \boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{\varrho}\right), \alpha_{i}, \beta_{i} \in \mathbb{Z}_{+}=\{0,1,2, \ldots\}$ such that $|\boldsymbol{\alpha}|+|\boldsymbol{\beta}|=$ $\sum_{i=1}^{\varrho} \alpha_{i}+\sum_{i=1}^{\varrho} \beta_{i}=n+1$. Let $|\boldsymbol{\alpha}|=j+1$ with $j \geqq 0$ and define the numbers $i_{k}=n+1-$ $\sum_{l=k}^{\varrho} \beta_{l}$ for $k=1, \ldots, \varrho$. Let $\boldsymbol{y}=\left(y_{j+1}, \ldots, y_{n}\right) \in I^{n-j}$ and define a $(n-j)$ component vector $\xi:=\left(\xi_{j+1}, \ldots, \xi_{n}\right)$ as follows: $\xi_{i_{k}}=a \forall k=1, \ldots, \varrho$ and $\xi_{l}=y_{l-1}$ for all other $j+1<l \leqq n$. Because $i_{1}=j+1$ we get $\xi_{j+1}=a$. With these definitions we can write the operator $T_{\alpha, \beta}$ acting on an element $f=\varphi \otimes \psi \in B$ as follows:

$$
\begin{equation*}
\left(T_{\alpha, \beta} f\right)(x, z)=\int^{\xi} d \boldsymbol{y} \varphi\left(y_{n}\right) \psi\left(\chi(\boldsymbol{y})+\lambda^{(n+1) a} z\right) \exp (-c \tau(\boldsymbol{y} ; z)) \tag{10}
\end{equation*}
$$

where

$$
\int^{\boldsymbol{\xi}} d \boldsymbol{y}=\int_{0}^{\xi_{J+1}} d y_{j+1} \int_{0}^{\xi_{j+2}} d y_{j+2} \ldots \int_{0}^{\xi_{n}} d y_{n}
$$

The functions χ and τ will be determined in the subsequent discussion, at the moment we only need the following properties which can be immediately verified from the definition of the operators \mathscr{L}_{0} and $\mathscr{L}_{1}: \chi$ and τ are C^{∞} in \boldsymbol{y} and for all $\boldsymbol{y} \in I^{n-j}$ the mapping $z \rightarrow \chi(y)+\lambda^{(n+1) a} z$ is a holomorphic mapping of clos D_{R} into D_{R}. The function $\tau(y ; z)$ furthermore is holomorphic in the whole z-plane. With these remarks we can prove:

Theorem 2. Let $T_{\alpha, \beta}: B \rightarrow B$ as defined in (9). Then

$$
\operatorname{tr} T_{\alpha, \beta}=\left[1-\lambda^{a(n+1)}\right]^{-1} \int^{\xi} d \boldsymbol{y} \exp \left(-c \tau\left(\boldsymbol{y} ;\left(1-\lambda^{a(n+1)}\right)^{-1} \chi(\boldsymbol{y})\right)\right.
$$

Proof. Because the mapping $z \rightarrow \chi(y)+\lambda^{a(n+1)} z$ is holomorphic for all $y \in I^{n-j}$ and $\psi \in A_{\infty}\left(D_{R}\right)$ we can write the action of $T_{\alpha, \beta}$ on $\varphi \otimes \psi$ as

$$
\begin{align*}
\left(T_{\alpha, \beta} f\right)(x, z)= & \sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty} \gamma^{k} z^{k+s}\binom{m}{k}\binom{p}{s} a_{m}(-c)^{p}(p!)^{-1} \int^{\xi} d \boldsymbol{y} \chi^{m-k}(\boldsymbol{y}) \\
& \cdot \tau_{2}^{s}(\boldsymbol{y}) \tau_{1}^{p-s}(\boldsymbol{y}) \varphi\left(y_{n}\right) \tag{11}
\end{align*}
$$

where $\tau(\boldsymbol{y}, z)=\tau_{1}(\boldsymbol{y})+z \tau_{2}(\boldsymbol{y})$ and $\psi(z)=\sum_{m=0}^{\infty} a_{m} z^{m}, \gamma=\lambda^{a(n+1)}$. If we define $\psi_{k m s p}(z):=$ $z^{k+s} \in A_{\infty}\left(D_{R}\right)$

$$
\begin{equation*}
\varphi_{k m s p}^{\prime}(\varphi):=\int^{\xi} d \boldsymbol{y} \chi^{m-k}(\boldsymbol{y}) \tau_{2}^{s}(\boldsymbol{y}) \tau_{1}^{p-s}(\boldsymbol{y}) \varphi\left(y_{n}\right) \tag{12}
\end{equation*}
$$

and $\psi_{k m s p}^{\prime}(\psi)=a_{m} \equiv a_{m}(\psi)$ we can write the operator $T_{\alpha, \beta}$ acting on $\varphi \otimes \psi$ as

$$
\begin{align*}
& \left(T_{\alpha, \beta} \varphi \otimes \psi\right) \\
& =\sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty}\binom{p}{s} \gamma^{k}\binom{m}{k}(-c)^{p}(p!)^{-1}\left(\varphi_{k m s p}^{\prime} \otimes \psi_{k m s p}^{\prime}\right) \otimes\left(1 \otimes \psi_{k m s p}\right)(\varphi \otimes \psi) \tag{13}
\end{align*}
$$

Because $\varphi_{k m s p}^{\prime} \otimes \psi_{k m s p}^{\prime} \in C(I)^{\prime} \otimes A_{\infty}\left(D_{R}\right)^{\prime}$ (where "'" denotes the dual) and $1 \otimes \psi_{k m s p} \in B$ we can deduce from Theorem 1 that there exists a unique element $f_{k m s p}^{\prime} \in B^{\prime}$ with $\left\|f_{k m s p}^{\prime}\right\|=\left\|\varphi_{k m s p}^{\prime} \otimes \psi_{k m s p}^{\prime}\right\|$ such that

$$
f_{k m s p}^{\prime}(\varphi \otimes \psi)=\varphi_{k m s p}^{\prime}(\varphi) \psi_{k m s p}^{\prime}(\psi)
$$

Therefore the operator $T_{\alpha, \beta}$ has the following representation

$$
\begin{equation*}
T_{\alpha, \beta}=\sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty}\binom{p}{s} \gamma^{k}\binom{m}{k}(-c)^{p}(p!)^{-1} f_{k m s p}^{\prime} \otimes f_{k m s p} \tag{14}
\end{equation*}
$$

where $f_{\text {kmsp }}(x, z)=1 \otimes \psi_{\text {kmsp }}(z)$.

