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Abstract. Let H(x,D,ε) be a self-adjoint partial differential operator of the form

K

H= £ 8kHk(x,εD), xeR\
k=0

Suppose the hamiltonian system

._dHo ._ 3H0

dξ ' ζ~ dx

has a nondegenerate stable periodic orbit y on which xΦO. Then it is possible
to construct a sequence of real numbers εm tending to zero, a sequence of
functions um concentrated in a tube of radius ε%2 about the projection of γ
into x-space, and a polynomial E(ε) such that

The power M depends on the order of stability of y. The constructions are
explicit in terms of solutions of linear O.D.E.'s, and are generalizations of
"gaussian beams". Actually, instead of just one sequence, one gets a family of
sequences parametrized by the multi-indices of order n— 1, but the constant C
is not independent of these multi-indices. The nondegeneracy hypothesis
implies y is part of a one-parameter family of stable periodic orbits, and C is
independent of this parameter.

After presenting the constructions, we discuss their application to the
quasi-classical limit in quantum mechanics and their relation to work of
Keller, Maslov and others.

We wish to study the behavior of the spectrum of a linear partial differential
operator, P(x, D, ε), depending on a parameter ε, as ε tends to zero.. We assume
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where D = (i~1 d/dx1,..., i~1 d/dxn) and each coefficient aa is a finite sum of smooth
functions of x multiplied by integral powers of ε. Replacing P(x, D, ε) by εmP(x,D,ε)
for some integer m, we may write

P(x,D,ε)= ΣεkHk(x,εD)
/c=0

where each Hk(x, ξ) is a polynomial in ξ. We will assume that P(x, D, ε) is
"symmetric to second order" in the sense that if P*(x, D, ε) denotes the formal
adjoint of P(x, D, ε) with respect to the inner product

{u,v)= J u(x)v(x)f(x)dx
Rn

then P — P* has an expansion of the form

P(x, A ε) - P*(x, A ε) = £ e*ffk(x, εD).
fc=2

This means that H0(x, ξ), which plays the role of the principal symbol of P in this
setting, is real-valued and that the analogue for P of the "subprincipal symbol"
is also real-valued.

We are going to construct "quasi-modes" for P associated with a stable
periodic orbit y for the Hamiltonian system

x = δH0/dξ, ξ=-8H0/dx. (1)

We assume that i φ O on y. Hence the curve Γ formed by projecting y onto its
x-component is a smooth curve in Rn, possibly with self-intersections. In what
follows we will make a "nondegeneracy" hypothesis which will imply that y
belongs to a smooth 1-parameter family of periodic solutions of (1),

defined for E near Eo, the value of Ho on y, with H = E on y(E). Then, assuming
a natural stability condition on y, we will construct a sequence of functions
um(x, E) and a sequence εm(E) of real values for ε tending to zero, such that um

is small outside a tube around Γ(E) of radius Θ(εll2) and

IKP^AεJ-^KIIII^IΓ^Cε^2 (2)

where C is independent of E on an open interval containing Eo. Assuming more
restrictive but still generic stability conditions on y, we will refine the construc-
tion of the um so that

| | ( P ( x , A ε J - ( £ + ft24 + . . . + f e A f ^ ) ) « m | | | | w M i r 1 ^ C ^ + 1 . (3)

The nondegeneracy and stability conditions arise in the following way. Let
(x(t), ξ(t)), O ^ ί < T be the solution of (1) which traces 7, and consider the system
of equations:

p2ττ β2ττ { '
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or more compactly in matrix notation

ή=-C(t)y-B\t)η.

These are the equations governing the flow on the tangent space to phase space
along y induced by the flow (1) on phase space. The linear transformation on C2n

given by

where (y(t\ η(t)) is a solution of (4), preserves the canonical symplectic 2-form, i.e.
σ(υ, v ) = σ(3Γv, ZΓυ ) where

σ((y,η),{y,ή)) = y ή -y -η .

Hence, if λ is an eigenvalue of 2Γ so is A"1 and det?Γ = 1 (see Weyl [19, Chapter
VI] for a proof that d e t ^ = 1). If 0i =(x(0), ξ(0)\ we have ^φ1=φv Thus 1 must
be an eigenvalue of 2Γ of (algebraic) multiplicity at least 2.

Definition 1. We say y is nondegenerate if the eigenvalue 1 has multiplicity 2.

If y is nondegenerate it follows immediately from the Poincare Continuation
Theorem (cf. [16, pp. 145-148]) that y belongs to a one parameter family of
periodic orbits as described earlier. Moreover, since

(x(T(El E\ ξ(T(E), £) = (x(0, E\ ξ(09 £))

and Ho(x(0, E\ ξ(0, E)) = E, after differentiating these equations with respect to E
we see that the 1-eigenspace of 3Γ is spanned by φx and φ~1 = {dx(Q, E0)/dE,
dξ(0,Eo)/dE} and σ(φl9φ\) = L Thus, letting V={veC2η\σ{v,φ1) = σ(v,φ\) = 0},
we see that ?ΓV = V and V has trivial intersection with the span of φ1 and φ\.

Definition 2. We say y is stable if the eigenvalues of ?Γ restricted to V have
modulus 1 and are distinct.

Since the eigenvalues of 9~ also occur in conjugate pairs, nondegeneracy and
stability imply ?Γ has eigenvalues 1,1, λ29 λ2, ...,λn, λn where λj = eιθj, 0 < | θ J | < π .
We may choose eigenvectors φt with 3Γφ~λ{φb i = 2,...,n. Since 2Γ preserves σ,
one checks easily that

σ(φi9φ3) = 0 for all ij,

σ(φi9φj) = 0 for iΦj and i=j=l.

By normalizing the φt and replacing φt by φt when necessary, one can arrange

σ(φi9φd=-2(-l)V2 for z > l . (6)

If we now vary £, assuming y is nondegenerate and stable, 2Γ and λ2,...,λn

will be smooth functions of E for E near Eθ9 and we can choose eigenfunctions
φ29...9φn satisfying (5) and (6) so that they are also smooth functions of E.
Moreover, since the eigenvalues of $~(E) must occur in reciprocal and conjugate
pairs, the eigenvalues λ2(E)9...9λn(E) will have modulus 1 for E near Eo and we
can choose θ2(E)9...9θn(E) smoothly varying.
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The construction of um(E) satisfying (2) is actually possible under a weaker
stability hypothesis suggested by the work of Krein [12] and Moser [14].

Definition 2'. y is stable if the hermitian form ( — l)~1/2σ(ι;, υ) is definite on the
eigenspaces of ?Γ restricted to V.

We discuss this extension in Appendix A. In the body of the paper stability
will mean the property given in Definition 2. To construct um{E) satisfying estimates
like (2) we will need the following stronger notions of stability.

n

Definition3. If [ j Λ ^ Φ l for any nonzero (α 2 , . . . ,α π )eZ"~ 1 with £ | α f | ^ J V + l, we
2

say y is iV-stable.

