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Abstract. The Hartle-Hawking method of deriving black hole radiance (the
“Hawking Process”) has been extended to non-asymptotically flat de Sitter
spacetime by Gibbons and Hawking. They derive a thermal spectrum of
radiation detectable by suitable observers. We extend this work to Taub-Nut
spacetime and a related and more physical spacetime constructed from it by
Siklos by complex analytic continuation and unwrapping. Suitable observers
are found to detect thermal spectra in these two spacetimes as well.

Introduction

In this paper particle production in two related homogeneous and anisotropic
spacetimes is considered. We use the framework for calculating particle production
in non-asymptotically flat spacetime developed by Gibbons and Hawking [1]
for de Sitter space as an extension of the Hartle-Hawking [2] path integral
method of deriving black hole radiance. The first spacetime we will consider is
Taub-Nut space which is not only non asymptotically flat (topology R x S3)
but is non Hausdorff (however without bifurcating geodesics), has closed time-
like and null lines and suffers from geodesic incompleteness. In this spacetime
a suitable observer (unfortunately one moving on a closed time-like line) would
detect a thermal spectrum, however it is truncated at a low fundamental frequency
and is discrete in integer multiples of this fundamental frequency. We consider this
pathological spacetime mainly as an illustration of the elegance and power of
the path integral method.

The second more physical spacetime considered is a Bianchi-type VIII space-
time constructed by Siklos [3] from Taub-Nut space by complex analytic con-
tinuation and unwrapping. The resultant manifold is Hausdorff, and although
there still exist closed time-like lines in this Type VIII Taub-Nut space we choose
an observer who does not move on one. This observer is also found to observe a
thermal spectrum.

The paper is divided into five sections. In Section 1 we review the global
properties of Taub-Nut space. In Section 2 we review the Hartle-Hawking path
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integral method and use it to derive the truncated thermal spectrum mentioned
above. In Section 3 we explain Siklos’ construction of the Type VIII Taub-Nut
space and in Section 4 we derive the thermal spectrum seen by a suitable observer
in this spacetime. Section 5 lists the conclusions.

1. Taub-Nut-Space: The Global Properties

Taub-Nut space refers to the extension of the original Taub universe [4] which is a
spatially homogenous, anisotropic, vacuum solution of Einstein’s equations with
topology R x S3. In a coordinated basis the metric is given by:

ds? = — U~ 1dt* +(21)* U(dy +cos 0dp)? + (12 + I?) (sin® O d¢p* + d6?) (1)
where:
2(mt +1?)
VoO==1+"ap

and m, | are positive constants, and 0, ¢,y are Euler angle coordinates on S*:
0<y=4n, 0Z0=n, 0=Z¢=2n.

The metric is singular when U=0 at t=t, =m+(m?*+1%)"/%, however there exist
extensions across these coordinate singularities, somewhat analogous to the
Finkelstein-type extensions of the Reisner-Nordstrom solution across r=r.,
that yield the space discovered by Newman, Unti and Tamburino [5] (Nut
space). The t=t, surfaces are horizons analogous to the r=r, surfaces in the
Reisner-Nordstrom solution.

One extension is defined by:

1 1 +lt,—t-)
v=1p+t/2l+2 Int—t,)+ z=—1In(t—1t_), K¢=—(ti);z+—lz—

K4 2K _
which results in a metric analytic over the full range — oo <t<oo. The region
t_<t<t, is isometric with the original Taub space. Another inequivalent
analytic extension is defined by:

)

u=yp—t/2l—

2i+ In(t—t,)— %: In(t—t_), (3)
which again results in an analytic metric over the full range — oo <t< + c0.
The region t_ <t<t, is isometric with the original Taub space. Each extension
has closed time-like lines in the Nut regions for t<t_ and for t>t, . There also
exist incomplete geodesics. '

The full extension analogous to the Kruskal-type extension of the Reisner-
Nordstrom solution is complicated by technical difficulties and is clearly described
by Hawking and Ellis [6]. Requiring the global extension to be a manifold results
in the elimination of two points p_, p_ in Figure 1. There are incomplete geodesics
that hit these deleted points, however the spacetime already contained incomplete
geodesics so this is of little consequence. In addition the global extension is non-
Hausdorff, however this does not imply bifurcating geodesics in this case and is a
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Fig. 1. The maximally extended covering space of a two dimensional section of Taub-Nut space.
Regions II+ are Taub universes while regions I+ III+ are Nut regions. Homogeneous surfaces in
the Nut region are the timelike ¢ =const surfaces. The Nut region contains closed timelike lines.
Points p, and p_ are deleted

mere technicality. Since we need a coordinate chart sufficient to cover the t=t_
horizon (or t=t_, but not both simultaneously) we consider the following co-
ordinate transformation:

