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Dilations of Dynamical Semi-Groups
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School of Theoretical Physics, Dublin Institute for Advanced Studies, Dublin 4, Ireland

Abstract. We prove the existence of isometric and unitary dilations of a class
of semi-groups of completely positive maps on an algebra of operators on a
Hubert space. The result has relevance to the problem of embedding an open
quantum mechanical system in a closed one.

§ 1. Introduction

Empirical semi-group laws for the irreversible evolution of the state of a quantum
mechanical system have been remarkably successful in a variety of applications
[1,2, 8,14]. This has encouraged some workers to propose axioms for dynamical
semi-groups [10,12,7]. From the point of view of fundamental theory such semi-
groups are by themselves unsatisfactory: the conventional position is that the
laws of quantum theory prescribe the time-reversible evolution of a closed system,
and irreversible behaviour enters only when the evolution is restricted to an
open sub-system. The time-reversible evolution of a closed system is described
by a strongly-continuous one-parameter group of unitary operators on a Hubert
space. The question then arises: is a given irreversible dynamical semi-group the
restriction to an open subsystem of a time-reversible evolution of a closed system?
The purpose of this paper is to formulate this question mathematically and to
answer it in the affirmative for a class of dynamical semi-groups which have
interesting applications.

From the mathematical point of view we prove results for semi-groups of
completely positive normal maps of PΫ^-algebras which are analogues of
Szδkefalvi-Nagy's dilation theorem [17] for semi-groups of contractions on
Hubert spaces and Stroescu's dilation theorem [16] for semi-groups of
contractions on Banach spaces. Some results in this direction were obtained by
Davies [5] his proof was based on his theory [4] of quantum jump processes.
We adopt his construction of a semi-group of isometries but our proof uses only
the perturbation theory of semi-groups on a Banach space.
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§ 2. Dilations of Dynamical Semi-Groups

A dynamical semi-group on a PF*-algebra M is a semi-group {T^fgrO} of com-
pletely positive normal maps of M into itself such that :

(i) T0 = zM, (ii) Γf(l) = l f o r a l l f ^ 0 .
A dynamical semi-group is said to be weakly continuous if lim (Ttm, φ} =

ί->0 +

<m, φ> for all m in M and all φ in the pre-dual M^ of M; if Tt is weakly continuous
then the pre-adjoint semi-group ^.Tt9 defined on M^, is strongly continuous and
hence has a densely-defined generator (Yosida [18], p. 233). (Whenever A:M-+M
is σ(M, MJ-continuous we denote by ̂  M^-^M^ its pre-adjoint, defined by
(Am, φ) = (m, %Aφy for all m in M and φ in M^.) A dyanmical semi-group Tt is
said to be norm-continuous if lim 117^ — 111=0 in which case Tt itself has a

f^0 +

σ(M, MJ-continuous bounded generator L so that Tt = etL. Lindblad [12] has
shown that the generator L of a norm-continuous dynamical semi-group Tt on
the algebra ^(JΓ) of all bounded operators on a separable Hubert space Jf can
be put in the form

) = i[#, m] + V(m)-^{V(l\ m} (2.1)

for all m in J*(Jf ). Here H is a bounded self-adjoint operator on JΓ and V \
^pΓ) is a completely positive normal map so that, by Kraus [11], there exist
bounded operators Ai9 i= 1,2, ... on Jf such that

V(m) = £ KM F;(m) = ,4f m^ , (2.2)

for all m in
Let Jf be a Hubert space and let M be a von Neumann algebra contained

in St(βtf\ Let e : M->M be an embedding of M in M such that e(M) is a PF* -algebra
on J^ (see Sakai [15], 2.7.5), and let N:M-*M be a conditional expectation such
that N°e = iM (i.e. Nis a completely positive normal map of M onto M such that
(i) ||N || = 1, (ii) JV(1)=1, (in) N(m(e°N)(m')) = N((e°N)(m)mf) = N(m)N(mf) for all
m, m' in M). Let {G^ ί^O} be a strongly continuous semi-group of isometries
on tf such that G*MGt £ M for all t ̂  0. Then (Gt, β, M, N) is said to be an isometric
dilation of the dynamical semi-group (Tt, M) if for all ί^O and all a in M