Because the trace of $T_{\alpha, \beta}$ is then given by

$$
\operatorname{tr} T_{\alpha, \beta}=\sum_{k=0}^{\infty} \sum_{m=k}^{\infty} \sum_{s=0}^{\infty} \sum_{p=s}^{\infty}\binom{p}{s} \gamma^{k}\binom{m}{k}(-c)^{p}(p!)^{-1} f_{k m s p}^{\prime}\left(f_{k m s p}\right),
$$

we get

$$
\operatorname{tr} T_{\alpha, \beta}=(1-\gamma)^{-1} \int^{\xi} d \boldsymbol{y} \exp \left[-c \tau\left(\boldsymbol{y} ;(1-\gamma)^{-1} \chi(\boldsymbol{y})\right)\right]
$$

Let us next study the functions $\chi(\boldsymbol{y})$ and $\tau(\boldsymbol{y} ; z)$. Because these functions depend on the vectors $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ we denote them more correctly by $\chi_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$ and $\tau_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$. Let $M_{\alpha}=|\boldsymbol{\alpha}|$ and $M_{\beta}=|\boldsymbol{\beta}|, M_{\alpha, \beta}=M_{\alpha}+M_{\beta}$. Let $y_{\beta}:=\left(y_{1}, \ldots y_{M_{\beta}}\right)$ and $\xi_{\beta}=\left(\xi_{1}, \ldots, \xi_{M_{\beta}}\right)$ be two vectors from $I^{M_{\beta}}$. The components $\xi_{i}, i=1, \ldots, M_{\beta}$ are defined as follows:

$$
\begin{aligned}
& \xi_{i}=a \quad \text { iff } \quad \exists k_{i}, 1 \leqq k_{i} \leqq \varrho: i=\sum_{j=k_{i}}^{\varrho} \beta_{j} \text { and } \alpha_{k_{i}} \neq 0, \\
& \xi_{i}=y_{i+1} \quad \text { for all other } i \neq M_{\beta} \\
& \xi_{M_{\beta}}=x \in I \quad \text { if } \alpha_{1}=0 .
\end{aligned}
$$

The operator $T_{\alpha, \boldsymbol{\beta}}$ acting on $\varphi \otimes \psi$ is then given by

$$
\begin{equation*}
\left[T_{\alpha, \boldsymbol{\beta}} \varphi \otimes \psi\right](x, z)=\int^{\xi_{\beta}} d y_{\boldsymbol{\beta}} \varphi\left(y_{1}\right) \psi\left(\chi_{\alpha, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}}\right)+\lambda^{a M_{\alpha, \beta}} z\right) \exp \left(-c \tau_{\alpha, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}} ; z\right)\right) \tag{15}
\end{equation*}
$$

where

$$
\int^{\zeta_{\beta}} d y_{\boldsymbol{\beta}}=\int_{0}^{\zeta_{\beta} M_{\beta}} d y_{M_{\beta}} \ldots \int_{0}^{\xi_{1}} d y_{1} .
$$

Consider the two transformations $R_{1}, R_{2}: \mathbb{Z}_{+}^{\varrho} \rightarrow \mathbb{Z}_{+}^{\varrho+1}$ defined by

$$
\begin{align*}
& R_{1} \boldsymbol{\alpha}=(1, \boldsymbol{\alpha}), \quad \boldsymbol{\alpha} \in \mathbb{Z}_{+}^{e} \tag{16}\\
& R_{2} \boldsymbol{\alpha}=(0, \boldsymbol{\alpha}),
\end{align*}
$$

We want to determine the action of these two transformations on the functions $\chi_{\alpha, \beta}$ and $\tau_{\alpha, \beta}$. A rather trivial calculation gives

$$
\begin{align*}
& \chi_{R_{1 \alpha}, R_{2} \beta}\left(y_{R_{2} \beta}\right)=\chi_{\alpha, \beta}\left(y_{\beta}\right) \\
& \tau_{R_{1} \alpha, R_{2} \beta}\left(y_{R_{2} \beta} ; z\right)=\tau_{\alpha, \beta}\left(y_{\beta} ; \lambda^{a} z\right) \tag{17}
\end{align*}
$$

respectively

$$
\begin{align*}
& \chi_{R_{2} \alpha, R_{1} \beta}\left(y_{R_{1} \beta}\right)=\chi_{\boldsymbol{\alpha}, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}}\right)+\lambda^{\left(a M_{\alpha, \beta}+y_{M_{\beta}+1}\right)} \\
& \tau_{R_{2} \alpha, R_{1} \beta}\left(y_{R_{1} \beta} ; z\right)=\tau_{\boldsymbol{\alpha}, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}} ; \lambda^{y_{M_{\beta}+1}}+\lambda^{a} z\right)+\lambda^{\left(a-y_{M_{\beta}}+1\right)} z \tag{18}
\end{align*}
$$

where $y_{R_{1} \beta}=\left(y_{1}, \ldots, y_{M_{\beta}}, y_{M_{\beta}+1}\right)$.
For the special case $\boldsymbol{\alpha}=(0), \boldsymbol{\beta}=(1)$ we get from the definition of the operator \mathscr{L}_{1} :

$$
\begin{equation*}
\chi_{0,1}(y)=\lambda^{y}, \quad \tau_{0,1}(y ; z)=\lambda^{a-y} z \tag{19}
\end{equation*}
$$

Let $T_{\alpha, \beta}$ be as defined in (15). If $\alpha_{k} \neq 0, \beta_{k} \neq 0$ we define the operator

$$
T_{k, \boldsymbol{\alpha}, \boldsymbol{\beta}}=\mathscr{L}_{0}^{\alpha_{1}} \mathscr{L}_{1}^{\beta_{1}} \ldots \mathscr{L}_{0}^{\alpha_{k}-1} \mathscr{L}_{1} \mathscr{L}_{0} \mathscr{L}_{1}^{\beta_{k}-1} \mathscr{L}_{0}^{\alpha_{k}+1} \ldots \mathscr{L}_{1}^{\beta_{e}} .
$$