Note that 1-stability is stability, and, if y is JV-stable, so ist y(E) for E near Eo.
The solutions φ^t) to (4) with φ.(0) = φ. will play a central role in the con-

struction of the um. Note that since the flow defined by (4) preserves σ, the Equa-
tions (5) and (6) hold for all t when φt is replaced by φt{t). If we let φi(t) = (yi(t),ηi{ή),
the set {/(£):z = l,...,n} is a basis for C1 for all t. To see this suppose

Then letting υ= Σ a$i(to\ we have

i = 2

Hence a2 = ... = an = 0. Since we assumed x(to) = y1(to)Φ0, aί=0 also. Thus the
matrix Y(t) with columns y1{t\...,ytι{t) is nonsingular for ίe[0, T].

We are now in a position to specify the sequence εm. Actually there is not just
one sequence but a family of sequences parametrized by multi-indices (m2,.. .,mj.
If y is stable, there is a sequence um(x, E) satisfying (2) when the sequence εm(E)
is defined by

K(E) = (2πm + m2θ2(E) + . . . + mnθn{E) + A (E))εm(E) (7)

T(E)

where K = j £(ί, £)x(ί, E)dί—the "action" of y(E)—and

2 i at

I T(E)

Z 0

Note that when RQH1 vanishes,

(70
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n

If y is iV-stable, for N= £ mί + 2M, then the um can be made to satisfy (3). The
i = 2

formula (7) is the analogue of the quantum law proposed by Bohr, "K = 2πmh,"
with A playing the role of the correction added by Sommerfeld. The integer p is
the natural generalization to this setting of an index introduced by Gelfand and
Lidskii in [6], which we discuss in Appendix B.

The construction of "quasi-modes" of the sort described above can be traced
back to the classical WKB method, but it was Keller [11] who suggested using
such constructions to study the spectrum of nonseparable equations. In present
day terminology Keller discussed quasimodes associated with compact Lagran-
gian manifolds. This approach was developed, greatly generalized and made
rigorous through the work of Maslov [13], Duistermaat [5], Wqinstein [18] and
Colin de Verdiere [4]. For this approach to succeed the Hamiltonian H0(x, ξ)
must be at least "close" to completely integrable, see [4] and [5].

In [3] Babich and Lazutkin discussed the possibility of constructing quasi-
modes associated with a single periodic orbit. Using the "method of parabolic
equations," they constructed a sequence satisfying (2) in the case n = 2. More
recently Yoros [17] deduced the formula (7) for general n by replacing Ho by its
completely integrable linearization near γ and using the theory described in the
preceding paragraph. Still more recently Guillemin and Weinstein [8] proved
the existence of sequence satisfying (2) in the case that P is the Laplace-Beltrami
operator on an orientable manifold M, by constructing an isometry from L2^1)
into L2(M) which approximately intertwines d2/dθ2 and P. The isometry from
L2^1) into L2(M) was a Fourier integral operator of a new type introduced by
Guillemin in [9].

The approach that we are going to present here is closest to that of Babich
and Lazutkin. We explicitly construct quasimodes of the form

u = emψ{x) (ao(x) + εfli(x) + . . . + ε%(x)) (8)

where ψ is real-valued on Γ with (Im δ2ψ(x(t))/dxiδxJ) positive definite on vectors
orthogonal to x(t). The ansatz (8) is the familiar ansatz of geometric optics but
with a complex phase. In physics literature (8) is known as the "Gaussian beam"
ansatz or the beam optics approximation, and it has been extensively studied. In
particular it has been used to find analogues of the quantum law (7). The article
[1] by J. A. Arnaud provides an excellent survey of this work. The ansatz (8) was
also used in [15], but our aim in this paper has been to make the computations
more explicit and general.

The plan of this paper is as follows. We construct the phase function ψ and
the amplitudes a 1 ? . . .,% in Sections 1 and 2. The refinements necessary to con-
struct quasimodes satisfying (3) are given in Section 3. In this connection we note
that the trick of replacing E by E + b2ε

2 +... +bMεM in (3) as suggested to us by
the results of Colin de Verdiere [4]. In Section 4 we discuss the conclusions on
the spectrum of P which one can draw from (2) and (3). Finally in Section 5 we
give applications and discuss the relation of our results to those obtained by the
method of Keller and Maslov. For simplicity in Sections 1, 2, 3, and 4 we ignore
the parameter E and construct only um(x,E0). However, since the φi9 i=l , . . . ,n,
and λi} i = 2,..., n can be chosen as smooth functions of E for £ in a neighborhood
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of Eo, it will be apparent that all estimates are uniform in E. In the case that Γ
has self-intersections the approximate eigenfunction u must be a sum of func-
tions of the form (8). Since the modifications necessary for this case will be obvious
once the construction is completed, we will assume in Sections 1, 2, 3, and 4 that
Γ has no self-intersections.

I am very much indebted to Jurgen Moser for many helpful suggestions and
for pointing out the relevance of [6], [12], and [14] for this work. I am also
grateful to George Papanicolaou for calling [1] to my attention, and to Mark
Levi for explaining [6].

1. Construction of the Phase Function

Letting E(ε) = E0 + b2ε
2 + . . . + bMεM, one sees immediately

P(x,D,ε)u-E(ε)u

X, ̂ ) - Eo) ao(x) + f φ)ή, (9)

where cf(x) is independent of ε. As was indicated earlier we are not going to
attempt to solve P(x, D, ε)u — E(ε)u = 0 exactly. In view of the rapid decrease of
P(x, D, ε)u — E(ε)u away from Γ, it will suffice for the estimates (2) and (3) to have
H(x, dψ/dx) — E0 and cf(x), z = l , . . . ,P vanish to sufficiently high orders on Γ. In
particular for (2) we only need to have H(x, dψ/dx) — E0 vanish to third order on
Γ, and this section is devoted to the construction of a phase function ψ such that
H(x, dψ/dx) — E0 vanishes to third order on Γ.

In order that H0(x, dψ/dx) — Eo = 0 for x = x(ί), we require dψ(x(t))/dx = ξ(t),
T

0 ^ ί < T. Unless K= j ξ(ήx(t)dt = O, this already implies that ψ cannot be single-
o

valued. Instead we will require that all derivatives of ψ are single-valued and ψ
itself continues to ψ + K when one goes once around Γ.

We proceed by differentiating H0(x, dψ/dx) — E0 and evaluating the deriva-
tives for x = x(ί). All of the first order derivatives will vanish if for i=l,...,n

However, this is implied by — (x(ή) = ξ(t).
ox

Letting M(t)= I - — — (x(ί))) and noting that for any function fix)
\dXidXj J



Quasimodes Associated with Stable Periodic Orbits 225

one computes easily that all the second order derivatives of H0(x, dφ/dx) — E0

will vanish on Γ provided

O = dM/dt+C+B*M + MB + MAM

for Orgί^ T. Here we have used the matrix notation from (4).
Our choice for M(t) will be the matrix defined by M(t)y\t) = η\t\ i=l,...9n.