(e°Tt)(a) = G*e(a)Gt. (2.3)

Remark. Equation (2.3) cannot hold for Gt unitary unless Tt is a homomorphism
of M. Let {(7^ίeIR}_be a strongly continuous group of unitary operators on ffl
such that U*MUtQM for all ίΞ>0. Then (Ut, e, M, N) is said to be a unitary dilation
of the dynamical semigroup (Tf, M) if

(m)Ut) (2.4)

for all ί—Ό and all m in M. Notice _that if a dilation exists then so does a minimal
one; in the isometric case take M to be {Gfe(M)Gt:t^O}" and in the unitary
case take M to be {U*e(M)Ut:t^O}".

First we prove the existence of isometric and unitary dilations of a norm-
continuous dynamical semi-group Tt on the algebra ^(jf) of all bounded operators
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on a separable Hubert space jf. Then we relax somewhat the conditions on both
the semi-group and on the algebra.

Theorem 1. Let 3C be a separableHilbert space. Let {Tt: t ̂ 0} be a norm-continuous
dynamical semi-group on S&ffl). Then there exists an isometric dilation (Gί5 £1? M

1,

Proof. We have seen that the generator L of Tt has the form (2.1) where V is given
by (2.2). Define Ze J pf ) by

(2.5)

so that {Bt = etz : t ̂  0} is a contraction semi-group on Jf and (St:t^ 0}, defined by

St(m) = B*mBt (2.6)

for all m in Jf(jf), is a contraction semi-group on J*(jf ) with generator L0 given by

L0(w) = Z*m + wZ (2.7)

for all m in ^(JΓ) so that

L = L0+V. (2.8)

Hence T, and St are connected by the perturbation formula (Kato [9], p. 495)

Tt(m) = SJm) + (St _ s o V <> Ts)(m)^ (2.9)

for all m in ^(Jf). The pre-adjoint semi-groups ^7] and ^.St on the pre-dual of
^(Jf ) (which we identify with the Banach space «/(jΓ) of trace-class operators
on Jf ) satisfy

*Tt(ρ) = *St(Q)+}(*Ts°*Vo*St_s)(ρ)ds (2.10)
o

for all ρ in ./(JΓ). Because of the particular form (2.2) of the perturbation V we
can write the von Neumann series for (2.9) and (2.10) in an unfamiliar but useful
way (cf. Davies [4, 5]).

Let X^ be the set of all sequences {(xi9 ί^eNxίO, oo):0<ί1 <t2...} regarded
m= oo ( m

as a Borel subset of (J <Y[ Nx(0, oo)l in an obvious way, let 7^ be the Borel
m = 0 U=0 }

subset of X^ consisting of all sequences of finite length and, for each £>0, let Xt

be the Borel subset of X^ consisting of all finite sequences {(xf, ί ί):0<ί1<ί2...
tn^t}. For each ί>0 there is a Borel isomorphism λt:Xtx Y^^Y^ defined by

{(Xi9td}ni=ιΛ(yj9Sj)}^1^(xi9tl)9...9(xffi (2.11)

The inverse map is given by

to^iW^i^ίίy^^!, {(^^.-ί)}?=p+1 , (2.12)
where p is the unique integer such that sp^t<sp+1. We denote by X0 the subset
consisting of the single sequence z of zero length. We define a measure μt on Xt

given by the product measure constructed from counting measure on each
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component Nand Lebesgue measure on each component (0, oo); we assign Dirac
measure to the point zeXt. We define a measure μ^ on 7^ in an analogous fashion.
For each wεXt define (^S^S)(\ή by

(AMX^-A0*^0,^-^*^---*^0^-^; (2 13)
where w = {(xf, tί):Q<tl< ...tn^t}, then the Neumann series

