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Probability Estimates for Continuous Spin Systems

D. Ruelle
Institut des Hautes Etudes Scientiίiques, F-91440 Bures-sur-Yvette, France

Abstract. Probability estimates for classical systems of particles with super-
stable interactions [1] are extended to continuous spin systems.

1. Notation and Assumptions

On a lattice 2£v we consider continuous d-dimensional spins. A spin configuration
in /1CZV is thus a function s^ Λ^lR'*; its value at xeA will be denoted by sx.

If x^x1, ...,χ])eZv, we write jx^maxjlx*]. If s = (sl, ...,sd)eIRd, we write

A measure μ ̂  0 on IRd is given such that

if α>0, and μ is not identically 0.
We shall call interaction a real function U on all configurations in all finite

A C Zv satisfying the following conditions.
(a) U is φ^μ-measurable on QR?)Λ and invariant under translations of TLV.
(b) Super stability. There exist A>Q, CeIR such that if sAeQKY is a con-

figuration on any finite A, then

(c) Regularity. There exists a decreasing positive function Ψ on the natural
integers such that

£ y(|x|)<+oo.
xeΈv

Furthermore if Λ^ Λ2 are disjoint finite subsets of TLV and sΛί, sΛ2 the restrictions
to Aί9 A2 of a configuration sAluΛ2 on AiuA2, then

IUΛM Σ Σ
xeΛi yeA2
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where we have written

2)+ W(sA^ sΛ2) .

Condition (c) implies the following

(d) There are r>0 and A>0 such that for all finite ΛCZV

f ίγiμ(dsx)}Qχpl-U(sΛ) ]>λ-^dΛ

ΣΛ \xeΛ I

where Σ= {selR^: |s| gr}. This is because, using (c), we have

xeΛ I y

and, for sufficiently large r, j μ(ds) > 0.
\s\ir

Notice also that if there are ε>0, 5eIR such that

then (b) holds with C=B/4ε.

2. Probability Estimates

Let A C A C Zv, Λ. finite. We denote by SA the restriction to zl of a configuration
s^ on Λ, and write

Q(A\SA) = ZΛ ' ί ( Π M^ J) exP [ ~ ̂ J] (D
\xeyl /d

where

The probability estimates of this section are bounds on ρ(£\ given in Theorem
2.2. below. To obtain these bound we imitate the arguments of [1]. That paper
in effect treats a special case of the problem considered here, where d=ί and μ
is carried by the natural integers. In [1], the probability estimates are obtained
on the basis of technical results, which carry over immediately to the present case
if the variable n is allowed to vary in lRd rather than take natural integer values.
As an example we transcribe below (Proposition 2.1) the main technical estimate

Given α>0, we can choose an integer P0>^ and f°r each J = F*o an integer
>0 such that

We use the notation
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2.1. Proposition. Let ε>0 and C^O be given, and let Ψ be a decreasing positive
function on the natural integers such that

If a is sufficiently small one can choose an increasing sequence (\p) such that ιp^ 1,
ipj- »oo, and fix P>P0 so that the following is true.

Let n(-) be a function from TL to the reals ^0. Suppose that there exists q such
that q^P and q is the largest integer for which

Then

Σ C+ Σ Σ
xe[q+l]yφ[q+l] xe[q + 1]

This differs from Proposition 2.1 of [1] mostly by the fact that n(-) has real
rather than integer values. Lemmas 2.2, 2.3, 2.4, and Proposition 2.5 of [1]
similarly carry over to the present case.

To adapt Proposition 2.6 of [1] to Q(^ some care is needed because we do not
have in general ρ({0})>0. Since however we have (d) and the regularity condition
(c) (rather than only lower regularity in [1]), we can write Q(f\sΔ) = ρ' + ρ" where
(3.30) and (3.31) of [1] are replaced (see Appendix) by

exp £ Ψ(\y\)-A)s2] -ρ^U(sJUx)) (2)
ezv

(^+1]) (3)

with some constants C, C", D". Therefore, by induction on card A,

^'(sJrgexpΣ^ + F) (4)
xeA

with some constants E, F.
We show now, following Proposition 2.7 of [1], that for any ε>0 one can

choose δ independent of (A), A, SΔ such that

ρW)(Sj) ̂  exp Σ C - (A - 3δ)^ + δ] . (5)
xeΔ

We may assume A>3s. Let ($ = (£-M-3ε)ιpPFp + F. If \sx\<,(ψPVP)
1/2 for each

xezl, then (5) follows from (4). If |sx| >(φPVP)
1/2 for some x, we put x at the origin

by a translation. Then ρ' = 0, and Q(/\sΔ) = ρ" so that, using (3) and induction,

V card(A\[q + 1])

xeΔ

and (4) follows. We have proved the following
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2.2. Theorem. Let Q(^\SA) be defined by (1) for an interaction U satisfying (a), (b),
(c). Given A*<A, there exists δ independent of A, A, SA such that

xeΔ

2.3. Corollary. Let y ̂  2, and suppose that the superstabίlity condition is strengthened
to

U(SΛ)^ Σc^r-c].
xeΛ

Then the conclusion of Theorem 2.2 can be strengthened to

xeΔ

Define F:RdH>Rd by

if |s

and write F(sx)xeΛ = (Fsx)xeΛ.
Let μ be the image by F of the measure μ, and let U(sΛ) = U(FsΛ). Then U is

an interaction satisfying the conditions of Section 1 with respect to the measure μ.
In particular

U(sΛ)= U(FsΛ)^ ^
xeΛ

xeΛ

and

Σ
yeΛ2

Σ
xeΛ i

Therefore

xeA

^ exp £ [- ̂ IsJ
xeJ

2.4. Corollary. Suppose that

U(sA)=U(sΛ)+ XF(5X)

that U is an interaction satisfying the conditions of Section i with respect to
the measure μ = e~vμ. Then Theorem 2.2 can be replaced by

&\SA) ί exp Σ [ - A*\sJ> + δ - F(s,)| .
xeΔ

This is because

where ρ is defined by (1) with μ, U replaced by μ, U.
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Appendix

We sketch here the proofs of (2) and (3), using notation which is either that of [1],
or has obvious meaning.

Proof of (2).

ρ' = Z^$ μΛΛdsA^} exp [ - U(sx) - U(s^{x]) - W(sx, ŝ })]

f μ*Δ(dsΛ^ exp[- I7(s^M)- W(s'x,

•exp

' exp -Asl+ C+ Σ «P(|j;|)\ sj

^ μ(ds'x) ί Δ) exp [ -

sc

Proof of (3).
,, \—I rγ — I

• exp(— \ 5^,.,+u)) exp(-

.) exp Σ [- Asl

Σ Σ
yeΛ\{q+l]

• exp[-

Σ

• 7"1 Γ

^ Jj [ q + l ] Π y l

^ Σ exp Σ

(Λ)
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