Let $\Pi_{k}=\sum_{i=k}^{\varrho} \beta_{i}$. If $\alpha_{1} \geqq 1$, we have from the trace formula of Theorem 2 :

$$
\operatorname{tr} T_{\alpha, \beta}=\int^{\xi_{\beta}} d y_{\beta} \omega_{\alpha, \beta}\left(y_{\beta}\right)
$$

where

$$
\begin{equation*}
\omega_{\alpha, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}}\right)=\left(1-\lambda^{a M_{\alpha, \beta}}\right)^{-1} \exp \left[-c \tau_{\alpha, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}} ;\left(1-\lambda^{a M_{\alpha, \beta}}\right)^{-1} \chi_{\alpha, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}}\right)\right)\right] . \tag{20}
\end{equation*}
$$

Using the relations (17) and (18) we can easily show the following.
Lemma 4. Let $T_{\alpha, \boldsymbol{\beta}}, T_{k, \alpha, \boldsymbol{\beta}}$ and Π_{k} be as defined above. Let $y_{\boldsymbol{\beta}}^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{M_{\beta}}^{\prime}\right)$ with $y_{i}^{\prime}=y_{i} \forall i \neq \Pi_{k}, y_{\Pi_{k}}^{\prime}=y_{\Pi_{k}}+a$. Then

$$
\operatorname{tr} T_{k, \boldsymbol{\alpha}, \boldsymbol{\beta}}=\int^{\xi_{\beta}^{\prime}} d y_{\boldsymbol{\beta}} \omega_{\alpha, \boldsymbol{\beta}}\left(y_{\boldsymbol{\beta}}^{\prime}\right)
$$

where ξ_{β}^{\prime} is determined as follows:
for

$$
\begin{aligned}
& \alpha_{k} \geqq 2, \beta_{k} \geqq 2: \xi_{i}^{\prime}=\xi_{i} \forall i \neq \Pi_{k}-1, \xi_{\Pi_{k}-1}^{\prime}=a ; \\
& \alpha_{k}=1, \beta_{k} \geqq 2: \xi_{i}^{\prime}=\xi_{i} \forall i \neq\left(\Pi_{k}, \Pi_{k}-1\right), \xi_{\Pi_{k}}^{\prime}=y_{\Pi_{k}+1}, \xi_{\Pi_{k}-1}^{\prime}=a ; \\
& \alpha_{k}=1, \beta_{k}=1: \xi_{i}^{\prime}=\xi_{i} \forall i \neq \Pi_{k}, \xi_{\Pi_{k}}^{\prime}=y_{\Pi_{k}+1} ; \\
& \alpha_{k} \geqq 2, \beta_{k}=1: \xi_{i}^{\prime}=\xi_{i} \forall i .
\end{aligned}
$$

Lemma 4 allows us to determine the trace of the operator $T_{\alpha, \beta}$ for fixed M_{α} and M_{β}. Consider the operator $T_{j+1, n-j}=\mathscr{L}_{0}^{j+1} \mathscr{L}_{1}^{n-j}$. From the recursion formulas (17) and (18) we get for $0 \leqq j \leqq n-2, n \geqq 2$, if we introduce the vector $\boldsymbol{y}=\left(y_{j+1}, \ldots, y_{n}\right) \in$ I^{n-j} :

$$
\begin{align*}
& \chi_{j+1, n-j}(\boldsymbol{y})=\sum_{k=0}^{n-j-1} \lambda^{\left(k a+y_{n-k}\right)} \tag{21}\\
& \tau_{j+1, n-j}(\boldsymbol{y} ; z)=\sum_{\sigma=0}^{n-j-2} \sum_{k_{\sigma}=1}^{n-j-1-\sigma}\left[\lambda^{\left(k_{\sigma} a-y_{n-\sigma}+y_{\left.n-\sigma-k_{\sigma}\right)}\right.}+z \sum_{k=0}^{n-j-1} \lambda^{(n+1-k) a-y_{n-k}}\right] . \tag{22}
\end{align*}
$$

Using the trace formula we get

$$
\begin{equation*}
\operatorname{tr} T_{j+1, n-j}=\left(1-\lambda^{a(n+1)}\right)^{-1} \int^{\zeta} d y \exp \left(-\operatorname{cf}_{j}(y)\right) \tag{23}
\end{equation*}
$$

with $f_{j}(y)$ given by

$$
\begin{align*}
f_{j}(\boldsymbol{y})= & {\left[1-\lambda^{a(n+1)}\right]^{-1} } \\
& \cdot\left[(n-j) \lambda^{(n+1) a}+\sum_{i=j+1}^{n-1} \sum_{k=i+1}^{n}\left(\lambda^{\left((k-i) a-y_{k}+y_{i}\right)}+\lambda^{\left((n+1+i-k) a+y_{k}-y_{i}\right)}\right)\right] \tag{24}
\end{align*}
$$

and $\boldsymbol{\xi}=\left(a, y_{j+1}, \ldots, y_{n-1}\right)$.