Uy=—e leed (4a)
Vy=eles (4b)
so that:

e —4P  (t—t_)(t—t,)"*= QU AV,
I A O A e e N G

+ 412 0(t) Kicose(df/i—dUi)d¢>+coszed¢2 + (2 +12)dQ> . (4¢)
+
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One can write_ I_/i——:Ti +X,, U,=T,—X, to obtain a non null form. The
metric in the U,, V., coordinates is analytic everywhere except at t=t;. The
Penrose diagram of the maximally extended covering space of a two dimensional
section of Taub-Nut space is shown in Figure 1. We will use a chart analytic
at t=t_ which covers the shaded region in Figure 1.

2. The Hartle-Hawking Method: Taub-Nut Space

To derive the thermal spectrum seen by an observer in the NUT region moving
on a t = constant (closed) time-like line it is only necessary to consider the analy-
ticity of the Feynman propogator. We will follow a procedure similar to that used
by Hartle and Hawking [2] and Gibbons and Hawking [1] in computing the
thermal spectrum seen by appropriate observers in the black hole and de Sitter
cases respectively. In this method the amplitude K(x, x') for a particle to propagate
from one spacetime point X’ to another x, is expressed as an integral over all paths
connecting the two points:

K(x’ xl)z Z eiS(x,x’)/hé[x] P (5)

paths

where S(x, x) is the classical action for a particular path connecting x' and x,
and J[x] is a suitable measure over the space of paths. The path of the particle
is parameterized by giving the four space time coordinates x* as functions of a
parameter time w, and the action functional is then chosen to be:

1 w
Skx(w)]= E[ dwg(x, X), (6)

where x stands for all four coordinates and x(0)=x', x(W) = x. Here g is the metric
on the curved spacetime and X is the tangent vector with components dx*/dw.

An integral representation for the propagator K(x, x') is found by considering
the quantity: )

F(W, x, )= | 6[x(w)]e’ ()
This is the amplitude that an observation of a spacetime position at one parameter
time yields the value X’ and a second observation a parameter time W later yields
the value x. This integral is a functional integral over all paths connecting x(0)=x’
and x(W)= X. The propagator K(x, x') is constructed from F(W, x, x) by summing
over all W with the appropriate weighting factor: i exp(—im?W). The expression
for the propagator then takes the integral form:

w
§g(x.%)dw
0

K(x, x)=i ojo AW exp(—im*W)F(W, x, X') . (8)
0

To give this expression meaning Hartle and Hawking analytically continue
the variables to complex values where the integral is well defined. In particular w
and W are continued to negative imaginary values, —iw and —iQ, and the co-
ordinates are continued to a domain where the metric signature is +4, i.e. t—it
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the analytically continued metric being denoted by 7,,. They then notice that
F(Q, x, x') satisfies the parabolic partial differential equation:

3_F __ M2 =2 __ BT O

L= A 9a)
with the boundary condition F(0, x, x')=d(x, x'), while K(x, X) satisfies:

([ —m?H)K(x, x)=—6(x, x'). (9b)

The small W behaviour of F, when analytically continued back to real coordinates
is found to be:

F(W, x,x)= ) e W W=2[D (x, ')+ O(w™?)] (10)

where D, is a function independent of W whose precise form is of no consequence
here, and ) represents a sum over each class of geodesics connecting x' and x.

