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Abstract. We prove the uniqueness of a solution of the Dobrushin-Lanford-
Ruelle equation for random point processes when the generating function
(interaction potential) has no hard cores, is non-negative and rapidely
decreasing.

Introduction

One of the interesting problems in the theory of random processes (r.p.) and
random fields (r.f.) which is inspired by mathematical physics (more precisely,
by the theory of phase transitions in systems with infinitely many degrees of
freedom) is that of their description. The first formulation and motivation of this
problem was given by Dobrushin who considered the problem of finding r.f.
with a given system of the conditional probabilities [1-2], proved some sufficient
conditions of the existence and uniqueness of such r.f. [1-6] and gave examples
of non-uniqueness [4].

An independent approach was proposed by Lanford and Ruelle [7-8], The
Lanford-Ruelle approach is more immediate from the point of view of statistical
mechanics: given a potential describing the "interaction" of single values of r.f.,
how many r.f. correspond to it? The uniqueness of the solution of this problem is
associated with the absence of the phase transitions in the infinite system with
this "interaction".

On the other hand, Dobrushin's approach was developped in [9-11] where
the problem of describing the system of conditional probabilities was considered.
It turned out that under same general conditions a system of conditional
probabilities admits a so-called Gibbs description in terms of a function (or a
family of functions) interpreted as a "generalized potential" of interaction of single
values of a r.f. We shall call this function the "generating function" (g.f.) of the r.f.
The results of [9-11] unite both approaches mentioned above. One of the
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advantages of the Gibbs description is that the g.f. plays the role of an "independent
parameter" indexing the r.p. and r.f.

The one-dimensional case, i.e., the case of r.p., is distinguished from the others:
one expects that under general "natural" conditions on the g.f. there exists the
unique r.p. corresponding to it. This hypothesis is based on statistical-mechanical
arguments: in one-dimensional systems there is no phase transition1. The present
paper contains a uniqueness theorem for a class of random point processes
(r.p.p.). The r.p.p. are associated in statistical mechanics with the states of one-
dimensional continuous classical systems.

The problem of the uniqueness for r.p.p. was considered in [6, 14,15]; one
of the main restrictions in [6,14,15] was the "hard-core" condition imposed on
the g.f. i.e., the assumption that the g.f. takes the value + oo. This assumption
simplifies the structure of the r.p.p. associated with the given g.f. and makes
possible the use of compactness arguments. In [15] the condition of hard cores
is dropped in the case when the g.f. has, in a sense, a compact support. Here we
consider the case when the g.f. has, in general, no hard cores and no compact
support. The first restriction is replaced by the condition of the non-negativity
of the g.f., the second one - by the rapid (super-exponential) decrease of the g.f.
at infinity. We must say that our uniqueness theorem is, apparently, far from
indicating the precise boundary (in terms of the degree of decrease of the g.f.)
between the uniqueness and non-uniqueness of the r.p.p. corresponding to a
given g.f. However the necessary conditions for the uniqueness probably are
more restrictive in our case than in the case of r.p. with discrete time and a finite
single-value space [4,16] or in the case of the r.p.p. corresponding to the g.f.
with a hard core [6, 14,15].

Theorems 2 and 3 establish some regularity properties of the r.p.p. correspond-
ing to the given g.f.

1. Random Point Processes and Generating Functions

The general theory of r.p.p. is developped in [17], For the reader's convenience
we give here some basic definitions. Let Θ (resp., G(Ω)CG) be the collection of all
finite subsets xCR1 (resp., xCΩ where ΩCR1 is a bounded Borel set (b.B.s.)) with
the point-to-point convergence topology: xa-+x iff

a) n(xa)-+n(x) where n(y) is the cardinality (number of the points) of yeG,
b) max min|x —x ; |->02.

xex x'exoc

Denote by 21 (resp., 2t(Ω)c9l) the Borel σ-algebra of subsets oϊΘ (resp, Θ(Ω)).
On 91 (and automatically on 9I(ί2)) one defines the measure λ:

λ(A)= Y —-mQsn{(xί,...9xn)eR%\{x1,...,xn}eA},
n = 0 H '

where R% = {(yί9 ...,yn)eRn:yi + yj, \^i<j^n\ {χl9 ...,xn} is the unordered set
consisting of the points x l 5 ...,xn 5 mesn is the rc-dimensional Lebesgue measure.

