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Probability Estimates for Continuous Spin Systems

D. Ruelle
Institut des Hautes Etudes Scientifiques, F-91440 Bures-sur-Yvette, France

Abstract. Probability estimates for classical systems of particles with super-
stable interactions [1] are extended to continuous spin systems.

1. Notation and Assumptions

On a lattice Z* we consider continuous d-dimensional spins. A spin configuration
in ACZ’ is thus a function s,: A—IR?; its value at xe A will be denoted by s,.

If x;(x‘, o X)eZ', we write |x|=max;|x!|. If s=(s',...,s)eR? we write
=267 2=V

A measure u=0 on IR? is given such that

[ uds)e™ < + 0

if >0, and p is not identically 0.

We shall call interaction a real function U on all configurations in all finite
ACZ satisfying the following conditions.

(a) U is ®“u-measurable on (IR%)* and invariant under translations of Z".

(b) Superstability. There exist A>0, CeR such that if s,e(R%)* is a con-
figuration on any finite A, then

Uz ), [4si—-C].

xeA

(c) Regularity. There exists a decreasing positive function ¥ on the natural
integers such that

Y W(x)< + .

xeZ”

Furthermore if A, A, are disjoint finite subsets of Z* and s, , 54, the restrictions
to Ay, A, of a configuration s 4, on A;UA,, then

Wisaonlls Y Y Ply—xD3(s3+s)

xedq yeda
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where we have written
U(SA,qu) = U(SAl) +U(s4,)+ W(SAla S4,) -
Condition (c) implies the following

(d) There are r>0 and A>0 such that for all finite ACZ"

f (n ,Lt(de)) exp[— U(s,)] = ) ~card4

24 \xed

where X = {seR%:|s|<r}. This is because, using (c), we have
Us = ), Ulsy)+ ( > Si) pRA()
xeA xed ¥y

and, for sufficiently large r, j w(ds)>0.
Isi=r

Notice also that if there are ¢ >0, BeIR such that

Uls)z Y, [(A+e)s;—Bls,l]

xed

then (b) holds with C= B/4e.

2. Probability Estimates

Let ACACZ, A finite. We denote by s, the restriction to 4 of a configuration
s, on A, and write

ois)=2Z;"§ ( l}m u(dsx)) exp[ — U(s1)] (1)
where
Zy=| (HA u(dsx)) exp[—U(s 4]

The probability estimates of this section are bounds on ¢4, given in Theorem

2.2. below. To obtain these bound we imitate the arguments of [1]. That paper
in effect treats a special case of the problem considered here, where d=1 and u
is carried by the natural integers. In [1], the probability estimates are obtained
on the basis of technical results, which carry over immediately to the present case
if the variable n is allowed to vary in R? rather than take natural integer values.
As an example we transcribe below (Proposition 2.1) the main technical estimate
of [1].

Given a>0, we can choose an integer P,>0 and for each j= P, an integer
l;>0 such that

/L= (14 20)) <o
We use the notation

[1={xeZ":|x|<}, V,i=QlL+1)
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2.1. Proposition. Let ¢>0 and C=0 be given, and let ¥ be a decreasing positive
function on the natural integers such that

Y P(x)<+o0.

xeZV
If o is sufficiently small one can choose an increasing sequence () such that y;=1,
p;— 0, and fix P> P, so that the following is true.

Let n(-) be a function from Z to the reals =0. Suppose that there exists q such
that q= P and q is the largest integer for which

Y nxP 2y,

xelq]

Then
Y C+ Y Y Wly-x)imx?+n())se Y ().

xe[g+ 11 xelg+ 1] yé[g+ 1] xe[g+ 1]

This differs from Proposition 2.1 of [1] mostly by the fact that n(-) has real
rather than integer values. Lemmas 2.2, 2.3, 2.4, and Proposition 2.5 of [1]
similarly carry over to the present case.

To adapt Proposition 2.6 of [1] to 0" some care is needed because we do not
have in general ¢({0}) >0. Since however we have (d) and the regularity condition
(c) (rather than only lower regularity in [1]), we can write ¢{"(s,)=0'+¢” where
(3.30) and (3.31) of [1] are replaced (see Appendix) by

o=C eXP[ Z P(y)— A)sx ] QA\{x}(SA\{x}) 2

YEZY

'S Y e CvarVar i DVariexp Y [—(A- 3e)s2]- ot a s 116 agr 1) B

qzP xelg+11nA4

with some constants C', C”, D". Therefore, by induction on card 4,

o s)< exp Y (Esi+F) 4)
xed
with some constants E, F.
We show now, following Proposition 2.7 of [1], that for any ¢>0 one can
choose ¢ independent of (A), 4, s, such that
oM )<exp Y [—(A—3e)si+5]. 5)
xed
We may assume A>3e. Let §=(E+A—3e)ppVp+F. If s <(ppVp)'/* for each
xe 4, then (5) follows from (4). If |s,| > (ypV}p)/? for some x, we put x at the origin
by a translation. Then ¢'=0, and ¢{"(s,)=¢" so that, using (3) and induction,
0P s)Sexp Y [—(4—-3e)s7]