Since σ(φi(t)9 φj(t)) = O9 M(ί) = Af(ί). If we let N(t) denote the matrix with columns
η1(t)9...9η

1ί(t)9 then M(t) = N{t)Y~\t).

dt dt dt

= (-CY-BtN)Y-1-

= -C-BtM-MB-MAM.

Thus, if we require dψ(x(ή)/dx = ξ(t) and d2ψ(x(t))/dxidxj = M(t),H0(x, δψ/dx)-E0

will vanish on Γ together with its first and second derivatives.
The computations in the preceding paragraph are not as surprising as they

may seem at first sight. The equation

dM/dt+C+BtM + MB + MAM = O (10)

is a matrix Riccati equation and it follows from the general theory of such equa-
tions that M(ί) = AΓ(ί)7~1(ί) will be a solution to it. A more satisfying explanation
of why the computations worked comes from an observation of Hδrmander [9].
If ψ were real-valued and H0(x, dψ/dx)=0 Vx, then the manifold (x, dψ\x) would
be invariant under the flow defined in (1). Hence the tangent spaces to this mani-
fold along y9 i.e. the vector spaces

would be invariant under the flow defined in (4). Using the existence and unique-
ness theorems for ordinary differential equations, one can conclude from this that

to construct a symmetric solution of (10), M(t) = - — — (x(ί)), compatible with
OX; OXj

dψ(x(t))/dx = ξ(t), it suffices to choose an n-dimensional subspace of C2", S(0),
containing φl9 such that σ vanishes on S(0), and then propagate S(0) once around
γ under the flow defined in (4). This yields subspaces S(t), O^t^T. One recovers
(δ2ψ(x(t))/dxtdx^ = M(t) by writing the vectors in S(t) in the form (y, M(t)y). This,
of course, assumes that S(t) contains no vectors of the form (0, η\ η φθ . Our choice
of S(0) was <</>i,...,</>n>o giving S(t) = ̂ φί(t),...,φn(t)yc and we showed earlier

that £ aiφi(t0) = (0, η)=>a~0 for all i.
i=ί

The particular choice of S(0) used here was made in order to satisfy two
additional requirements:

(i) we needed S(0) = S(T)9 so that d2xp/dxidxj would be single-valued on Γ.
(ii) We needed lmd2ψ(x(t))/dxidxj = lmM(t) positive definite on the orthog-

onal complement of x(t) so that I m φ > 0 offΓ. From (5) and (6) we have

yj(t)ΊmM(ήyi(ή = δij for i>\ (11)
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and lmM(t)y1(t) = 0. Thus ImM(ί) is semi-definite with null space spanned by
x(t). Thus we may assume lmψ(x)> cd2 for x near Γ, where d denotes the distance
from x to Γ.

This completes the construction of the phase function ψ(x).

2. Construction of the Amplitude

If we let cQ = H0 x, — J — Eo, then the coefficients cf(x) in (9) are given by

1 dH01 dψ\ da0 1 d2H0 I dψ\ d2ψ
_ j -y __!_ 1 _ _j_ I "V" I

~ i dξj [' dx) dxj 2ί dξjdξk\
9 dx) dxjdxk

(12)

where gs, s = 2,... is a complicated function oft/;, α0, . . . ,α s _ 2 , and the derivatives
of these functions. In Section 1, φ was constructed so that co(x) vanishes to third
order on Γ, and we will assume this here.

As in Section 1 we want to choose a0,...,% so that the functions cf(x) vanish
on Γ to given orders. We also want to solve recursively, determining a{ before
ai + 1. Differentiating cx(x) and equating the derivatives to zero on Γ one sees that
the r th order partial derivatives of α0 must satisfy an inhomogeneous ordinary
differential equation along Γ with inhomogeneous terms depending on the deriv-
atives of a0 and aγ of order up to r — 1 and r — 3 respectively. If we want to solve
for the partial derivatives of a0 on Γ up to order /, it follows that we'll be able
to do this before determining α1? only if aγ vanishes to order I — 2 at all points
of JΓ. Hence, if α0 vanishes to order / at x(0), it must vanish to order / at all points
ofΓ.

In view of the preceding remarks we construct the principal amplitude a0 in
the following way. We assume that α0 vanishes to order / at all points of Γ and
a1 vanishes to order ί-2 on Γ. Then cx will vanish to order Z + l on Γ provided
the Ith order derivatives of a0 satisfy a homogeneous ordinary differential equation
along Γ. We do not require that a0 be single-valued near Γ, but we do require
that a0 and all its derivatives be multiplied by a fixed λeC, when one goes once
around Γ. Since the mapping Tt of the data for the Zth order partial derivatives of
a0 at x(0) to the data at x(T) that one gets from the ordinary differential equation
along Γ is linear, determining the possible values of λ and the corresponding αo's
is equivalent to finding the eigenvalues and eigenvectors for X, 1 = 0,1,... . This
turns out to be quite easy to do.

Let ψiix), i = 2,...,n be functions satisfying yi(x(ί)) = (ImM(ί))j?(ί) and
CX

ψi(xφ)) = 0. Since x(t) ψ^ (x(ή) = y'(t) - (ImM(t))γ(t)) = 0, it follows that ψi(x(ή) = 0
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for all t. Since ——(χ(T)) = L —-̂ (x(O)), we cannot make W: single-valued. Instead
ox ox

we define it near Γ so that it and all its derivatives are multiplied by \ when one
goes once around Γ. Also let g(x) be a function such that

iSReHι{x{s),ξ{s))ds

g(x(t)) = (f(x(t))aetY(t))^2e0

We choose g near Γ so that it and its derivatives are multiplied by eiΔ when one
goes once around Γ.

We claim that if

ao = g-ιxpT...xp^, m2 + ...+mn = l (13)

then c^x) vanishes to order Z+l on Γ. It is possible to give an explanation (not
really a proof) of why this works based on the fact that in conventional geometric
optics the equation La0 = 0 [see (12)] is equivalent to the invariance oϊalfdx1 A ...
... Λdxn under the hamiltonian flow restricted to the surface (x,dxψ) (see [15]).
Here, however, we will just compute. Modulo terms vanishing on Γ to order

ct(x) = Γ ' [β(x) - δajδx + β(x)a0-]

where μ(x(t)) = x(t), Φ j M 0 ) / ^ = ( F r - % and

β(x(t))=2-ί TraceΫγ-^d/ 1 / 2(x(ί))/ώ + iReHγ{x{t\ ξ{t)).