The large W behaviour is also of order W~2. Thus the integral (8) always
converges at the upper limit, while the lower limit diverges as W~ 2 and is handled
by inserting a convergence factor of e~ " with ¢ initially finite, and then the limit
e¢—0 is taken at the end of the calculation:

K(x, x)=i [ dW e™ " =" F(W, x, X) (1)
(0]

Let us now consider x to lie on the complexified horizon defined by 6, ¢
real and UV =0 with x lying in region III+. The analytic properties of K(x, x')
can be deduced from Equations (8), (9) and (10). Since y,, is analytic everywhere
in the shaded region of Figure 1, F(W, x, x') will also be analytic. Therefore the
singularities in K(x, x’) can come only from the W =0 end points of the W integra-
tion. If the W integration [0, co] is divided into two parts [0, W] and [W,, oo]
with W, small, then (10) and (11) imply

K(x, x)=Kq(x, x')—i Y, 54T D (x, X)[(S(x, X') +1e), (12)

where K, represents the [ W, co] contribution to K(x,x’) and is analytic in x.
Equation 12 is correct for massless particles and we will now only consider this
situation. K(x, x’) has singularities whenever S(x, x)= —ie, i.e. slightly displaced
from wherever a null geodesic connects x’ to x.

The expression (12) can be used to continue K(x, x) off the complexified
horizon. First one shows that all null geodesics starting from real values of X’
intersect the future complexified horizon at real values of x i.e. at real values of U
and V, 0, ¢. Therefore there will be singularities of K on the complex horizon at
values slightly displaced from the real values U, V' given by S(x, x')= —ie. Then the
identical argument of Hartle and Hawking [4] shows that the displacement is
such that the singularities occur in the upper half V" plane on the future horizon
and therefore the propagator is analytic in the lower half V plane on the future
complex horizon. _

A similar argument shows that the propagator is analytic in the upper half U
plane on the complexified past horizon. We shall not repeat the Hartle-Hawking
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argument here, however we will demonstrate that the well known pathologies
of Taub-Nut space do not violate the essential prerequisite of the argument that
complex null geodesics starting from a real value of x' intersect only real values
of x on the complexified horizons.

Geodesics in Taub-Nut space have been investigated by Misner and Taub [7].
The necessary equations are obtained by noting that there exist four Killing
vectors given by

&, = —sin¢ d,—cos P(ctg g, —cosec d,) (13a)
&,=C0s ¢ Jy— sin P(ctg 0 J,— cosecd J,) (13b)
&, =0y (13¢)
n=-—20,, (13d)
and hence there exist four constants of the motion:
p.=v-¢, a=123 (14a)
py=-v, (14b)
in addition to the constant relation for null geodesics:
9 % %);—v =0, A=an affine parameter . (15)

The orientation of the coordinate axis’s can be chosen such that p,=p, =0 and
p.=p=0, which imply pcos6=p;. This last condition is the analogue of the
0=mn/2 condition of the spherically symmetric situation of Hartle and Hawking.
The Equations (14a, b) reduce to the following when the metric is the extended
one defined by Equation (2) that covers the future horizon: of region 11+ :

(t2+12)% =p (163)

21U(t) cosOp

Zig —RO=p/2 (16b)

2lU(t)% +

where:

2 211/2
P U(p
plzpz—pﬁ and R(t)={<7"l)+ t2+lzl} .

Then the following expressions result from the null conditions (15)

d—¢'= [ dip/e+P)RD) (1)
VR p___ 2Up
v=v= | S [H 2UR0) (t2+12)R(t)}' (18)

Since 6 must be real (since 0= constant = ¢, the real value of 6 at the real
point x') the relation (above) p cos=p, implies that p, is also real, since p can be
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Fig. 2. Penrose diagram of the relevant region of Taub-Nut space. C* is a space like surface connecting
the intersections of the past and future horizons of region II—. C~ is the reflection of C* through
the (deleted) point p_. An observer travels on the (closed) timelike curve ¢ = const. D is the reflection
of point B through the (deleted) point p_

chosen to be real by utilising the multiplicative arbitrariness of the affine param-
cter A. An elementary analysis of the integrand (17) then shows that if p; > f(m,1,p,),
where f(m, [, p,) is the absolute value of the minimum value of U(t)p?/(t? + ),
then ¢ will be real as required. However from Equation (18) this is also seen to
be the necessary condition that v be real. Hence complex null geodesics starting
from real values v't'6'¢’ intersect the future horizon at real values vtf¢. Thus the
Hartle-Hawking argument deriving the result that the singularities of K(x, x')
occur in the upper half ¥ plane and the lower half U plane is valid for Taub-Nut
space.