1 In general, this assertion is not true, see [12,13]
2 The empty set 0 is finite by definition and its cardinality is 0. In this topology it is an isolated
point. We use the same symbol for indicating the empty set as an element of & or Θ(Ω) and for noting
it in a concrete set-theoretical context
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By definition, λ(0) = l. Let fiO-^R1^^} be a measurable function, /(0) = O,
denote

and
if x = 0,yφ0 and

[0, otherwise. x,ye(9.

Let Ά be the collection of all finite or countable subsets of R1 having no limit
points in R1. The elements of Si are denoted X, Y, etc. Ά is provided with the
weakest topology in which the map

is continuous for any open b.B.s. ΩcR1; with this topology Ά is a polish space3

[18]. A random point process is an arbitrary probability measure on the Borel
σ-algebra 93 of subsets of Ά.

Another description of the σ-algebra 93 may be given as follows. Let nΩ

1A be
the full pre-image in J of a set A C Θ(Ω) under the map πΩ. The sets πΩ

 ιA, Ae 9ί(Ω),
form a σ-algebra of subsets of Si denoted by 93Ω. Clearly, 93Ol £ 93β2 provided
ΩigΩj. The union (J 93Ω is denoted 95 it is an algebra of subsets

ΩcRι,Ω is b.B.s.

of Si, 93 is the smallest σ-algebra containing © . It two r.p.p., P1 and P2, coincide
on S ~ then P1 = P2 on 93.

Given a r.p.p. P, denote PΩ the probability measure on 23β induced by P :
PΩ(A) = P(A\ Ae?βΩ. Let © Ω c be the smallest σ-algebra containing all 93Ω,, where
Ω'CK1 \Ω 4 . Since ^ is a polish space, for any pair of b.B.s, ΩQΩ'CR1 there exists
PΩ( |93β,c), the conditional probability measure on 93βJ under the σ-algebra
^BΩΌ, see [19, p. 53, Theorem 3], We say that a r.p.p. P is regular (from outside,
cf. [4]) if for any b.B.s. ΩcR1, P-almost everywhere on Ά,

lim Var[PΩ( |93Ωe ) , P Ω ] = 0 ,
N-+σo N

where ΩN = (-N9 N), Var[P?, Pf] - sup \P^(A)-P%(A)\ is the variation distance
AefBn

between measures on 93β.
Let X e J , teR1; define Γ . X ^ ^ G J R 1 :q-teX}. The maps T. J - ^ J form

a one-parameter group of transformations of Si. We say that a r.p.p. P is invariant
if for any ,4e93 and ίeJR1, P{TtA) = P(A\ The r.p.p. P is invariant if this equality
holds for any teR1 and Ae?B . Similarly, a function / on & is called invariant if
for any xeΘ and ίeK\ f{Ttx) = f{x)

We use below the notation XΩ for X n Ω in the case of general (not necessary
bounded) Borel ΩcK 1 . For xeΘ and Xe J denote

Ef(x\X)=\im oxpl

3 The topology induced on Θ as the subset of 2, does not coincide with the topology of the point-to-
point convergence
4 Here and below Of denotes the complement of Ω in R1 the complement of a set A in «S is denoted J"
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if this limit exists. Let now ΩcR1 be a b.B.s., XeΆ\ denote

Ξ(Ω,XΩC) = J
&{Ω)

pΩ(x XΩC) = S(Ω, XΩC) ~1 exp [ -

and

if the limits and the integrals under consideration exist. We say that a r.p.p. is a
solution of the DLR equation5 with the g.f. / if for any b.B.s.

a) the limit Ef(x\XQC) exists for almost all (w.r.t. the measure λxP) pairs
(x,X)eΘ(Ω)x£,

b) the integral Ξ(Ω, XQC) converges for almost all (w.r.t. P) I e J ,
c) for any Ae$βΩ

P(A)=$P(dX)PΩ(A;XΩC).
2.

In what follows we consider the functions / satisfying a number of conditions
inspired by statistical mechanics. The first assumption is:

(11) / is an invariant function taking finite values for almost all (w.r.t. λ) xeΘ.
This expresses the absence of hard cores. The next condition is:
(12) /(x) = 0if n{x)^\xe±
This corresponds to the case of pair interactions in statistical mechanics.