From this we can then deduce the trace of the operator $\mathscr{L}_{0} \mathscr{L}^{n}$ for $n \geqq 1$: Let $\boldsymbol{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{\varrho}\right), \boldsymbol{\beta}^{\prime}:=\left(\beta_{1}^{\prime}, \ldots, \beta_{\varrho}^{\prime}\right) \in \mathbb{Z}^{* \varrho}$, where $\mathbb{Z}^{*}=\{1,2,3, \ldots\}$. Let furthermore be $\gamma, \delta \in \mathbb{Z}_{+}$. Then

$$
\begin{align*}
\mathscr{L}_{0} \mathscr{L}^{n}= & \mathscr{L}_{0}^{n+1}+\sum_{k=0}^{n-1} \mathscr{L}_{0}^{1+k} \mathscr{L}_{1} \mathscr{L}_{0}^{n-1-k} \\
& +\sum_{j=0}^{n-2} \sum_{\substack{\boldsymbol{\alpha}, \boldsymbol{\beta}^{\prime}, \gamma, \delta:|\boldsymbol{\alpha}|+\gamma+\delta=j+1 \\
\left|\boldsymbol{\beta}^{\prime}\right|=n-j-1 ; \boldsymbol{\beta}, \boldsymbol{\beta}^{\prime} \in \mathbb{Z}^{*} e ; \gamma, \gamma \in \mathbb{\mathbb { U } _ { + }}}} T_{\boldsymbol{\alpha}, \boldsymbol{\beta}^{\prime}} \mathscr{L}_{0}^{\gamma} \mathscr{L}_{1} \mathscr{L}_{0}^{\delta} \tag{25}
\end{align*}
$$

where the third term only appears for $n \geqq 2$. So let us assume $n \geqq 2$. If we define the vector $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{\varrho}\right)$ such that $\beta_{i}=\beta_{i}^{\prime}$ for $i \neq \varrho$ and $\beta_{\varrho}=\beta_{\varrho}^{\prime}+1$ we get $\beta_{\varrho} \geqq 2$. Let us recall that the numbers i_{k} have been defined by $i_{k}:=n+1-\sum_{l=k}^{e} \beta_{l}$ for $k=1, \ldots, \varrho$. Because all $\beta_{i} \geqq 1$ we get

$$
\begin{equation*}
i_{1}=j+1<i_{2}<\ldots<i_{Q}=n+1-\beta_{Q} \leqq n-1 \tag{26}
\end{equation*}
$$

Denote by $M_{j, n}$ the following set of integers

$$
\begin{equation*}
M_{j, n}:=\{j+1, j+2, \ldots, n-1\} \tag{27}
\end{equation*}
$$

and by $X:=\left\{i_{k}, k=1, \ldots, \varrho\right\}$. Then we have $|X|=\operatorname{card} X=\varrho$. It is also straightforward to show that

$$
\begin{equation*}
\varrho \leqq \min (j+1, n-j-1) \tag{28}
\end{equation*}
$$

Therefore $X \subset M_{j, n}$ and $|X|$ obeys the relation (28).
On the other hand given a subset $X \subset M_{j, n}$ with $X=\left\{i_{1}=j+1<i_{2}<\ldots<i_{|X|}\right\}$ and $|X| \leqq \min (j+1, n-j-1)$ there exists a unique vector $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{|X|}\right) \in \mathbb{Z}^{*}|X|$ with $\beta_{|X|} \geqq 2$ and $\sum_{i=1}^{|X|} \beta_{i}=n-j$ such that $i_{|X|}=n+1-\beta_{|X|}$ and $i_{k}=n+1-\sum_{l=k}^{|X|} \beta_{l}$. One only has to define $\beta_{|X|}:=n+1-i_{|X|}$ and $\beta_{k}=i_{k+1}-i_{k}$ for $1 \leqq k \leqq|X|-1$. Therefore we can write the third term in (25) as follows

$$
\begin{align*}
& \sum_{j=0}^{n-2} \sum_{\substack{X \subset M_{j, n} \\
\begin{array}{c}
x=\left\{i_{1}=j+1<i_{2}, \ldots<i_{1}| | \\
|X| \leqq \min (j+1, n-j-1)\right.
\end{array}}} \sum_{\substack{\alpha, \sigma \mid+\gamma, \gamma+\gamma=j+1}} \\
& . \mathscr{L}_{0}^{\alpha_{1}} \mathscr{L}_{1}^{\left(i_{2}-i_{1}\right)} \mathscr{L}_{0}^{\alpha_{2}} \mathscr{L}_{1}^{\left(i_{3}-i_{2}\right)} \ldots \mathscr{L}_{0}^{\alpha_{|X|}} \mathscr{L}_{1}^{n-i_{|X|}} \mathscr{L}_{0}^{\gamma} \mathscr{L}_{1} \mathscr{L}_{0}^{\sigma} . \tag{29}
\end{align*}
$$

Let us next write the vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{|X|}\right)$ as

$$
\begin{equation*}
\alpha_{1}=j+2-|X|-\sigma_{1}, \quad \alpha_{k}=1+\sigma_{k-1}-\sigma_{k} \quad \text { for } \quad k=2, \ldots,|X| \tag{30}
\end{equation*}
$$

One can then show that $j+1-|X| \geqq \sigma_{1} \geqq \sigma_{2} \geqq \ldots \geqq \sigma_{|X|} \geqq 0$. From this it follows that the mapping

$$
\begin{equation*}
\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{|X|}\right) \rightarrow \boldsymbol{\sigma}=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{|X|}\right) \tag{31}
\end{equation*}
$$

is $1-1$ and the inverse mapping of (30) is given by

$$
\sigma_{i}=j+i+1-|X|-\sum_{k=1}^{i} \alpha_{k}
$$

With this we can write the expression (29) as

$$
\begin{align*}
& \sum_{j=0}^{n-2} \sum_{X \subset M_{j, n}} \sum_{\sigma_{1}=0}^{j+1-|X|} \cdots \sum_{\sigma_{|X|}=0}^{\sigma_{|X|}-1} \sum_{\varrho=0}^{\sigma_{|X|}} \mathscr{L}_{0}^{\left(j+2-|X|-\sigma_{1}\right)} \mathscr{L}_{1}^{\left(i_{2}-i_{1}\right)} \mathscr{L}_{0}^{\left(1+\sigma_{1}-\sigma_{2}\right)} \ldots \\
& \cdot \mathscr{L}_{0}^{\left(1+\sigma_{|X|-1}-\sigma_{|X|}\right)} \mathscr{L}_{1}^{\left(n-i_{|X|}\right)} \mathscr{L}_{0}^{\varrho} \mathscr{L}_{1} \mathscr{L}_{0}^{\left(\sigma_{|X|}-\varrho\right)} . \tag{32}
\end{align*}
$$