We can now continue K(x, x') off the complexified horizon. For definiteness
consider X' in region III+ and x in region II—. The portion of the future horizon
with 7 =0 together with the portion of the past horizon with U >0 are a complete
characteristic Cauchy surface for region II—. The propagator in region II—
is therefore determined by data on this Cauchy surface which is just the values
of the propagator on the relevant parts of the horizon. Write the complex y as
w=x+ig so that 2, 3, 4a, 4b imply

U=|U)e"*-° (192)
V=[Vle"-°. (19b)

Then the problem of determing the propagator at a certain complex value of p
is equivalent to solving the hyperbolic Equation (9b) in the real coordinates |U|
and |V]. This reduces to the characteristic initial value problem with Cauchy data
provided along the portions of the horizons mentioned above. The data is regular
so long as —=n/x_ <o <0. Since the metric is analytic in the region of interest,
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and the characteristic Cauchy data is regular so long as —n/x _ <a <0 the prop-
agator, K(x, x’), with x" in region III+, and x at fixed t0¢ in the region U >0,
V >0 will be analytic in 1 in a width of n/k_ below the real axis. The proviso
should be added that no new Cauchy data enter from the delected points p_, p.. .

This result is sufficient to derive the thermal spectrum of radiation seem by
an observer moving on a (closed) time-like line of constant t=t in the NUT
region II11+. Consider Figure 2. Let us impose the condition that no particles
enter region III+4 across its past horizon or from t= —oo. Then any particle
in a mode with energy + E detected by an observer at the point 4 in Figure 2
must have come from region II—. A typical worldline of such a particle is the
path BCA. In the usual Feynman picture such a particle propagating backward
from the region II— is interpreted as the creation of a pair at point C, one particle
of which crosses the future horizon the other propagating to A. Any such particle
propagating backwards from region II— must cross an arbitrary space like surface
connecting t=t_ and t=t, labelled as the surface C, in Figure 2. We have said
that this particle is detected at 4 with positive energy E with respect to the time
coordinate y'; so that it is in a mode e~ £V’ f (R) at t=t’, where R refers to the
coordinates t', ', ¢'. By the time translation invariance of the Taub-Nut solution
this mode must have had the form e™#¥h (R) when it crossed the surface C,.

Therefore, the amplitude that a particle is detected in a mode f(x') having
originated in a mode hj(x) on the surface C* is:

— [da"(x') | do*(x) fi(x') 2 L K(x, x') oh (), (20)

where, with the given boundary conditions, the integral over x extends over the
surface C* and the x’ integral is over the surface t=t". The notation adub means
ab, ,—ba, ,. The crucial information about the emission process is contained in the
part of the integral (20) that has the form:

- o 4n . = -
&R, R)= j dpe ™VK(0,R'; y, R). (21)

This is the amplitude for the emission of a particle with energy E detected at
(0, R) Since K(lp,R OR) is analytic in a strip of width n/k_ below the real p
axis we distort the contour of the v integration in Equation (21) downward by
—in/x_. However, by Equation (19) this is equivalent to reflecting the U, ¥ co-
ordinates through the point ¢_ of Figure 2. Thus the translated integral:

4n N N
E(x, x)=e ™= [ dpe ™ K(p—infx_, R; 0, R)) (22)
0

can be interpreted as the component with energy E of the amplitude to propagate
from the surface C™ in Figure 2, which is the reflection of C* through p_,to a
point (0, R) in region III+. However by time reversal invariance the modulus
squared of this amplitude is equal to the modulus squared of the amplitude to
absorb a particle which starts at (0, R)) with energy E and arrives at C,. We
therefore have the relation

(Probability of emission) _ o 2nER- (Probability of absorption ol)

of particle with energy E particle with energy E @3)
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which is the fundamental connection between emission and absorption indicating
a thermal spectrum characterized by a temperature of T=x_/2n. Since the
observer at constant ¢’ is travelling on a closed timelike line the lowest frequency
he can detect is 1/4n where 4x is his fundamental period. Therefore the thermal
spectrum is truncated at a lower frequency limit of 1/4n, and is discrete at integer
multiplies of 1/47.

The back reaction of the particle production has a drastic effect on Taub-Nut
space. Misner [8] has shown that Taub Nut space is unstable toward matter
perturbations and that a curvature singularity develops in Taub-Nut space upon
the introduction of a perfect fluid matter perturbation. We have shown above
that it is not necessary to put in this perturbation explicitly since Taub-Nut space
has a built in instability caused by the spontaneous creation of particles from the
quantum mechanical vacuum.