0 0

+ ... (2.14)

can be written as

*%)= J (A^*SXvv)te)^(vv) , (2.15)
xc

and the adjoint series can be written as

Tt(m}= I [(.S*K.SXw)]>)dμt(w) . (2.16)
Xt

Define the operator G, on L2^ Jf ) for t ̂ 0 by

(G,v>)(w) = (BABXwί)ψ(wt), (2.17)

where

(Wl,Wt) = λ-\w) (2.18)

for we Yx, and (BAB)(w')e^(Jf ) is defined by

) = B(ΛA-.1^ϊ-^nB.-.- (2 19)

for any w' = {(x, , ίί):0<ί1<ί2 <ίn^

We prove next that {G(:ί^0} is a strongly continuous group of isometries on
L\Ύ^tf\ We have

= (BABXwΓlXBABXw ί lJl)φ(w(ι, l2)

= (G(l + t 2vXw) (2.20)

where we have used the following immediate consequences of the definitions:

(BAB)(wrι)(BAB)(W(ι ,Ϊ2) = (BAB)(WίTT72-) , (2.21)

(2.22)
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We check that Gt is an isometry using (2.15) and the observation that the measure
μ^ is the product of the measures μt and μ^ under the Borel isomorphism ^ of

7^:

= J <(BAB)(wF)φ(wf),(BABXwΓ)φ(wt)>dμQO(w)
YθO

= f f trace ([(BAB)(wr)]ψ(w,) ® tfffi [(BAB)(wr)])*

= 5 traced (^V^)(Wτ)(ψ(wt)®ψ(wt))dμt(wτ))dμM
l-cc Xt

= J traceςTMvv,)®φ(wt))4«ooK) (2.23)

where we have used the positivity of the integrand to interchange the trace and
integration operations.

But T;(l) = l implies trace (s|5Γf(ρ)) = trace(ρ) so

<Gfφ, GfV> = f <V>(wt), φ(w,)X/Uwt) - <φ, φ> . (2.24)

Since we have shown that {G t:f^0} is a semi-group of isometries it is enough
to check that it is weakly continuous at the origin on elements of the form /( )fe
where /( )eL2(Y00) and /ceJΓ. This follows using the observation that

Now take M1 to be L^ϊ^ ^JO) which is a FP^-algebra with pre-dual
Ml=Ll(Y^ J?(3f}} (Sakai [15], 1.22.13); the mapping f®a->f(-)a can be
extended uniquely to a ^-isomorphism of L°°(7J® ̂ (JΓ) onto L°°( Y^; J*(Jf )).
The predual of L°°(yj® J*(jf) is LH^jOy /W, the projective tensor product,
which we identify with L1(yoo;«/(Jf)). We make use of the embedding with
e^pfHM1 defined by

eι(α) = l(g)α, (2.25)

where 1 is the constant function in L0^}^); we use the conditional expectation
Ni M^^JΓ) defined by

ΛΓ

1(m)-m(z). (2.26)

We note that

(**ι)«0= f ^(w^Jw),
Γco (2.27)

(*^ιXρ) = ̂ ®β-

Next we check that GfM1G ί£M1 for all ί^O. For this we require the explicit
form of the action of Gf on a vector ψι we get this by inspecting <G?φ, φ> for
arbitrary φ :

<Gfφ, ψ> = f f
Foo ^t

= ί J V*wf), [(BAB)(wf)]*φ(lr(wf, w
1Ό, Xt
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Hence Gf is given by

(G*0)(w)= J [(BABXwO]*ψ(Λ(w', w))^(w') . (2.28)
Xt

In what follows we use the notation wr to denote Λrfw', w) where w'e^ft is a running
variable of integration and remark that wV=w', and w^w. Now we take α( )e
ZΛYoo; J*pO) and compute Gfa( )Gt as an element of ̂ (L2^; Jf)) and show
that it lies in L00

(G*αGfφXw)= J

- J
χt

= ί [(A F^XwΉMw'^Cw'Mw) . (2.29)
Xt

But

(G*aGtm = I [(A V^S)(w')γa(λt(w', w))dμt(w') (2.30)
χt

lies in L00^; JW) and so GfA^
Now put α( ) = l( )®m where we^(Jf); we have

f [(^ ,̂S)(w')
t

= l(w)®Γf(m) (2.31)

by (2.16). Thus we have proved

e1(Tf(wι)) = G*g1(m)Gf. (2.32)

Theorem 2. Let JΓ be a separable Hίlbert space. Let {Tt:t^Q} bea norm-continuous
dynamical semi-group on $(3C\ Then there exists a unitary dilation (Ut, e, M, N)
of (Tt, &(#•)).