The formula for β takes this form because the hypothesis that P was "symmetric to
second order" implies

x,ξ) = 2-1δ2Ho/dxidξi-(2f)-1(8Ho/dξi)(δf/dxi).

For any matrix function E(t) one has the identity

Trace((dE/dt)E~ ί) = d log detE/dt.

Using this identity, we see that cx(x) vanishes to order Z + l on Γ if μ(x) dgao/δx
vanishes to order Z + l on Γ. Furthermore, when gao = ψ™2...ψ™n, μ(x)'dgao/dx
vanishes to order Z + l on Γ, if μ(x) dψj δx vanishes to order 2 on Γ. The last
condition is easy to check:

μ(x(ή) ^ (x(ή) = x(t) (Im M)γ{t) = 0,

δx dt

Since yj •(ImM)yi = δίp

+r dim My1/dt = O. (14)

Thus when a0 is given by (13) c^x) vanishes to order Z + l on Γ.
The preceding computations show that the mapping η has the eigenvectors
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These vectors are linearly independent and hence span a space of dimension ηb

where ηι is the number of n — 1 component multi-indices of length /. If a0 vanishes
to order / on Γ, then any partial derivative of a0 of order / which includes a dif-
ferentiation in a direction tangent to Γ must vanish. Thus the invariant subspace
St of the domain of Tb consisting of partial derivatives of functions vanishing to
order / on Γ has dimension ηb and we see that we have found a basis for St con-
sisting of eigenvectors for Tt

We turn now to the coefficients cs(x\ s ̂  2. As noted earlier if we are to solve
recursively aγ must vanish to order I — 2 on Γ and, in general, as must vanish to
order / — 2s. We want to make cs vanish to order / — 2s+ 3 on Γ. Modulo terms
which vanish on Γ to order / — 2s+ 3,

_ 1.
s i dx " - ^ - i j 2 dξidξjV'dx

We want to choose as so that it is multiplied by the same factor, when one goes
once around Γ, that multiplied a0. The reader can easily convince himself that, if

n n

γ[ χmi = YY λPί where £ mf = / and £ pt = I — 2s, the existence of such an as imposes
i = 2 ί=2

1 d2H0 I dψ\d2as_1
compatibility conditions on the inhomogeneous term - ^ ^ \x, — ——r—.

2 dξidξjX dx) dxtdxj
Surprisingly these conditions are always satisfied, and once again we can con-
struct the amplitudes as(x) explicitly.

As a preliminary step we note that (14) implies

i+γt

Thus

d(lmM)yJ

at

and

iyΛmMy2]/Λ{lmM)yA{lmMy). (15)
at v

i

αo...^"1 Y[ψik,
k=ί

O\p\ C &Q 1 γ~, τlk1 . ' ιk2 T—r

X ? dx) dxidxj ~ g kί^kl dx dx }=\ Ψlk

plus terms vanishing on Γ to order /—I. Hence by (15), if we set P equal to the
1 r\ r\

operator — Fϊx) — , where the matrix P^(x(ή) satisfies
4 dx dx

Γ(x{t))lmM{t)yi{t) = yί(t), i = 2,...,n,
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and set gί = Pa0, it follows that c2 vanishes on Γ to order / — I. When aί = Pa0
i

and ao = g~1 Π V\,
fc=l

plus terms vanishing on Γ to order / —3. Now one checks that c 3 vanishes to

order / — 3 on Γ, if we set a2 = - Pa± = — P2a0. Continuing in this way one checks

that cs + ί vanishes to order I — 2s+ 1 on Γ when a= -Pas_1= — Psa0. We stop
5 Si

determining as when / — 2s+ 1 becomes negative and this determines the index N
inthe_formula (8) for u. Our choice for a0 implies that a0 is multiplied by
λ2

 2.. .λ™ne~ιΛ when one goes around Γ. Note that this is also true of as = (l/s \)Psa0.
At this point we have constructed

so that

(P(x9 D, ε) - E0)u = e^ε(c0 + εcx + ...) (16)

where cs vanishes to order / — 2s + 3 on Γ. The final step is to choose ε so that u
will be single-valued in a neighborhood of Γ. From the preceding it is clear that
this will be the case when

K ( θ + +
ε

which is precisely the quantum law (7).

3. Refinement of the Construction

In this section we sketch the improvements made possible by more stringent
stability hypotheses on γ. The reader who wishes to check the details of the com-
putations will probably find it helpful to introduce coordinates near Γ such that
n—ί coordinates are constant on Γ.

If the sequence um constructed in Section 2 is to satisfy (3), we will see that the
coefficient cs(x) in (16) must vanish to order / — 2s + 2M + 2 on Γ. Differentiating
the coefficients cs(x) and setting the derivatives equal to zero on Γ, we obtain

differential equations for — ^ (x(ί)), 2 < |α| ̂  2M + 1 , and for — ^ (x(ί)), / - 2s < |α| ^
ox ox

Z-2s + 2 M + l , with boundary conditions —-£ (x(0)) = —-^(x(T)) a n d ^ ( x ( 0 ) ) =
dxa dxa δxa
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One gets a linear differential equation for the rth-order derivatives of ψ on Γ
with an inhomogeneous term involving the derivatives of ψ up to order r — 1,
when r>2. Since any rth-order derivative involving a differentiation in a direction

tangential to Γ can be obtained by differentiating the derivatives ——(*(£)),
ox

|α| = r — 1 with respect to ί, we can include these derivatives in the inhomogeneous
term. When we do this, we get an inhomogeneous equation for the rth-order
nontangential derivatives of ψ on Γ, such that the corresponding homogeneous
equation is precisely the equation derived in Section 2 for the r th-order deriva-
tives of ga0 in the case I = r. By the results in Section 2 this equation has nontrivial
solutions satisfying periodic boundary conditions only if λp

2

2...λPn=\ for some
multi-index (p2,...,pn) °f length r. Thus, by the Fredholm alternative, the 2M-
stability of γ implies we can solve the equations necessary to make co(x) vanish
to order / + 2M + 2 on Γ.

The situation for amplitudes as is quite similar. We get a linear differential
equation for the r th-order partial derivatives of as on Γ with an inhomogeneous
term involving the derivatives of as up to order r—ί and previously determined
derivatives of ψ and ao,...,as_v The coefficients b2,...,bM also appear in the
computations. bs + ί appears first in the equation for the /th-order derivatives for
as9 where the inhomogeneous term takes the form

g dx Y s ox

where hsJ does not depend on bs + ί. When we place all the r th-order derivatives
of as involving tangential differentiations in the inhomogeneous terms, we again
get an inhomogeneous equation for the nontangental r th-order derivatives of as.
This time the corresponding homogeneous equation is the equation derived in
Section 2 for the r th-order derivatives of α0 in the case l = r. By the results in
Section 2 this equation has nontrivial solutions with the multiplicative period β
if and only if

λψ...λ^ = λγ..Λl- (17)

for some multi-index (p2,...,pM) of length r. If y is (1 + 2M) -stable, (17) holds if and
only if (p2,...,pn) = (m2,...,mn). In this case the space nontrivial solution is
spanned by

Thus by the Fredholm alternative, there is a unique choice for bs + 1 such that the
equation for the /th-order partial derivatives of as has a solution. This solution
is, of course, not unique and this is the first point where we have encountered
only nonuniqueness in this construction. However, the nonuniqueness here arises
only because if um is a sequence satisfying (3) so is ( l + α ε m + . . . + fcε£f)wm.