- It is realized that Taub-Nut space is a very unphysical spacetime and hence
is not the best arena in which to attempt physical explanations of the “Hawking
process”. In particular, the use of an observer moving on a closed time-like line
grates against one’s physical sensibilities. However this ubiquity of thermal
spectra is interesting and ties in with the thermodynamic idea of thermal spectra
being associated with arbitrary event horizons (not just black hole horizons)
basically through the Kirchoff principle of a perfect absorber necessarily being also
a perfect emitter. A less unusual spacetime is considered in the next section.

3. Type VIII Taub-Nut Space: The Global Properties

When the Nut continuation [5] of Taub space [7] was discovered it was regarded
as a generalization of the Schwarzschild solutions which had singularities on the
axis. Misner [8] showed however that this singularity could be removed if the
t = constant sections of the space had topology S° instead of R x S2. The simplest
way to see that the coordinate y must be “wrapped up”, yielding a spacetime of
topology R x S* is to consider the line element (1) written in the orthonormal
basis:

w®=U(t)"Y2dt (23a)

o' = U”z[ dyp + 41 sin? gqu] (23b)

w*=2+1»)1240 (230

@3 =(*+1*)'?sin0d¢ (234d)

ds*=1n,,0" 0" (24)
Thus:

dp=U"Pp! =2(t? +17)~ 112 tanga)3 (25)
SO

2 -1 2042 2y—1 9
(gradp)*=U""+2)*(t*+1*)" ' tan = (26)

2



130 A.S. Lapedes

Fig. 3. The Penrose diagram of the maximal extension of Type VIII Taub-Nut space

and therefore the coordinate v is regular only over e[0, %). A new coordinate i,
defined by:

P=p+4dly 27)

is easily seen to be regular over the range 6e(0, n]. Thus 1p can be used in the
coordinate patch 6 [0, z), while {f can be used in 0e(0, ©]. However the periodicity
of ¢ must be respected in the overlap region 0e(0, 7) so the ¥, § coordinates must
be periodic with period 8nl. The coordinate transformation:

p=—2l¢+v) (28)

then introduces the time coordinate y of period 4n used in Equation (1).

The observation has been made by Siklos [3] that replacing 0 by i0 turns the
trigonometric functions singular at §=m into hyperbolic functions regular over
0e(— o0, o). This replacement results in a different vacuum solution of Einstein’s
equations with signature — — — + and is Bianchi-type VIIL The original Taub-
Nut space is Bianchi type IX. Since the axis singularity is removed it is no longer
necessary to wrap up the y coordinate which leaves only one periodic coordinate
. Since cos@ is replaced by cosh® and sin?6 by —sinh?0 the line element can be
written:

ds? = — U~ 'd2 + (212 U(dy +cosh0dd)? — (12 + 1) (d0? +sinh?0dp?)  (29)

where:
te(— oo, ) (30a)
fe(— o0, ) (30b)
ye(—o0, 0) (30¢)
@el0,2n]. (30d)

The global extension of (29) can be made in an analogous fashion to the ex-
tensions of Taub-Nut space discussed in Section 1. Since y is no longer periodic
the extended spacetime is a Hausdorff manifold that contains the points p.
which were deleted in Taub-Nut space in order to make that extension a manifold.



Thermal Particle Production 131

The Penrose diagram of the global extension of (29) is shown in Figure 3. In the
Type VIII Taub-Nut spacetime, above, the lines ¢, 0, ¢ =constant, p=1y(4)
are no longer closed time like lines in regions I+, IIT+ as they were in the original
Taub-Nut space. However there do exist closed timelike lines even in the un-
wrapped spacetime e.g. t, p =constant; 6=0; ¢=¢(4). The key feature of this
spacetime is that an observer moving on a t, 6, ¢ = const., p=1(4) world line in
region I+ is not travelling on a closed time like line and we show in Section 4
that this observer would detect a thermal spectrum of radiation.

