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Resistance Inequalities for KMS States
of the Isotropic Heisenberg Model*

Robert T. Powers**

University of California, Berkeley, California, USA

Abstract. Inequalities which show that the spin correlations between spins
at two lattice sites is bounded by a constant times the inverse square root
of the electrical resistance between the lattice sites is proved for KMS states
of the isotropic Heisenberg model. The resistance is calculated using the
inverse of the coefficients occuring in the Heisenberg Hamiltionian as the
resistances between neighboring lattice sites.

Introduction

In this paper we prove inequalities which show that the spin correlation between
spins at two lattice sites is bounded by a constant times the inverse square root
of the electrical resistance between the lattice sites for KMS states of the isotropic
Heisenberg model. The resistance is calculated using the inverse of the coefficients
occuring in the Heisenberg Hamiltonian as the resistance between neighboring
lattice sites.

The proof of these inequalities comes from combining the ideas of Mermin
and Wagner's proof [2] of the absense of ferromagnetism for the isotropic Heisen-
berg model in one and two dimensions with the resistance type arguments of [3].
A key ingredient of Mermin and Wagner's argument is the use of the Bogoliubov
inequality. A short proof of the Bogoliubov inequality for Gibbs states of a
full (πxπ)-matrix algebra is given beginning on page 130 of Ruelle's book [6].
In the first section of this paper we generalize the Bogoliubov inequality to KMS
states of C*-algebras.

In the second section of this paper we prove resistance inequalities for KMS
states of the isotropic Heisenberg model. These inequalities show there is no
long range order for the isotropic Heisenberg model in one or two dimensions
or for any graph in which the resistance between vertices grows without bound
with increasing separation.
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I. Bogoliubov Inequalities for KMS States

Suppose {αt; — oo<ί<oo} is a strongly continuous one parameter group of
^-automorphisms of a C*-algebra 2ί with unit I. We say ω is a {αί5 /?}-KMS state
of 91 if ω is a state of 21 so that for each A, £e2I there is a complex valued function F
holomorphic on the open strip Sβ={ze<£; 0<lm(z)<β} and continuous on
the closed strip Sβ so that

ω(Aoct(B)) = F(t) and ω(μt{B)A) = F(t +. iβ)

for all real t. KMS states are a generalization of Gibbs states to infinite systems.
We refer to Ruelle's book [6] for further discussion.

The generator of a strongly continuous one parameter group of ^automor-
phisms oct is defined

δ(A) = \im{oct(A)-A)/t

for all A in the domain D(<5) of δ which consists of all AeVl SO that the above
limit exists in norm. It is well known [1, 5] that Ί)(δ) is a norm dense *-subalgebra
of 21 and δ is a closed ^-derivation of D(<5) into 2ί, i.e., δ is linear and δ(AB) =
δ(A)B + Aδ(B) and δ(A*) = δ{A)* for A, BeT)(δ).

Theorem 1. (Bogoliubov inequality). Suppose t^κχt is a strongly continuous one
parameter group of *-automorphisms of a C*-algebra 2ί and δ is the generator
of oct and Ί)(δ) is the domain of δ. Suppose ω is a {αί5 β>0}-KMS state of 21. Then
for all Ae% and CeT)(δ)

, C])|2 Si βω(A*A + AA*)ω{- ί[C*,

where [A,B~] = AB-BA.

Proof Suppose ω is a {αί?/?}-KMS state of 21. Let (π,&/o) be a cyclic *-rep-
resentation of 21 on a Hubert space § induced by ω with cyclic vector foe9)
so that ω(A) = (f0, π(A)f0) for all Ae$l. Since a KMS state is at invariant it follows
there is a self-adjoint operator H and a strongly continuous unitary group U(t) =
Qxp(itH) so that U(t)π(A)fo = π(at(A))fo for all v4e2t and real t. It is known to
follow from the KMS condition [7] that π(4)/oeD(exp(-ί#)) for all O^t^β
and

(exp(-i j8fl)πμ)/o , exp(- i^)π(5)/ 0 ) = (π(β*)/0? πμ*)/0) (1.1)

for all A, £e2I. We define an inner product on 21 by

(A, B)x = Jg (exp(-i ίiί)πμ)/o , exp(-i tH)π(B)fo)dt (1.2)

Since ||exp(-^ί//)π(y4)/0||
2 is a convex function of ί for O^t^β we have

β| |exp(-iί//)πμ)/ of

= t(π(A)f0, π(A)f0) + (β-t) (π(A*)fθ9 n(A*)f0)

= tω{A*A) + {β-t)ω(AA*).