It is clear that the operator $\mathscr{L}^{\sim}=\mathscr{L}_{0}^{\gamma} \mathscr{L}_{1}^{\left(i_{2}-i_{1}\right)} \mathscr{L}_{0} \mathscr{L}_{1}^{\left(i_{3}-i_{2}\right)} \ldots \mathscr{L}_{0} \mathscr{L}_{1}^{\left(n-i_{X \mid}+1\right)}$ with $\gamma=j+1-(|X|-1)$ can be obtained from the operator $T_{j+1, n-j}$ simply by shifting $|X|-k$ times the operator \mathscr{L}_{0} through the operator $\mathscr{L}_{1}^{\left(i_{k+1}-i_{k}\right)}, k=1, \ldots,|X|-1$. The operator $\mathscr{L}_{0}^{\left(j+2-|X|-\sigma_{1}\right)} \mathscr{L}_{1}^{\left(i_{2}-i_{1}\right)} \mathscr{L}_{0}^{\left(1+\sigma_{1}-\sigma_{2}\right)} \ldots \mathscr{L}_{1}^{\left(n-i_{|X|}\right)} \mathscr{L}_{0}^{\varrho} \mathscr{L}_{1} \mathscr{L}_{0}^{\left(\sigma_{|X|}-\varrho\right)}$ can then be obtained from the operator \mathscr{L}^{\sim} again by shifting operators \mathscr{L}_{0} around. Using Lemma 4 we get then finally in the case $\varrho=0$:

$$
\begin{aligned}
& \operatorname{tr} \mathscr{L}_{0}^{\left(j+2-|X|-\sigma_{1}\right)} \mathscr{L}_{1}^{\left(i_{2}-i_{1}\right)} \mathscr{L}_{0}^{\left(1+\sigma_{1}-\sigma_{2}\right)} \ldots \mathscr{L}_{0}^{\varrho} \mathscr{L}_{1} \mathscr{L}_{0}^{\left(\sigma_{|X|}-\varrho\right)} \\
& =\int^{\xi^{\prime}} d \boldsymbol{y} \omega_{j+1, n-j}\left(y_{j+1}+\left(|X|-1+\sigma_{1}\right) a, \ldots, y_{i_{k}}+\left(|X|-k+\sigma_{k}\right) a, \ldots, y_{i_{|X|}}\right. \\
& \left.\left.\quad+\sigma_{|X|} a, \ldots, y_{n-1}+\sigma_{|X|} a, y_{n}+\sigma_{|X|} a\right)\right)
\end{aligned}
$$

where $\xi^{\prime}=\left(\xi_{j+1}^{\prime}, \ldots, \xi_{n}^{\prime}\right)$ and $\xi_{k}^{\prime}=a \forall k \in X, \xi_{k}^{\prime}=y_{k-1} \forall k \notin X$. In the case $\varrho \geqq 1$ we get

$$
\begin{aligned}
\operatorname{tr}(\ldots)= & \int^{\xi^{\prime \prime}} d \boldsymbol{y} \omega_{j+1, n-j}\left(y_{j+1}+\left(|X|-1+\sigma_{1} a\right), \ldots, y_{i_{k}}\right. \\
& \left.+\left(|X|-k+\sigma_{k}\right) a, \ldots, y_{i_{|X|}}+\sigma_{|X|} a, \ldots, y_{n-1}+\sigma_{|X|} a, y_{n}+\left(\sigma_{|X|}-\varrho\right) a\right),
\end{aligned}
$$

where $\xi_{i}^{\prime \prime}=\xi_{i}$ for $i \neq n$ and $\xi_{n}^{\prime \prime}=a$ and the function $\omega_{j+1, n-j}$ as in (20). After performing the summation over ϱ we arrive at

$$
\begin{align*}
\operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n}= & \operatorname{tr} \mathscr{L}_{0}^{n+1}+\sum_{k=0}^{n-1} \operatorname{tr} \mathscr{L}_{0}^{(1+k)} \mathscr{L}_{1} \mathscr{L}_{0}^{(n-1-k)} \\
& +\sum_{j=0}^{n-2} \sum_{X \subset M_{J, n}} \sum_{\sigma_{1}=0}^{j+1-|X|} \cdots \sum_{\sigma_{|X|}=0}^{\sigma_{|X|-1}} \int^{\xi} d \boldsymbol{y} \omega_{j+1, n-j} \\
& \cdot\left(y_{j+1}+\left(|X|-1+\sigma_{1}\right) a, \ldots, y_{i_{k-1}}+\left(|X|-(k-1)+\sigma_{k-1}\right) a, y_{i_{k}}\right. \\
& \left.+\left(|X|-k+\sigma_{k}\right) a, \ldots, y_{i_{|X|}}+\sigma_{|X|} a, \ldots, y_{n-1}+\sigma_{|X|} a, y_{n}\right) \tag{33}
\end{align*}
$$

where $\boldsymbol{\xi}=\left(\xi_{j+1}, \ldots, \xi_{n}\right)$ is given by $\xi_{l}=a \forall l \in X, \xi_{l}=y_{l-1}$

$$
l \notin X, l \neq n, \xi_{n}=y_{n-1}+\sigma_{|X|} a .
$$

The traces of the first two terms in (33) can be easily determined and we get

$$
\begin{align*}
\operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n}= & \frac{1}{\left[1-\lambda^{a(n+1)}\right]}\left[1+n a \exp \left(-\lambda^{(n+1) a} /(1-\lambda)^{(n+1) a}\right)\right. \\
& \left.+\sum_{j=0}^{n-2} \sum_{X \subset M_{J, n}} \sum_{\sigma_{1}=0}^{j+1-|X|} \cdots \sum_{\sigma_{|X|}=0}^{\sigma_{|X|-1}} \int^{\xi} d \boldsymbol{y} \omega_{j+1, n-j}(\boldsymbol{y}, \boldsymbol{\sigma})\right] \tag{34}
\end{align*}
$$

where $\tilde{\omega}_{j+1, n-j}(\boldsymbol{y}, \boldsymbol{\sigma})$ can be derived from the integrand in (33) and the third term again only appears for $n \geqq 2$.