Proof. Let (Gf, el9 M
1) be the isometric dilation of (Tt9 Ά(tf )) of Theorem 1. Then

by Cooper [3] (see also Masani [13]) there exists a Hubert space $f , an isometric
embedding W:L2(Y00, Jf)->Jf and a strongly continuous group {Ut:teJK} of
unitary operators on $f such that for t ̂ 0 we have for all ψ in L (Y^ Jf)

WGtιp=UtWιp. (2.33)

It follows that for ί^O we have

G f=»Γ*l7 f^, (2.34)

and

G* = W*U*W. (2.35)

Put M- {[/* e2(M1)Ut :ί^0}" where e2 : M
1-^*^) is defined by

(2.36)
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and N2 :M-^^(L2(700; JΓ)) be the conditional expectation given by

N2(m)=W*mW. (2.37)

Then we have to show that N2(ϊ) = ί and that N2(M)gMl. By (2.34) and (2.35) we
have for ί^O and x in M1

N2(U*e2(x)Ut)=W*U*WxW*UtW (2.38)
= GfxGt ,

which we saw is in M1. For n>\ and ίj^O, z = l,2, ..., w, we define an by

ΛΛ = N2(C7*e2(x1)l/ t lI7*e2(x2)C/ ί2... C/foWt/J . (2.39)

We have

an = G*xiG*&ίx2G*Gt2...Gtn_lxnGtn . (2.40)

where we have used the observation that for all s, ί>0

W*UtU*W=G*Gt. (2.41)

(For ί>s we have W*UtU*W = Gt_s but G sG t_ s=G ( so that G (_ s = G*Gt since
Gs is an isometry; an analogous calculation works for s>ί.) We have to show
that an lies in M1. In order to be able to use induction we define bn for π^l by

^G^Gf^^G*^...*^*^,, (2.42)
and notice that bn\,n + l = 0=an.

We have by direct calculation of the kind used in the proof of Theorem 1

(V«(w)=J f bί(W',W";W)φ(^\)dμtl(W')dμl2(W") (2.43)
χtl χ<2

where

b^w', w"; w) = [(BABXw')]*x1(wtl)[(BAB)(w")]*(BABXwt"2

i-ι). (2.44)

Suppose that for n ̂  1 we have

(M>)(w)= J ... J fcn(W'ίW",...,W

("+1);w)^(W"ί2

tι...
t"-tJ^tι(w')

^ *<„ + ,
...̂  + 1(w<"+1)); (2.45)

then

(6π+1φ)(w)= J ... f 5π(w',...,W'"+1);w)(xn+1G*+2G tn + ̂ )(W"\...\.I

t"-tJ

ditl(w')'"dμ(n+1(w<-+1')

= ί f fcn+1(w',W",...,W

("+2);w)φ(w"\...'-V"-((i+ι)
^ .̂«
dμ f l(W')...φ fn+2(w<"+2>) (2.46)

where

x [βABXw("+2))]*[(BAB)(w<'fI

ίl...
t»+ϊ

ίn+1)] . (2.47)
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But (2.45) holds for n = l and hence by (2.46) for all n^l; evaluating (bnφ)(w) at
£n + 1=0 we have

(α>Xw)= f ... J bΛW...,w(Λ),z;w)0^^
Xtι χtn

But it follows directly from the definitions that

w"V.V l t l l = w (2.49)

so that

(flII0)(w) = 5n(w)ψ(w) (2.50)

where

SΛ(w)= ί .» ί W ..., w ( Λ ),z; w)dμfl(w')...dμίn(w(Λ)) (2.51)
Xtl ***

which lies in M1, and by continuity we ha_ye N(M)QM1. We complete the proof
by putting e = e2°e^ N = Nί°N2l then N(Γ) = 1 and

N(U*e(m)Ut)=Tt(m), (2.52)

and it is easily checked that N is a conditional expectation.