Inserting this inequality into (1.2) we find

(1.3)
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Next suppose BeT)(δ). Then, we have

π( ί5(S))/o=limr 1π(α f(B)-B)/o

= lim t ~ x(exp (itH) - I)π(B)f0 = iHπ(B)f0

where π(B)foeT)(H) the domain of H. Then for AeSΆ and BeT)(δ) we have from

the above and (1.2)

(A, δiB)), = i Jg ( e x p ( - | tH)π{A)U e x p ( - i tH)Hπ(B)fo)dt

= - ί Jg (d/dt) ( e x p ( - | tH)π(Ά)f0, e x p ( - i tH)π(B)fo)dt

Then, it follows from Equation (1.1)

) - iω([>4*, 5]) (1.4)

Since ( , )i is a positive inner product we have from the Schwarz inequality
\(Λ:i:,B)1\

2^(Λήi,Ληi(B,B)1. Suppose CeD(δ). We set B=-ίδ(Q and obtain
from (1.4) and the Schwarz inequality

Combining this with (1.3) and (1.4) we have

HίA C])\2^βω(A*A + AA*)ω(ilδ(Q*, C\)

Since ω is hermitian we have ω(i[_δ(Q*, C]) = ω( — f[C*5 5(Q]) and the inequality
stated in the theorem follows.

II. Resistance Inequalities for the Isotropic Heisenberg Model

Suppose G is a finite or infinite graph consisting of vertices S£ and lines (i,j)eG
connecting pairs of vertices ίJeJ£. We assume G is connected. We suppose for
each line (ί,j)eG there is associated a number J(i,j)>0. We assume there is a
constant K so that

ΣisG{i)J(hJ)ύK (2.1)

for all zeJSf where G(i) is the set of vertices; connected to i by a line (ΐJ)eG.
We define the resistance between two vertices zJt/£JSf as follows. We think

of the lines (r,s)eG as resistors of J^^s)'1 ohms. The resistance R{ί,j) is then
the electrical resistance between i and j . We give a mathematical definition.
Suppose / is a real or complex valued function on if. We define

where the sum is over all lines of G each line counted only once. Let T)o be the
set of all functions on $£ with finite or compact support. We define the resistance
R(Uj) between i and j as

l} (2.2)
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This definition of resistance is not quite equivalent to that used in [3] where
the resistance was defined as follows. If / is a function on S£ we define Δf by

Let δi(k) = 1 if i = k and zero otherwise. If i f is a finite set then the equation —ΔV =
δt — δj has a unique solution up to an additive constant. In [3] we defined the
resistance R\{U])=V{ί)—V(j). For an infinite graph we defined Rι(i,j) as the
limit of resistances computed for any sequence of finite subgraphs of G which
converge up to G. One can show that this definition is equivalent to the definition

l} (2.3)

In the definition of R^iJ) there is no requirement on the support of/ Hence,

We have R(iJ) = R1(iJ) for all finite graphs, Zn, n = l , 2,... with one ohm
resistors between nearest neighbors, and for most graphs of physical interest.
In fact, one can show that if Rί(ίJ)>R(ί,j) for some ΐjeJSf then there exists a
bounded harmonic function / (i.e., Δf = 0) so that f(i) #=/(/). An example of a
graph for which R±=\=R is a binary tree with one ohm resistors.

The Heisenberg model associated with G is defined as follows. We suppose
that for each zeif there is a full hermitian (2/ί + l)x(2t/ί + l)-matrix algebra %
which describes a particle of spiny—|, 1, \\, 2,.... The C*-algebra 2ίf is generated
by the hermitian elements Sf = (Siχ9 Siy, Siz) which satisfy the relations

[S i x, Siy] = iSiz [S iy, S iz] = iSix [S i z, S£ J = /S,

If /I is a finite subset of i f we define 9I,1 = 9ϊίn(8)...®9IίM as the tensor product
of the algebras 9Iik with A={iu i2, • ••, ίn} Finally, we define the Heisenberg spin
algebra as the inductive limit of the ςΆΛ for all finite A C if.

The formal expression for the Heisenberg Hamiltonian is

H=Σ(ij)eGJ(iJ)(I-μrμj) (2.4)

where μί = Si/jί. We note 0 ^ 7 — μ^μ^AI for all UjeJ£. Although the above
expression for H is not well defined for infinite graphs we can use it to define
a ^-derivation of 91,

δ(Λ) =ι Σaj)eG J{U j) U-μr μp A] (2.5)

for all Ae<iXΛ for some finite ylcif. For such A inequality (2.1) insures the norm
convergence of the above sum. Then, δ is a densely defined ^-derivation of 91.
The closure of δ which we also denote by δ is the generator of a strongly continuous
one parameter group of ^-automorphisms at of 9ί (see [3] for more details).