Summarizing the results of the preceding two paragraphs, given that γ is
(Z + 2M)-stable we can choose ψ,ao,aί9...9aN and b2,...,bM so that cs(x) in (12)
vanishes to order I — 2s + 2M + 2. Note that now we stop solving equations when
I — 2s + 2M + 2 becomes negative so that here JV is larger than it was in (12).
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4. Consequences of the Estimates (2) and (3)

Before discussing the consequences of (2) and (3), we should point out that the
sequences {um}^= ί constructed in Sections 2 and 3 do satisfy (2) and (3) respec-
tively. We assume that the um have been smoothly cut off to zero outside an
m-independent neighborhood of Γ. To check (2) and (3) we introduce new co-
ordinates w l5 ...,wn near Γ so that Γ corresponds to W2 = ... = wn = 05 and then
change variables in the integrals defining the norms in (2) and (3) via

Letting E(ε) = E0 + b2ε
2 + ... + bMεM, one can then check easily that

(i) ||(P(x, D, εm)-E(εm))uJ

where K = l + 3 for the um constructed in Section 2 and K = l + 2M + 2 for the
improved sequence constructed in Section 3, and

(ii) | | u j |

where lim c2(x) is essentially the L2-norm of the product of a Gaussian expo-

nential with a nonzero polynomial in the normal variables. Hence limc 2(x)>0

and (2) and (3) hold.
Let ^(ε) be any closed extension of P(x, D, ε) defined on C${Rn). Then either

E(εm) is in the spectrum of 0>{εJ or it follows from (2) and (3) that

WiεJ-Eίεjy'mCεJ-K (18)

where K = 3/2 for the sequence {um} constructed in Section 2, and K = M+i for
the sequence constructed in Section 3. If 3P(ε) is self-adjoint then (18) implies
that the spectrum of 0>(ε) must intersect the intervals \λ — E(εm)\^Cε^. If one
knows that £P(ε) has only point spectrum in these intervals it follows that g?(ε)
has eigenvalues in each of these intervals. Since integration by parts in the tan-
gential variable z 0 shows

|( W m ,z7 m ) |^Q4, Vr,

if 0>(ε) has real coefficients then it must have at least 2 eigenvalues, counted by
multiplicity in the intervals \λ — E(εm)\ ^2Cε^, when m is sufficiently large.

5. Applications

The results described here have applications in differential geometry, where they
yield eigenvalues of the Laplace-Beltrami operator, in geometric optics, where
they yield "bouncing ball" waves and "ducted" waves, and in quantum mechanics.
The applications to differential geometry require replacing Rn by a compact
manifold, and in geometric optics one replaces Rn by a subset of Rn with smooth
boundary and considers rays reflected off the boundary. Since the applications
to differential geometry and geometric optics require these modifications in the
presentation and were already discussed in [11], we will restrict ourselves to
quantum mechanics here.
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In quantum mechanics P(x, D, ε) is the Schrδdinger hamiltonian of a system
with ε equal to Planck's constant h. H0(x, ξ) is the classical hamiltonian for the
same system, and the limit ε->0 is known as the classical limit. P(x, D, ε) is self-
adjoint with respect to the inner product on L2(Rn). P(x, D, ε) is generally bounded
below with pure point spectrum in the complement of a closed half-line [α, oo).

To apply the results described here we need to find a stable periodic orbit y
of energy Eo for the classical hamiltonian, such that the system is never com-
pletely at rest at any point on γ, i.e. such that xφO on γ. Then, as was noted in
the introduction there is a smooth family of stable periodic orbits y(E) with
y(E0) = y for E in an interval Io about Eo, and the quantum law (7) defines

εm(E) = K(E) (2πm + m2θ2{E) + ... + mnθn{E) + A(E))"'

as a smooth function of E on / 0 for m large. If/0 is contained in (— oo, α), then (2)
implies P(x, D, εm(E)) has a bound state energy level in the interval \E — λ\ < Cm~3/2.
If λ is (2M+/)-stable, the analogous statement with 3/2 replaced by M + l and Io

replaced by a possibly smaller interval follows from (3). If Eo > a, we cannot
make any assertions about the existence of bound states. In this case (2) shows
that for m large there is something like "spectral concentration" at Eo, see [8].

In [2] ArnoΓd proves, modulo a "transversality" hypothesis, that even when
P(x, D, ε) has pure point spectrum, in general one cannot expect the quasimodes
um to be close to true eigenfunctions of the operator P(x, D, εm(E)). However, if
we set wm(x, t) equal to the solution to the Schrδdinger equation

1 dw
P(D

with initial data um(x\ then

sup \\wm(t, )-eiEtum( )\\^Cm-^2T. (19)

Hence ArnoΓd's term "quasimodes" for the sequence um. The proof of (19) is
given in [4] and [15].

In ArnoΓd's example the orbit y can be made (/ 4- 2M)-stable, but the sym-
metry of the example is such that for all α > 0 the intervals

contain at least 3 eigenvalues of P(x, D, εm), counted by multiplicity, for m suf-
ficiently large. If for some α these intervals contained at most one eigenvalue
(and no continuous spectrum), it would follow directly from (3) and the spectral
theorem that P(x,D,εj had eigenfunctions φm such that \\φm— \\um\\~ίum\\

^ 2 C f

^ — εm tor m large.
α
We conclude by discussing the relation of these results to those that may be

obtained by the method of Keller and Maslov. The typical situation where both
methods are applicable is the case that Ho is completely integrable. Hence we
assume that there are functions J2(x, ξ),...,In(x, ξ) such that the Poisson brackets
{IbIj} and {H0,Ij} vanish for all ij, and that the surfaces S(E9c2,. .,cm) =
{(x,ξ):H0 = E, I2 = c2,...,In = cn} are smooth n-tori for (E,c2,...,cm) in open set
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Θ in Rn. In this situation (see [5]) one can construct functions u concentraced
near the projection of S(E,c2,...,cn) into x-space such that

\\P(x,D9ε)u-Eu\\ \\u\\-ι^Cε312 (20)

whenever

J ξ dx = 2π mt-+ -j , mteZ

where yi9 i=l , . . . ,n , are generators of the torus S(£, c2,...,cn) and the integer It

is the Keller-Maslov-ArnoΓd-Hormander index of yv A sharper form of (20)
analogous to (3) holds under more restrictive hypotheses (see [4]).