Next we want to compare this trace with the partition function Z_{n+1} for a hard core system with periodic boundary conditions with exponential pair interaction $\lambda^{\left(y_{i}-y_{i}-1\right)}$. It is convenient to introduce the coordinates y_{i} in the following way:

Consider the case where there are $(n-j)$ rods distributed on the interval $[0,(n+1) a]$ with periodic repetition outside this interval where $0 \leqq j \leqq n-2$. We denote the coordinate of the left corner of the i 'th rod by $y_{n-(i-1)}+(i-1) a$. Then the interaction energy of this configuration is given by:

$$
\begin{aligned}
W_{j}(\boldsymbol{y})= & \frac{c}{\left(1-\lambda^{a(n+1)}\right)}\left[\sum_{n-j \geqq i>k \geqq 1} \lambda^{\left(y_{n-(2-1)}+(i-1) a-\left(y_{n-(k-1)}+(k-1) a\right)\right)}\right. \\
& \left.+\sum_{n-j \geqq k \geqq i \geqq 1} \lambda^{\left(y_{n-(2-1)}+(i+n) a\right)-\left(y_{n-(k-1)}+(k-1) a\right)}\right] .
\end{aligned}
$$

Some algebraic calculation shows that $W_{j}(\boldsymbol{y})$ can also be written as

$$
\begin{aligned}
W_{j}(\boldsymbol{y})= & \frac{c}{1-\lambda^{a(n+1)}}\left[(n-j) \lambda^{(n+1) a}+\sum_{i=j+1}^{n-1} \sum_{k=i+1}^{n}\right. \\
& \left.\cdot \lambda^{\left(y_{i}+(h-i) a-y_{k}\right)}+\lambda^{\left(y_{k}-y_{i}+(i-k+n+1) a\right)}\right] .
\end{aligned}
$$

Comparing with (24) we see that

$$
\begin{equation*}
c f_{j}(\boldsymbol{y})=W_{j}(\boldsymbol{y}) . \tag{35}
\end{equation*}
$$

If one includes the contributions coming from the configurations with 0 and 1 rod on the interval, the partition function Z_{n+1} is then given by

$$
\begin{align*}
Z_{n+1}= & 1+\sum_{j=0}^{n-2} \int_{0}^{(j+1) a} d y_{j+1} \int_{0}^{y_{j+1}} d y_{j+2} \cdots \int_{0}^{y_{n-1}} d y_{n} \exp \left[-c W_{j}(\boldsymbol{y})\right] \\
& +n a \exp -\left[c \lambda^{(n+1) a} /\left(1-\lambda^{(n+1) a}\right)\right] \tag{36}
\end{align*}
$$

By induction on n and $j=0,1 \ldots n-2$, one can prove the following representation of the integral in (36).

Lemma 5. Let $M_{j, n}=\{j+1, \ldots, n-1\}$ and let $X \subset M_{j, n}$ such that

$$
X=\left\{i_{1}=j+1<i_{2}<\ldots<i_{|X|}\right\} \quad \text { with } \quad|X| \leqq \min (j+1, n-j-1) .
$$

Let $\boldsymbol{y}=\left(y_{j+1}, \ldots y_{n}\right)$ and $\xi^{\prime}=\left(\xi_{j+1}^{\prime}, \ldots, \xi_{n}^{\prime}\right)$ with $\xi_{j+1}^{\prime}=(j+1) a, \xi_{k}^{\prime}=y_{k-1}$ for $k \neq j+1$. Then

$$
\int^{\xi^{\prime}} d \boldsymbol{y} \omega(\boldsymbol{y})=\sum_{X \subset M_{j, n}} \sum_{\sigma_{1}=0}^{j+1-|X|} \sum_{\sigma_{2}=0}^{\sigma_{1}} \cdots \sum_{\sigma_{|X|}=0}^{\sigma_{\mid \times 1}-1} \int^{\xi} d \boldsymbol{y} \omega^{2}(\boldsymbol{y}, \boldsymbol{\sigma})
$$

for any $\omega \in C^{\infty}\left(\mathbb{R}^{n-j}\right)$, where $\omega^{\sim}(\boldsymbol{y}, \boldsymbol{\sigma})$ is given in terms of the function ω analogous to the definition in the expression (34) and the vector ξ is given as in expression (33). This gives finally

Theorem 3. Let Z_{n} be the partition function for a classical hard core system with hard core length a and exponential pair interaction $c \lambda^{\left(y_{i}-y_{i-1}\right)}$ with periodic boundary conditions. Then for $n \geqq 1$

$$
Z_{n}=\left(1-\lambda^{n a}\right) \operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n-1}
$$

where the operators \mathscr{L}_{0} and \mathscr{L}_{1} are defined in Lemma 1 .

III. The ζ-Function for a Hard Core System

Let us now look at the formal series

$$
\zeta(z)=\exp \sum_{n=1}^{\infty} z^{n} Z_{n} / n
$$

where Z_{n} is the partition function of a hard core system with periodic boundary conditions. Inserting the expression of Theorem 3 we get

$$
\zeta(z)=\left[\exp \left(\sum_{n=1}^{\infty} \frac{z^{n}}{n}\left(1-\lambda^{n a}\right) \operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n-1}\right)\right]
$$

Because $\left|\operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n-1}\right| \leqq\|\mathscr{L}\|^{n} \frac{\left\|\mathscr{L}_{0}\right\|_{1}}{\|\mathscr{L}\|}$, where $\|\mathscr{L}\|_{1}$ denotes the trace norm of the trace class operator \mathscr{L}_{0} we get that $\zeta(z)$ is a holomorphic function in a neighbourhood of $z=0$. Let us next discuss the question if $\zeta(z)$ extends to a meromorphic function in the whole z plane. Consider the following family of operators

$$
T(\mu):=\mathscr{L}+\mu \mathscr{L}_{0}
$$

Because, as we remarked already, the operator \mathscr{L} can be shown to be a Hilbert Schmidt operator on the Hilbert space $H^{1}\left(I ; A_{2}\left(D_{R}\right)\right)$ of all H^{1} mappings of the interval I into the Hilbert space $A_{2}\left(D_{R}\right)$ of all square integrable, holomorphic functions on D_{R}, where $H^{1}(I)$ is the well known Sobolev space $W_{1}^{2}(I)$ [17], the operator $T(\mu)^{n}$ is for every $n \geqq 2$ a holomorphic family of trace class operators on this Hilbert space. For such families the following formula holds [18]:

$$
\frac{d}{d \mu} \operatorname{tr} T(\mu)^{n}=n \operatorname{tr}\left(T(\mu)^{n-1} \mathscr{L}_{0}\right) \quad \text { for all } \quad \mu \in \mathbb{C}
$$

At $\mu=0$ this gives

$$
\begin{equation*}
\left.\frac{d}{d \mu} \operatorname{tr} T(\mu)^{n}\right|_{\mu=0}=n \operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n-1} \tag{37}
\end{equation*}
$$

The Theorem of Lidskij [14] tells us on the other hand that for $n \geqq 2 \operatorname{tr} T(\mu)^{n}=$ $\sum_{\{k\}} \lambda_{k}(\mu)^{n}$, where $\left\{\lambda_{k}(\mu)\right\}$ is the set of eigenvalues of the operator $T(\mu)$.