xed
e—C”wq+ Vag+1+DVguy eécard(A\[q+ 11
qzP
_S_exp Z [—(A _ 38)5,2(] .eécard(A\[q+1])+F

xed

and (4) follows. We have proved the following
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2.2. Theorem. Let ¢$(s ) be defined by (1) for an interaction U satisfying (a), (b),
(c). Given A* < A, there exists  independent of A, A, s, such that
oM (s)<expy [—A*s2+5].
xed

2.3. Corollary. Let y=2, and suppose that the superstability condition is strengthened
to

Ushz ). [Als]'-C].

xeA
Then the conclusion of Theorem 2.2 can be strengthened to
0§ s)Sexp ), [—A*s,"+3]

xed

Define F:IR4—IR? by

Fso I8 if |s|=1
B (s O =3
and write F(S,) e =FS)xen . .
Let fi be the image by F of the measure u, and let U(s,)= U(Fs,). Then U is

an interaction satisfying the conditions of Section 1 with respect to the measure .
In particular

Uls)= UFs)z Y, [AlFs,)’—C]

= ) [4s3 —xj‘lA—C]
and xed
W (5 4,0.)| < erA y; P(ly—x[) 3 (1Fsd*+[Fs,|)
= erA y;m Ply—x) 2 (s3+5).
Therefore
s, =85"(F " 'sg)<exp ZA [—A*[F ™~ s? +6]

Sexp ), [—A*|s,|"+6].

xeAd

2.4. Corollary. Suppose that
Uls)=Uls)+ X, V(s

xed

and that U is an interaction satisfying the conditions of Section 1 with respect to
the measure fi=e™~" . Then Theorem 2.2 can be replaced by

(A)(SA)<exp z [ A*lS |y+ o— V(Sx)|

xed

This is because

05"(s4)= exp{ Y Vs, ] @§"(sa)

xed

where ¢ is defined by (1) with u, U replaced by f, U
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Appendix

We sketch here the proofs of (2) and (3), using notation which is either that of [1],
or has obvious meaning,.

Proof of (2).
o0=2Z3! }{ p(ds 4,) exp [ = U(s,) = U(S 4yo9) ~ W50 S y09)]
Se vDzy! i 1 (ds 1) €xp [ — U 4y09) = WSk Sa19)]
"exp [(% ? Y’(lyl)) (s3+s2)+ 2D’}
</e*P exp r Asi+C+ (% ; ?’(lyl)> si]
- sup exp [(% g T(Iyl)) sf}

Sy€eY

Zy! i p(dsi) | p"\(ds ) exp[— U(sH)]

=Cexp [(Z Py — A) sz 'Q(A/{gx)(SA\(x)) .
y
Proof of (3).
o= Z ZZI f :uA\A(dSA[A) exp(— U(S[q+ 1]m1))
qzP R,

exp(— W(S[q +11n4> SAn[g+ 1])) exp(— U(SA\[q+ 1]))
= Z Z ! j MA\A(dSA\A) eXp Z [_AS;ZC +C]
Rq

qzP xe[g+11nA

exp Y Y Ply—xDz(s3+s))

xe[g+1]1nA yed[g+1]

"exp ) Y Ply—x)z(s2+s)

xe[g+ 1]nA yed\[g+ 1]
~exp[ — W(stg+ 1nASa\g+1) — U(S a\pq+ 1]
-1
= Z Z; j .“A\A(dSA\A)
Rq

qzP
ep[=(A=30) F SE-Cei Ve

xe[g+11n4

‘GXP(%Z vy Y s?

xe[g+1]lnA
“eXpL—W(Sig+ 1100 Savig+ 19— UlS aygg+ 171

sYexp ) [—(4-39)s7]

qzP xelg+11n4
o — (4 — 3¢)s2
e g Vo[ p(ds)e™ (430l 1ol

: (sup exp [(% Y @[/(|y|)> SIZDIW 11n4llg + 11n 4]
y

s'eX
— 1 -
"Zy S pla ”nA(dSEqu 11na) f T 1](dSA\(q+ 1na) € ved)
ylg+11na
<Y ep Y [—(4-3¢)s2]
qzP xe[g+ 11nA

L —C"pgs 1Vas 1+ D"V, A)
e artrari q+1Q(A\[q+1](SA\[q+1})'
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