Theorem 2. Suppose G is a graph of vertices i f and for each line (iJ)eG there is
associated a number J(iJ)>0 and these numbers satisfy (2.1). Suppose 91^ is the
Heisenberg spin algebra associated with 5£ and δ is the closure of the ^-derivation
of defined in (2.5) and at is the one parameter group of *-automorphisms generated
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by δ. Suppose ω is a {oct, β>0}-KMS state of 21^. Then,

for all k,leJ£ and R(k, Z) is the resistance between k and I given by (2.2).

Proof Suppose the hypothesis of the theorem is satisfied. Suppose / e T ) 0 and

Suppose k, ZeJSf and A = μkxμly — μkyμlx. Note A = A* and the norm of A satisfies
\\A1| ^ 2 . Then we have from Theorem 1

(2.6)

We have

[Λ C]= -Kf(k)-f(l))(μk μι-μkzμlz)

J(iJ)\(f(i)-f(j)\2 (μrμj-μi^) (2.7)

Combining (2.6) and (2.7), cyclicly permuting the indices x, y and z, and averaging
we find using the inequality (a + b + c)2 ̂  3/4((α + b)2 + (α + c)2 + (b + c)2)

^i,)2 ^ 6j8β'(/) ^ 6jSβ(/)

with

where the second inequality follows from the fact that ω(/vμ7)rgl for all
Taking the greatest lower bound of the right hand side of the above inequality
over a l l/e D o with f(k)-/(/) = 1 and recalling (2.2) we find ω(μk μt)

2 ^ 6βR(k, I)'1.
This completes the proof of the theorem.

We prove a corollary to Theorem 2 which gives a bound on the magnetization
of KMS states. We will need the notion of a mean on S£. Suppose i f is an infinite
set and ©(if) is the space of all bounded functions on J5f. A mean Γ on i f is a
linear functional on 33(if) so that Γ ( / ) ^ 0 i f / ( ϊ )^0 for all ίeJSf and Γ(e) = l
where e(ΐ) = l for all z'eif and Γ(/) = 0 for all / e l o . If ft is a function of two
variables i,jeJ£ we denote the mean of ft with respect to the second variable
byΓ/ft(y)).

Corollary. Suppose the hypothesis of Theorem 2 are satisfied and Γ is a mean on if.
Suppose ω is a {αf, β>0}-KMS state. We define the magnetization of ω by
m = Γi(ω(μί)). Then

\m\2£(6β)+*nΓJίR(i9jr*)) (2-8)

Proof Suppose ω is an extremal {αί5j8}-KMS state, i.e., ω can not be written as
a convex combination of distinct {αfJ β}-KMS states. Then from a result of
Takesaki [7] ω induces a factor representation of 31^. Hence, ω has the cluster
decomposition property (see e.g. [4]) and, thus, for each ieS£ and ε>0, |ω(/ιΓ/ι7 ) —
ω(μi)'ω(μj)\<ε except for a finite number of JG if. Hence, we have

μβ = nΓfω(μd «(/<;))) = H 2
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And from Theorem 2 we have

m
2 _

μ3))) S

From Takesaki's paper [7] it follows that each {αί5 /?}-KMS state has a unique
decomposition into extremal KMS states. Since the extremal KMS states satisfy
(2.8) it follows that all {αt, β}-KMS states satisfy (2.8). This completes the proof
of the corollary.

We remark that for <£ = TLn and G consisting of lines connecting nearest
neighbors of i f with one ohm resistors then Γi(Γj(R(iJ)~^)) = 0,0, (.50546)"*
for n= 1, 2, 3 respectively.

We conclude by stating the following conjecture.

Conjecture. There is a constant Ko (independent of G) so that if ω is a state satisfying
the hypothesis of Theorem 2 then

where R'^Uj) is the resistance between ίJeJif given by (2.3) with J(i,j) replaced
by J(ίJ)ω(μrμj).

The truth of this conjecture would establish the existence of long range order
and spontaneous magnetization for the isotropic Heisenberg model in three
dimensions. In [3] we showed that ω(I — μrμ^R^i, j)ω(H) where H is given
by (2.4) for all states ω. From this it follows that all states of finite energy in three
dimensions have lone range order.
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