For the rest of the discussion let us restrict ourselves to the case where the interaction constant c vanishes, that means we consider the operator $\mathscr{L}: B \rightarrow B$

$$
\mathscr{L} f(x, z)=f\left(a, \lambda^{a} z\right)+\int_{0}^{x} f\left(y, \lambda^{y}+\lambda^{a} z\right) d y .
$$

The operator $T(\mu)$ for this case then reads

$$
\begin{equation*}
T(\mu) f(x, z)=(1+\mu) f\left(a, \lambda^{a} z\right)+\int_{0}^{x} f\left(y, \lambda^{y}+\lambda^{a} z\right) d y \tag{38}
\end{equation*}
$$

The spectrum of this operator can be determined as follows. First notice that if $f(x, z)$ is an eigenfunction with eigenvalue ϱ then the function $\frac{d}{d z} f(x, z)$ is also an eigenfunction with eigenvalue ϱ / λ^{a}. There we made use of the fact that any eigenfunction is holomorphic in z in a whole neighbourhood of $\operatorname{clos} D_{R}$ which follows by analytic continuation from the eigenvalue equation. Because $T(\mu)$ is compact there must therefore exist an eigenfunction $f_{0}(x, z)$ such that $\frac{d}{d z} f_{0}(x, z)=0$, that means $f_{0}(x, z)=f(x)$. For this function the eigenvalue problem reads as follows:

$$
\begin{equation*}
(1+\mu) f(a)+\int_{0}^{x} f(y) d y=\varrho(\mu) f(x) \tag{39}
\end{equation*}
$$

The solution to this equation in $C(I)$ is easily found to be

$$
\begin{equation*}
f(x)=\exp (\alpha x) \tag{40}
\end{equation*}
$$

where α is a solution of the equation

$$
\begin{equation*}
(1+\mu) \exp \alpha a=\alpha^{-1} \tag{41}
\end{equation*}
$$

with eigenvalue $\varrho(\mu)=\alpha(\mu)^{-1}$.
One can verify without difficulties the following properties of the numbers $\alpha(\mu)$ satisfying (41):
a) There exists a real solution α_{0} iff μ is real. For $-1<\mu<\infty \alpha_{0}$ is positive.
b) There exist two sequences of solutions α_{n} and $\alpha_{n}^{*}, n=1,2, \ldots$ with $\operatorname{Im} \alpha_{n}>0$ and $\operatorname{Im} \alpha_{n}^{*}<0$ such that $\left|\alpha_{n}\right| \geqq n \pi / 2 a,\left|\alpha_{n}^{*}\right| \geqq n \pi / 2 a$ for all μ with $|\mu| \leqq \delta$, where δ is some small enough number.

The spectrum of the operator $T(\mu)$ is therefore given by the set

$$
\begin{equation*}
\sigma(T(\mu))=\left\{\lambda^{a m} \varrho(\mu): m=0,1, \ldots ; \varrho(\mu)=(1+\mu) \exp (a / \varrho(\mu))\right\} \tag{42}
\end{equation*}
$$

From this consideration it follows that all the eigenvalues $\lambda(\mu)$ of the operator $T(\mu)$ are holomorphic in the disc $|\mu|<1$ and that for all $n \geqq 2$ the sum $\sum_{\{k\}} \lambda_{k}^{n}(\mu)$ converges uniformly in some small disc $|\mu| \leqq \delta$.

Therefore we get

$$
\frac{d}{d \mu} \sum_{\{k\}} \lambda_{k}^{n}(\mu)=n \sum_{\{k\}} \lambda_{k}^{n-1}(\mu) \lambda_{k}^{\prime}(\mu)
$$

and at $\mu=0$

$$
\begin{equation*}
\operatorname{tr} \mathscr{L}_{0} \mathscr{L}^{n-1}=\sum_{\{k\}} \lambda_{k}^{n} \delta_{k}, \delta_{k}=\lambda_{k}^{-1} \lambda_{k}^{\prime} \tag{43}
\end{equation*}
$$

Inserting (43) into the definition of $\zeta(z)$ we get

$$
\begin{equation*}
\zeta(z)=\exp [z] Q\left(\lambda^{a} z\right) / Q(z) \tag{44}
\end{equation*}
$$

with

$$
Q(z)=\prod_{\{k\}}\left(1-z \lambda_{k}\right)^{\delta_{k}} \exp z\left(\delta_{k} \lambda_{k}\right) .
$$

Next we make use of the spectrum $\sigma(T(0))$ and get finally

$$
\begin{equation*}
\zeta(z)=\exp \left[z\left(1-\sum_{\{k\}} \varrho_{k}^{\prime}\right)\right] \prod_{\{k\}}\left(1-z \varrho_{k}\right)^{-\frac{\varrho_{k}^{\prime}}{\varrho_{k}}} \tag{45}
\end{equation*}
$$

where $\left\{\varrho_{k}\right\}$ are the zeros of the function $z \exp (-a / z)-1$ and $\varrho_{k}^{\prime}=\varrho_{k}^{2} /\left(a+\varrho_{k}\right)$. Because $\varrho_{k}^{\prime} / \varrho_{k}=\varrho_{k} /\left(a+\varrho_{k}\right)$, it is clear that the function $\zeta(z)$ is not meromorphic in the z plane.