Remark. The map f-»£/f Ut is weakly continuous. It cannot be norm-continuous
even though f->T t is unless T, is a homomorphism of M. Indeed, suppose t^Tt

is strongly continuous with generator L, suppose t-> Uf - Ut is strongly continuous
with generator <5, and Z = ̂ (c))nM is a core for L (that is, L = (L|Z)~); then for
xe^((5)nM we have

L(x) = (JVo<5oφc) (2.53)

so that L is a derivation and hence Tt is a homomorphism (Evans [6]).
Inspecting the proofs of Theorems 2 and 3 we see that they still work if we

relax somewhat the hypotheses on the continuity of ί-»Tt and on the algebra M.
We have in fact proved the following

Theorem 3. Let Tt be a weakly continuous dynamical semi-group on 3$(tf) where 3C
is a separable Hubert space. Suppose that

(i) there exists a strongly continuous contraction semi-group Bt = ezt on 3£ whose
generator Z is a bounded perturbation of a self-adjoint operator, and a completely
positive normal map F:^(Jf)->^(jΓ) such that

Tt(m) = St(m)+](Tt_s°V°Ss)(m)ds
o

for all m in <Ά(3C\
(ii) V has a decomposition V(m) = J A*mAxdv(x) where (X, v) is a σ -finite

x
measure space and x^>Ax is weakly measurable.

Then if M is a von Neumann algebra on 3C such that Ax lies in M for v a.e. x in
X and if B*MBtζM for all t^Q the conclusions of Theorems 1 and 2 hold.

Remark. The unitary dilation theorem for a family of completely positive maps
indexed by the elements of a group which was recently proved by Evans [6] does
not overlap with the above results.



Dynamical Semi-Groups 227

References

1. Abragam,A.: The principles of nuclear magnetism. Oxford: Clarendon Press 1961
2. Atherton,N.M.: Electron spin resonance. New York: Wiley 1973
3. Cooper, J.L.B.: Ann. Math. 48, 827—842 (1947)
4. Davies,E.B.: Commun. math. Phys. 15, 277—304 (1969)
5. Davies,E.B.: Z. Wahrscheinlichkeitstheorie verw. Gebiete 23, 261—273 (1972)
6. Evans, D.E.: Commun. math. Phys. 48, 15—22 (1976)
7. Gorini, V., Kossokowski, A., Sudarshan, E. C. G.: University of Texas at Austin preprint CPT 244

(1975)
8. Haken,H.: Laser theory. Handb. Phys. Vol. 25/2c. Berlin-Heidelberg-New York: Springer 1970
9. Kato,T.: Perturbation theory for linear operators. Berlin-Heidelberg-New York: Springer 1966

10. Kossokowski, A.: Rep. Math. Phys. 3, 247—274 (1972)
11. Kraus,K.: Ann. Phys. (N. Y.) 64, 311—335 (1971)
12. Lindblad,G.: Commun. math. Phys. 48, 119—130 (1976)
13. Masani,P.: Bull. Amer. Math. Soc. 68, 624—632 (1962)
14. Primas,H.: Helv. Phys. Acta 34, 36—57 (1961)
15. Sakai,S.: C*-algebras and PF*-algebras. Berlin-Heidelberg-New York: Springer 1971
16. Stroescu,E.: Pacific J. Math. 47, 257—262 (1973)
17. Szokefalvi-Nagy,B.: Acta Scientiarum Math. Szeged 15, 104—114 (1954)
18. Yosida,K.: Functional analysis. Berlin-Heidelberg-New York: Springer 1965

Communicated by H. Araki

Received February 23, 1976