Suppose that, for some (Eθ9c2,...9cn)eΘ9 S(E0,c29...,cn) is a topological
circle on which dH0/dξ does not vanish. Then S(E0,c2,...9cn) will be a periodic
orbit y with a projection Γ in x-space. To get quasimodes um analogous to those
construction in Sections 1-3, using the Keller-Maslov construction, one whould
pick (εm,c 2,...,cj so that on S(JE0,c2,...,cn)

and

§ ξ dx = 2πlmi + j

and let m tend to infinity while (m2, ...,mn) remains fixed. If this makes (cl9...9cn)
converge to (c29..., cn\ then the Keller-Maslov construction produces a sequence
of functions um which are small outside shrinking neighborhoods of Γ. This is
closely related to the procedure used in [17] to deduce the quantum law (7).
As a rigorous procedure, it suffers from the difficulty that it is not clear that the
constant Cin (20) will be independent of m as the curvatures of S(E0, c2(m\. ..,cn(m))
tend to oo—as they must when m tends to infinity—but it does lead to the correct
quantum law. The method of Sections 1-3 is in a sense opposite to this, since it
builds out from y instead of contracting to it.

Appendix A

Let ζυ9 vv> = — — σ(v, w). Since ?Γ preserves σ, we have < ^ u , έFw} = (υ, w>. If

< , > is definite on a generalized eigenspace Sλ of 2Γ9 it follows that 2Γv = λv for all
VGSX and \λ\ = 1. Since veSλ if and only if ϋeSχ, if < , > is positive definite on Sλ,
it must be negative definite on Sχ. F r o m these considerations we see that if y is
stable in the sense of Definition 2'9 we can choose φl9...9φn and λ29...,λn so that
^'φi = λiφi,σ{φi, φι)= — 2 |/—1, and σ(φbφ^) = 0 when i+j and λ—λj. It also
follows that λiή=λj for 2^ί9j^n9 and hence one can verify that the rest of the
relations (5) and (6) hold. Since these relations are all that was used in Sections 1,
2 and 4, it follows that approximate eigenfunctions satisfying (2) when E = E0

can be constructed by the method presented there.
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When we vary E, the mapping 2Γ varies smoothly, but in general its eigen-
vectors do not. Nonetheless the following is true. If we let S~ denote the span of
φ2(E0),..., φn(E0), then < , > is positive definite on S~. Since Af(E0) φ λj(E0), it follows
that for E near Eo there is a smoothly varying subspace, S~(E), invariant under
3Γ(E) with S~(£0) = S~, and, letting | | denote the standard norm on C2π,

M 2 ^ < t ^ > ^ < 5 M 2 , δ>0 (A.1)

on S~(E). Hence, given E near Eo, we see that the eigenvalues of 3Γ{E) on S~(E)9

λ2(E\...,λn(E) satisfy μ f(£)| = 1, λ^E) Φ λj(E). Hence, we can choose φ2(E),...,φn(E)
satisfying (5) and (6). These φt may vary wildly with E, however, in view of (A.I),
we can use the Gram-Schmidt procedure to choose a smoothly varying basis for
S\E), Q2{E\..., ρn(E) which is orthonormal with respect to <, >. Since φ2(E),..., φn(E)
is also orthonormal, the (n — ί)x(n — 1) matrix U(E) mapping coordinates with
respect to the basis φ2(E)9...,φn(E) to coordinates with respect to the basis
ρ2(E),...,ρn(£) is unitary.

Next we propagate the vectors ρ2(E\...,ρn(E) along γ under the flow (4),
getting ρ2(t, E\..., ρn(t, E), and let S(t, E) be the span of {φ^t, E\ ρ2(ί, £),. . . , ρn(t, E)}.
Since the projection P:(y,η)-^y is nonsingular on S(t,E0) for O^t^T, it follows
that P is nonsingular on S(t, E) for 0 ^ ί ̂  T(£) and £ near £ 0 . The matrix Y(t, E)
used in Sections 1 and 2 can be written as

1 0

P UT(E\ ιP(φ1(t,E)ρ2(t9E)...ρn(t9E)).

Thus we see that Y(t, E) is uniformly bounded in t, E together with its inverse.
Moreover, letting F" denote the map P~:(y, η)-+η, we see the matrix M(ί, E) from
Section 1 satisfies

M(t,E)Pv = Γv, VveS(t,E). (A.2)

Taking (A.2) as the definition of M(ί, £), it follows that M(ί, E) depends smoothly
on E.

From the observations of the preceding paragraph we conclude:
(i) The phase function ψ can be chosen as a smooth function of (x, E) for E

near Eo.
(ii) |det7(ί, E)\ is a smooth nonvanishing function of (ί, E) for £ near Eo.

(iii) The lengths of the vectors —— (x(t)), -—• (y(ή) are bounded above and
ox ex

below for O^ίrg T(E) and E near Eo.
(i)-(iii) Suffice for the proof that the constant in (2) can be chosen independent

of E for £ in a neighborhood of Eo.

Appendix B

In [6] Gelfand and Lidskii introduce a class of "strongly stable" matrices. For
our purposes the set of strongly stable matrices, S, is most conveniently defined
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as the set of matrices G~1R(Θ)G where GeSp(2n,R) and
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COS0!

0

— sinέ^

0

0

cosθπ

0

-sin0 Λ

sinί^

0

COS0 :

0

0

sinθn

0

cosθn

where O < | 0 f | < π and 0.=|=-0.. Given a curve, 7(ί), O ^ ί ^ l , in Sp(2rc,#) with
7(0) = / and 7(1) in S9 Gelfand and Lidskii assign an index to Y(t). Then they
prove that, given two such curves Y^t) and Y2(t) with 7X(1) and 72(1) in the same
connected component of S, there is a continuous deformation 7(ί, α), O ^ ί ^ l ,
O ^ α ^ l with 7(ί, 0 ) - ^(ί), 7(ί, 1 ) - Y2(t)9 7(0, α) = 7 and 7(1, oc)eS if and only if
yt(ί) and 72(ί) have the same index.

To adapt this procedure to our situation we define a set of matrices Q—for
quasi-stable. A matrix belongs to Q if it has the form GR{a,θ)G~λ where

R(a,θ) =

1 0

COS$2 0

0 cos0n

0 0

— sinβ2 0

0 — sin θn

a

0

1

0

0

sin 02 0

0 sin θn

0

COS02 0

0 cos0π

where O < | 0 f | < π and θ^ — θj. We make this definition because we want to
assign an index to the following curve. Let

z(ί) = φ1(t)Reφ2(t)...Reφn(t)Φ~i(t)lmφi(t)--Λmφn(t) (B.I)
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Since σ(φuφ~1)=l9 σ(Reφi,RQφj) = σ(lmφi,Imφj) = σ(φhφ1) = σ(φi,φ^1) = O and
σ(RQφi, Imφ^δij for 2 = /,j=n, we see that Z(t)eSp(2n,R). Moreover, defining
Yo(t) = Z(t)Z(0)~1 — we see that 70(0) = J and Y0(T)eQ.