Conditions (II) and (12) mean that / may be identified with a pair (c05 V) where
coeRx is a constant, and F:(0, oo)-^^1 is a measurable function. More precisely,
f(x) = c0 if n(x) = l, and f{x)=V(\x-x'\) if h(x) = 2 and x = {x,x'}, x ^ ' e R 1 . In
these terms

f Σ V(\x-x'\),xeO,
x,x'ex, x^x'

and

hf(x\y)= Σ K(|z-zUx,yΦ0,xnjΓ=0.
zex, z'sy

Finally,
(13) F ^ O and there exist d>0 and a non-increasing positive function ψ(r),

r^d, such that limι/;(r)exp(αr) = O for every α > 0 and V(r)^ψ(r\ r^d.
r->oo

Remark. The results formulated below remain valid under some more general
assumptions imposed on hp see § 2.

Let / satisfy the conditions (11-13). Then for any x, yeΘ and XeΆ

hf(x) ^con(x), hf(x\y) ^0, Ef(x\X) ^ 1. (*)

Denoting

μ(A) = J dλ(x) exp [ - con(x)], ̂  g ©, X6 81,

See Dobrushin [3-6], Lanford and Ruelle [7], Ruelle [8]
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we have the following estimates:

1 = exp [ - ft/0)] Ef(0\XΩc) S Ξ(Ω, XQC)

S μ{(9{Ω)) = exp {ec° mQS1 Ω).

Hence, for any b.B.s. ΩQR1 and XeΆ, P o( XΩc) defines a probability measure
on 95Ω. Let Ae9βΩ. As the function of X, PΩ(A;XΩC) is 93βc-measurable. Hence,
if P is an arbitrary solution of the DLR equation with the g.f. /, then PΩ( XΩC)
coincides, for P-almost all Xeϋ, with the restriction on 93Ω of the conditional
probability measure P( |33βc)(X) generated by P.

We conclude this section by a simple lemma whose proof is omitted.

Lemma 1.1.Suppose Ω1CR1 and Ω2cRι are b.B.s., Ω1nΩ2 = 0. The map

(9(Ω1KJΩ2) 3 x<->(xnΩl9 xnΩ2)e Θ{ΩX) x 0(Ω2)

is an isomorphism between the measure spaces (Θ(Ω1^ιΩ2), 9I(Ω1uΩ2), λ)
and {0(Qx\ SΰHβά λ) x (Θ(Ω2), SΪ(Ω2), λ).

As the consequence of Lemma 1.1, we obtain that if P is a solution of the
DLR equation with the g.f. f and ΩcΩcR1 are b.B.s., then for any Ae?βΩ

3,

where

P%(A;Xΰc)= ί dλ(x)p%(x;Xύc),
πςiA

Mxi Xfr) = Ξ(Ω, XficΓ^x, Ω; XΩC),

and

Sβ(x, Ω Xβc) = j d̂ OO exp [ - hf(xu

In other terms, P%(-',XQC) coincides, for P-almost all l e i , with the restriction

2. Formulation of Results and Preliminary Estimates

We prove the following theorems.

Theorem 1. Let f obey (Iί—13), There exists a unique solution of the DLR equation
with the g.f. f.

Theorem 2. The solution of the DLR equation with the g.f. f obeying (11-13) is a
regular r.p.p.

Theorem 3. The solution P of the DLR equation with the g.f f obeying (11-13)
is an invariant r.p.p. The triple (J, P, {Tt, teR1}) is a generalized B-flow in the
sense of ergodic theory (see [20]J.

Remarks.'a) The statements of Theorems 1-3 remain true under more general
conditions. In addition to (II) it is sufficient to assume that,

(Γl) there exist constants cίeR1 and c 2 ^ 0 such that

(x), xe®,



118 Yu. M. Suhov

and

hf(x\y)^ - c 2 min[n(x)9 n(y)l xC(- oo, 0), yC [0, oo),

(Γ2) there exist a constant d>0 and a non-increasing function ψ:[d, o o ) ^ ^ 1

such that limφ(r)exp(ocr) = O for every α>0, and for any xC{ — oo,0), yC[d, oo),
r->oo

\hf(x\y)\S Σ Ψ(\i-j\)n(x,i)n(y,j),

where n(x, 0 = w(Jcn[i, /+ 1)), rc(y, j) = ft(yn[/, j+1)).
If we assume that /(jc) = O when diamx = max Ix-x ' l rx^ (the finite range

or compact support assumption), then it is possible to prove statements like
Theorems 1-3 for superstable g.f. [8] dropping the condition

hf(x\y) ^ - c2 min [n(χ), n(y)~] .

b) Similar results may be obtained for marked r.p.p. and r.p. with the discrete
time with non-compact single-value space. We do not dwell here on this problem.