It seems that Type VIII Taub-Nut spacetime is stable toward the introduction
of matter perturbations by considering the physical arguments used by Misner
[7] to show that Taub-Nut spacetime is unstable. We will not repeat these argu-
ments here but merely note that each argument for instability depends crucially
on the periodicity of y in the Taub-Nut metric. By analytically continuing and
unwrapping 1 we remove this instability. It therefore becomes possible to discuss
the effect of the back reaction of the thermal radiation in slightly more detail
than is possible for Type IX Taub-Nut spacetime.

4. The Hartle-Hawking Method: Type VIII Taub-Nut Space

The Hartle Hawking method has been reviewed and applied to Taub-Nut space
in Section 2. In that section it was shown that an observer moving on a (closed)
time like line of ¢, 0, ¢ = constant would detect a truncated and discrete thermal
spectrum of radiation. The application of this method to Type VIII Taub-Nut
space proceeds in a virtually identical manner. The analogue of the points BDCA
and the surfaces C, are shown in Figure 4. The observer is chosen to move on a
(non closed) time like world line of t, 6, ¢ = constant in region [I+ and can now
detect radiation coming from the two horizons t=t, and t=t_ characterized by
the different surface gravities x, and x_.

The existence of two horizons with two different surface gravities creates a
problem. One can introduce two Kruskal type coordinates patches, completely
analogous to U, V., U_V_ of Equations (4), that cover the t=t,, t=t_ horizons
separately. In the overlap region the coordinates of one patch will be real analytic
functions of the other. However, branch cuts will arise when U, and V. are com-
plexified, since by Equations (4)

and a branch cut exists unless xk, =x_.

We avoid this problem by inserting a perfectly reflecting wall between the
horizons and impose reflecting boundary conditions on K(x, x') at the wall. Then
an observer on one side of the wall would see a thermal spectrum characterised
by the surface gravity of one horizon, and an observer on the opposite side would
see a thermal spectrum characterized by the surface gravity of the other horizon.
Presumably if the walls were removed the observer would detect a mixture of
radiation.

Since Type VIII Taub-Nut space seems to be stable under the introduction
of matter perturbations one can say slightly more about the back reaction of the
radiation than was possible in the Type IX space. Consider two slightly different
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CXP

Fig. 4. The relevant section of the Penrose diagram of Type VIII Taub-Nut space. The surfaces C.,
C_ and points BDCA are the analogue of the points in Figure 2

type VIII Taub-Nut solutions that contain matter between the event horizons
t=t_andt=t, . The difference will be caused by the absorption of a small amount
of thermal radiation by the observer. Denote the difference of the stress energy
tensors T, of the two solutions as 6T,, and denote the difference of the areas
of thestwo event horizons as 4, and dA_. Then the Gibbons and Hawking
generalization [1] of the first law of black hole mechanics as applied to our
situation states

K, 04, B K_0A_

8n 8n 62)

[ 6T, K*d="= —

where

0A . =difference in area of the t=t, event horizons of the two solutions,
0A_ =difference in area of the t=t_ event horizons of the two solutions,
k. =surface gravities of t =t horizons respectively

oT,,=difference in the energy momentum tensor between the horizons in the
two solutions.

If an observer absorbs a small amount of energy of the thermal radiation then the
change in T, is positive, indicating that the area of the relevant horizons decreases
from their original infinite value to another infinite value. However since a solu-
tion that is asymptotically Type VIII Taub-Nut space containing a mass moving
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on a time like line is not known, it is impossible to say how the surface gravities .
will change.

5. Conclusions

We have shown that in one highly unphysical and pathological spacetime, Taub-
Nut space, the Hartle-Hawking path integral method originally used to derive
black hole radiance is applicable and predicts a thermal spectrum of radiation for
a suitable observer. Taub-Nut space can be analytically continued and unwrapped
[3] to yield a more physical anisotropic cosmological model, and a suitable
observer will also see a thermal spectrum. The elegance of the calculational
method prompts the conjecture that in any spacetime with crossed horizons
and vertical symmetry a suitable observer would detect a thermal spectrum.
This ubiquity of thermal spectra lends support to the ideas advocated by Haw-
king [9] that a deep connection exists between thermodynamics and gravitation
(in particular the existence of event horizons). We stress that these results are
necessarily observer dependent and emphasize that whether an observer sees a
thermal spectrum or not depends on his state of motion. This can be most clearly
seen in the anti-de Sitter [6] and Bertotti [10] universes which will be discussed
in a subsequent paper.
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