Continuing to imitate [6], we assign an index to a curve Y(t) in Sp(2rc, R) with
7(0) = / and Y(l)eβ as follows. By assumption there is a G such that 7(1) =
GR(a, Θ)G~1 and we define Y~{t) = G~1Y{i)G. Taking the polar decomposition of
Y~(t) we have Y~(ή = P(t)0(ή. It follows from the uniqueness of polar decomposi-
tion that P(ή and 0(ί) are in Sp(2π, R\ and hence

0 ( 0 = I Ol(ί)

U \-02(t) O^
where 01(ί) + i02(ί)= l/(ί) is unitary. We extend Y~(t) to a closed curve by defining

Y~(ί) = R((2- ί)α, ( 2 - t)θ) for 1 = t = 2. Then the index of Y(ί) is defined as

% = 7 Γ fd(argdett/(ί)).
zπ

From this definition one computes that

nY=jπ] φ r g det U(ή) - i - Σ ^ - ^ /(*) (B 2)

Since eι<?2,..., eιθn are the eigenvalues of 7(1) belonging to eigenspaces on which
n

<, > (see Appendix A) is positive, we see £ θj is uniquely determined by 7(1).
j = 2

It is not yet clear, however, that nγ is independent of the choice of G and a.
There are now two tasks remaining. We need to show that two curves with

end points in the same component of Q can be deformed into each other through
curves beginning at I and ending in Q if and only if their indices are the same—
which shows that nγ is independent of G and a. We also need to show that nYo = p,
where p is the integer which appeared in formula (!'). The first objective requires
the following lemma, which plays the role of Lemma 4 in [6].

Lemma B.I. Given a closed curve γ(t), 0 = ί ^ l in Q, y(t) is contractίble in Sp(2n,R).

Proof. The only difficulty in this proof is presented by the fact that whereas each
point on y(t) has a representation GR(a, Θ)G~1, it is not possible to choose these
representations depending continuously on t (this was apparently overlooked in
[6]). However, if we let SΊ(ί), S+(t) and S_(ί) denote the (generalized) eigenspace
of γ(t) belonging to eigenvalue 1, the span of the eigenvectors of γ(t) belonging to
eiθj{t\ j=2,...,n, and the span of the eigenvectors of y(t) belonging to e~ιθj{t\
7 = 2,...,n, it follows from the condition 0 fΦ —θj in the definition of Q that these
spaces depend continuously on t. Since < , ) is positive definite on S+(t), we can
choose an orthonormal basis φ2(ή,..., φn(t) with respect to < , > for S+(t) depending
continuously on t with φj(O) = φj(l) by the Gram-Schmidt procedure. We pick
a continuous nonzero real vector in S^ί), Φi(ή- Since σ is nondegenerate on S^t),
there is a unique ^ ( ί ) such that σ(φ1(ί), φ~ί(ή) = l and hence φΓ^t) is continuous.
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The vectors φ2(t\...,φn(t) form a basis for S_(0 Defining G(t) to be the symplectic
matrix we have already written down in (B.I), we see

«i(ί)

0

a3(t)

0

0

Adt)

0

-A2(t)

a2(t)

0

α4(ί)

0

0 *

A2(t)

0

Adt) ,

where

a(t)=(ai a2\ and A(t) =
A2(t)

-A2(t)

are 2 x 2 and (In - 2) x (2n - 2) symplectic respectively. Hence A(t) is orthogonal.
The eigenvalues of a(t) are both 1 and the eigenvalues of UΌ(t) = A1(t) + ίA2(t)

are e
iΘ2{t\ eίθn{t) and hence never 1.

The set of real 2 x 2 matrices with both eigenvalues equal to 1 is equal to

u2

2-aγ

1 0
0 1

and this set is contractible. Thus we can deform a(t) through symplectic matrices
to the identity. A closed curve in the group U(ή) of nxn unitary matrices is

1

contractible if and only if j d(arg det U(ή) = 0, see [6, p. 164]. Since (1 - a)U0(t) - α/,
o

O ^ α ^ l is a deformation of U0(t) to - / i n GL(rc, Q it follows that

Hence we can deform U0(t) to the identity through unitary matrices. This gives
a deformation of A(t) through symplectic matrices to the identity and completes
the proof of this lemma.

We also require the following lemma

Lemma B.2. Two matrices R(alf θ^ and R(a2, θ2) lying in the same component of
Q can be joined by a curve y(t% 0 ^ ί ^ 2 lying in Q with the following property:
writing γ(t) in polar decomposition and forming the matrix Uy(t) as we did earlier,

(B.3)))= Σ 0i,2-θίΛ +f(a2)-f(aί).
0 i = 2

Here f(a) is the function in formula (B.2), i.e.

f{a)=]d(aigu(t))
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where u(t) is the l x l unitary matrix arising from the polar decomposition of
1 ta\

0 I / '

Proof Since R(au 0 J and R(a2, θ2) He in the same component of Q if and only if
R(0, 0X) and R(0, 02) do, it will suffice to show we can join R(0, θx) to JR(O, θ2)
with a curve y(t) in Q satisfying

As is pointed out in [6] to lie in the same component of β, #(0, 0 J and R(O, θ2)
must have the same "signature". For any matrix in β, the signature is an (n — 1)-
tuple of +'s and — 's with a + in the j-th place if the j-th largest 0 (in absolute
value) is positive and a minus if it is negative. From this definition it is clear that
if R(0, 0 J and JR(O, θ2) belong to the same component of β we can choose 0(ί),
O ^ ί ^ l such that R(0,θ(t))eQ, Θ1=Θ(O) and 0(1) is just a rearrangement of 02.
Hence there is a GeSp(2n,R)nO(2n) such that GR{0, θ(ί))G~1=R(0, 02). Since
Sp(2n, R)nO(2ή) is connected we can choose G(ί) in Sp(2rc, R)nO(2n) such that
G(l) = /, G(2) = G. Then, defining

r ( ί ) = ^ ( 0 ' θ ( ί ) ) '

the conclusion of this lemma follows.
Now, given two curves Yx{t\ Y2(ί), O ^ ί ^ 1, connecting the identity and points

in the same component of Q with nYl = nΎl? we wish to show Yx(f) can be deformed
into Y2(t) through curves with end points in Q. Clearly, if Y1(ί) = GίRίGϊ1 and
Y2(1) = G2R2G2\ it will suffice to deform Y\(t) = G^1Y1{t)G1 into Y~2(t) =
G2

 1 Y2(t)G2. By Lemma B.2 we can choose y(t) in G, satisfying (B.3) with y(l) = R1

and γ(2) = R2. To show that Y\(t) can be deformed to Y~2(t) through curves con-
necting the identity to points in Q, it suffices to show that the curve Γ(t) given
by Y\(t) for 0 ^ ί ̂  1, γ(t -1) for 1 ̂  t ^ 3 and 7~2(4-1), 3 ̂  t ^ 4 is contractible in
Sp(2n,jR). In [6, pp. 164-165] it is shown that a curve is contractible in Sp(2n,R)
if and only if the corresponding curve U(t) satisfies

O=Jd(arg dett/(ί)).