By using expression (36) for the partition functions Z_{n} one can also perform the summation in the ζ-function and gets after some trivial algebra the following expression:

$$
\begin{equation*}
\zeta(z)=\exp \int_{0}^{z} \exp \left(a z^{\prime}\right) /\left(1-z^{\prime} \exp a z^{\prime}\right) d z^{\prime} . \tag{46}
\end{equation*}
$$

Comparing with (45) one gets therefore the following interesting representation

$$
\exp \int_{0}^{z} \exp \left(a z^{\prime}\right) /\left(1-z^{\prime} \exp a z^{\prime}\right) d z^{\prime}=\exp \left[z\left(1-\sum_{\{k\}} \varrho_{k}^{\prime}\right)\right] \prod_{\{k\}}\left(1-z \varrho_{k}\right)^{-\frac{\varrho_{k}^{\prime}}{\varrho_{k}}}
$$

Unfortunately we are not able to prove the representation (44) also for the interacting case $c \neq 0$ but it is our conjecture that it is true also in this case. It is interesting to note at this place that Kac et al. [19] treated this hard core system with the same interaction in an interesting paper in 1963. They indeed reduced the problem to the discussion of a certain integral equation of Hilbert-Schmidt type. It would be interesting to see the exact relation between this operator and our operator \mathscr{L}.

Acknowledgements. We are very much indebted to Prof. G. Gallavotti for many helpful discussions. One of us [D.M.] wants to thank the DFG for financial support. Both of us are indebted to Prof. N. Kuiper for the kind hospitality extended to us at the IHES.

Appendix A

For the readers convenience we repeat here the definition of the projective topological tensor product of two Banach spaces and of the π norm. Consider two Banach spaces E and F with their norms $\left\|\|_{E}\right.$ and $\| \|_{F}$ respectively. Let be $E \otimes F$ the tensor product of the two spaces. Then one defines the following norm on $E \otimes F$:

$$
\|x\|_{\pi}:=\inf \sum_{i}\left\|e_{i}\right\|_{E}\left\|f_{i}\right\|_{F}
$$

where the infimum is taken over all possible representations of $x \in E \otimes F$ as $x=\sum_{\{i\}} e_{i} \otimes f_{i}$ with $e_{i} \in E$ and $f_{i} \in F$. The completion of the space $E \otimes F$ with respect
to the norm $\left\|\|_{\pi}\right.$ is denoted by $E \hat{\otimes}_{\pi} F$ and called the projective topological tensor product of the two spaces E and F. The elements of this space are also called Fredholm kernels.

Appendix B. Ruelles Trace Formula [6]

Let be $D \subset \mathbb{C}^{n}$ a bounded connected open subset and ψ a holomorphic mapping from a neighbourhood of clos D to D. Further let be φ an element of $A_{\infty}(D)$. Define the following linear operator $\mathscr{L}: A_{\infty}(D) \rightarrow A_{\infty}(D)$

$$
\mathscr{L} f(z):=\varphi(z) f(\psi(z))
$$

Then \mathscr{L} is a nuclear operator of order 0 and $\operatorname{Trace} \mathscr{L}=\varphi\left(z^{*}\right) \operatorname{det}\left(1-\psi^{\prime}\left(z^{*}\right)\right)^{-1}$, where z^{*} is the unique fixed point of the mapping ψ and $\psi^{\prime}\left(z^{*}\right)$ is the derivative of ψ at z^{*}.

Note that this formula extends in a certain way the Lefschetz trace formula [20].

References

1. Sinai, Ya. G.: Gibbs Measures in Ergodic Theory. Russ. Math. Surv. 27, 21-69 (1972)
2. Bowen, R.: Symbolic dynamics for hyperbolic flows. Am. J. Math. 95, 429-460 (1973)
3. Bowen, R.: Markov partitions for Axiom A diffeomorphisms. Am. J. Math. 92, 725-747 (1970)
4. Artin, E., Mazur, B.: On Periodic points. Ann. Math. (2) 81, 82-99 (1965)
5. Ruelle, D.: Generalized ζ-functions for Axiom A basic sets. Bull. Am. Math. Soc. 82, 153-156 (1976)
6. Ruelle, D.: ζ-functions for expanding maps and Anosov flows. Invent. Math. 34, 231-242 (1976)
7. Ruelle, D.: R.C.P. 25, Vol. 22, Strasbourg 1975
8. Viswanathan, K.S.: Statistical mechanics of a one-dimensional lattice gas with exponentialpolynomial interactions. Commun. math. Phys. 47, 131-141 (1976)
9. Gallovotti, G., Miracle-Sole, S.: Absence of phase transitions in hard-core one-dimensional systems with long range interaction. J. Math. Phys. 11, 147-154 (1969)
10. Ruelle, D.: Statistical mechanics of a one dimensional lattice gas. Commun. math. Phys. 9, 267-278 (1968)
11. Grothendieck, A.: La Theorie de Fredholm. Bull. Soc. Math. France, Ch. II. 84, 319-384 (1956)
12. Schatten, R.: A theory of cross-spaces. Princeton University Press 1950
13. Grothendieck, A.: Produits tensoriels topologiques et espaces nucleaires, Memo. of the Am. Math. Soc., 1955, Ch. II, § 2, no. 2, Lemme 6
14. Gohberg, I. C., Krejn, M. G.: Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien, p. 103. Paris: Dunod 1971
15. Schechter, M.: On the spectra of operators on tensor products. J. Funct. Anal. 4, 95-100 (1969)
16. Mayer,D.H.: On a ζ-function related to the continued fraction transformation. Bull. Soc. Math. France 104, 195-203 (1976)
17. Wloka, Y.: Grundräume und verallgemeinerte Funktionen. Lecture Notes in Math., No. 82, p. 2. Berlin-Heidelberg-New York: Springer Verlag 1969
18. See 14, p. 168
19. Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals Theory of the Vapor-Liquid Equilibrium. I. Discussion of a One-dim. Model. J. Math. Phys. 4, 216-228 (1963)
20. Atiyah, M., Bott, R.: Notes On The Lefschetz Fixed Point Theorem For Elliptic Complexes. Cambridge: Harvard University Press 1964

Communicated by G. Gallavotti