We have for the curve Γ(ή

) = \lπnYχ+
0 L j = 2

f(a2)-f(aί)+ Σ^.2-θJ- | 2 - -
J=2 J L 7=2

This vanishes because we assumed nYί = nYr

Conversely suppose Y^t) can be deformed into Y2(ί). Then, assuming Y1(ί) =
GijRiGjf1 and Y2(l) = G 2 ^ 2 ^ ί X

?

 s i n c e Sp(2?τ, K) is connected, it follows that
Y~1(t) = GϊίY1(t)Gί can be deformed into Y~2(t) = G2

ίY2(t)G2. The end points of
the curves in this deformation Y(l, α), O ^ α ^ l form a curve in β connecting Rx
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and R2. Since the closed curve Γ(ί), given by Y^(ί) for O ^ ί ^ l , Y(l, ί —1) for
l ^ ί ^ 2 , and Y~2(3 —ί) for 2 ^ ί ^ 3 is contractible by hypothesis, it follows from
(B.3) that nYi = nY2ii

Sd(aigdetUI{t))=\f(a2)-f(a1)+ tθj,2-θ
1 L j = 2

In other words, if we let y(t) be the curve joining R1 and R2 given to us by Lemma
B.2, it suffices to show yo(t) given by Y(l, t) for O ^ ί ^ l , and y(3-ί) for l ^ ί ^ 3
is contractible. However, γo(t) is contractible by Lemma B.I.

Now we are left with the problem of showing nYo = p. To begin we extend the
curve Y0(t) by defining Yo(t) = Z(0)R((T+l-t)α, θ)Z{ϋ)~1 for T ^ ί ^ T + 1, where
Z(T) = Z(0)R(α, θ). This extension does not change the index of Y0(t). Hence,
setting Y~o(t) = Z(0)~1Yo(t)Z(0), making the polar decomposition Y~0(t) = P(t)O(t\
and setting U(ή = 0ί(t) + i02(t\ we have

T + l n

J d(argdet l/( ί)) = 2 π % 0 + £ 0 . . (B.4)
0 .7 = 2

We will now show that, if we set

then

T+l Γ+1

j d(argdett/(ί))= j d(argdet(Z1(ί) + iZ2(ί))). (B.5)
0 0

This requires three steps. First, letting Z(0) have the polar decomposition P 0 O 0 ,
we observe that 007^0(i) = 0 0 P(i)Oj0 0 0(i) . Hence O0Y~0{ή has the polar de-
composition P~(ί)O~(£) where O~(ί) = O0O(ί), and the corresponding IΓ(£) equals
C/ot/(ί) Thus we conclude

T+l Γ+1

j d(argdetl/(ί))= f d(argdet£Γ(ί)). (B.6)
0 0

Secondly, we set

and observe that

Z^(ί) + iZΓ2(t) = ( ^ ( ί ) + ϊF~2(ί))CΓ(ί).

Hence

det (Z\ + fZ~2) = det Γγ det (1 + /i^Γx F^2) det EΓ(t).

Moreover, since O 0 7~0(T+ l) = Ooi^(0, θ), we see Γ{0) = Pr(T+ί) = L Also, since
P"(ί) is a positive symplectic matrix, F f 1 exists and Pr^ιPr

2 is symmetric. Now
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we claim I + iP~[1(t)P2(t) is a closed contractible curve in GL(n, C). Suppose for
αe[0,l]

Then |ϋ|2 + ίαϋ-PΓf 1(ί)ίr2(ί)ι; = 0 which implies υ = 0. Thus

Γ + l

o

and we conclude
Γ + l Γ + l

J d(argdet(Z\(i) + iZw

2(i))= J d(argdetlΓ(ί)). (B.7)
0 0

(P P1 2(P P \1 2 we have

Z^ί) + /Z~2(t) = P^Z^t) + /Z2(ί)) + P2(Z3(t) + /Z4(ί)).

Thus

det(Z1(ί) + iZ2(ί))= detPi det(l +P 1" 1P 2M(ί)) detίZ

where

M(ί) = (Z3(ί) + zZ4(ί)) (Z^ί) + ίZ2(ή) -'.

Since O0Y0(t) is symplectic, it follows that M(t) is symmetric with a positive
imaginary part. Also, since

Z 2 ( Γ + 1 ) ^ / ^ ( 0 ) Z2(0)\

Z 3 ( T + 1 ) Z 4 ( T + l ) j U a ( 0 ) Z 4 ( O ) j { > h

it follows that M(T + l) = M(0). Now we claim 7 + PΓ1P2M(ί), O ^ ί ^ Γ + 1 is a
contractible closed curve in GL(π, Q. Suppose for αe[0,1]

Then M(ήυ v + (xM(t)v Pj"1 P2M(t)υ = 0 and we conclude ImM(ί)i; iy=0 which
implies t; = 0. Thus

f
0

and we have

Γ + l Γ + l

j d(argdet(Zί + iZ2)= J d(argdet(Z~! +/Z~2). (B.8)
0 0

Combining (B.6)-(B.8) gives (B.5).
Unfortunately we are still not quite finished. Combining (B.4) and (B.5) we have

n Γ + l

+Σθj= \ d(argάet(Z1(t) + iZ2(ή).
3=2 0
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From (7') we have

2πp+
7=2

where FF(ί) is the matrix Zί(t) + iZ2(t) with the first column replaced by yγ(t).
To correct this final discrepancy we extend Z1(t) + iZ2(t) to a closed curve by
defining T + l ^ ί ^ Γ + 2

ίl 0

) = (Zi(0)+iZ2(0))

-t)θn

O

Then

T + 2

0

Now let W{t,s) be the matrix with first column y1{t) + isyί{t) for O^ί^T, first
column y1(O) + is(y1(O) + (T+l-t)ay\O)) for T ^ ί ^ Γ + 1 , first column /(0) +
ίsj7 ^0) for T + l ^ ί ^ T + 2. The proof given in the introduction to show that
Y(t) was nonsingular applies here to show T(t, s) is nonsingular for Orgίίg T + 2,
O^s^l. Thus

T + 2

2πnYo= j

= [2πp+

Thus we have nYo = p and are finished.
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