Before going to the proof of Theorem 1 we formulate a simple lemma playing
an important role in our analysis.

Lemma 2.1. Let \p\[d, oo)—•K1 be a function satisfying the conditions (13), J 1 > 0
and d2>0 be fixed numbers. Then one can

i) find two increasing sequences {rn, n ̂  1} and {sn, n ̂  1} of positive integers,
and

ii) find a (double-indexed) sequence {mf\ j^0,n^l} of positive integers such
that m ^ m ξ 0 ^ . . . and,

QO 00

I Σ alϊXdjKoo where a{

n

1)(d1)= £

II Ίim dfXd^O where ctf){d1) = \rn{s
«-> 00

III lim a(

n

3) = 0 where α<,3) = 2(m(

0"
))2[fn(sn + l) + 1 ] £ ψ(k)

n -> oo k^.rn

k-rn k-rn{sn+l)Σ /ί \ V

ψ(k) 2J

IV lim a{*\d2) = oo where a^\d2) = sn exp ( - 2d 2rJ
n—* oo

— 2m(

0"
) ^] φ(/c) ^] m j Π ) ~ ~ ^2( r n + 1 ) -

Proof o/ Lemma 2.1. It suffices to take 5Π = [αn] where a> 1 is large enough and
then to think

where b > 0 is a fixed number, [ ] denotes the integer part.
Now we start with the proof of Theorem 1. In the process of proving we establish

some auxiliary Lemmas used as well in the proof of Theorems 2 and 3. In this
section we state preliminary estimates; the proof will be completed in Section 3.
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Proof of Theorem 1. The existence of a solution of the DLR equation with the
g.f./follows from Theorem 5.5 in [8] 6. Hence there is only to prove the uniqueness.
We begin with some auxiliary constructions. We suppose once and for all that
d>0 in (13) is chosen ^ 1, otherwise it would ne necessary to make some obvious
changes in the arguments below. Let m= 1, 2, ... denote

0n={xe0([O,l)):n(x) = m},<P>m= [) &k,&±m= [j Θk,
k>m k^m

and

Let P be a solution of the DLR equation with the g.f. /. Using (*) we obtain

) Σ
m'>mm m '

where dι>0 depends on c0 but does not depend on m; in what follows we take
it as the argument value for a^] and a{2\ The same estimate holds for P(Tjβ>m%
k=±ί, ± 2 , . . . . If now

k=0 ~ k=l

then for the complements, J ( " } and J (" }, we have the estimates

Let 0 < ε < l b e a n arbitrary number. Our aim is to prove that if r.p.p. F and P"
are solutions of the DLR equation with the g.f. / then for any b.B.s. ΩcR1 and
v4e33Ω, \P'(A) — P"(A)\<ε. In what follows we think dx is fixed as it is indicated
above and d2=2e~co and omit these symbols from the notations. We omit also
the index / in hf and hf( \ ). Fix sequences {rn\ {sn} and {mjn)} satisfying the
relations I-ΓV of Lemma 2.1. Given 0 < ε < 1, choose n so large that the following
inequalities hold:

a£\ a{

n

2)< l/84ε, max \_e2a^- 1, 1 - e~2a^ < l/6e, e~<4) < l/56e . (**)

Now fix some b.B.s. ΩcR1. Without loss of generality we suppose that

Ω = [α l 5 α 2 ) where aι<a2 are integers. For Ae%5Ω denote

A-+(Ω) = (πΩA)nΓ f] TΛι + kΘ^mfc, ) n Γ ^ Γβ 2_ k(P^m
\ k = o " k+1 / \k = i "

Denote

Ω =Ω {n) = [oίι-nuoc1\ Ω+ =Ω+(ή) = [ot2, <

and
: i — 1

n
6 Formally, Theorem 5.5 in [8] is stated for the case of superstable pair potentials [a sufficient
condition for the superstability is: Ve C(0, oo), F ^ O and lim F(r)>0], but the method of the proof

r->0

may be extended to our case without difficulties
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Let

= ί dλ(y) j dλ{y~) ί

Denote

a n d

Lemma 2.2. Lei P satisfy the DLR equation with the g.f. f. Then for any

Proof of Lemma 2.2. According to Lemma 2.1, the choice of n and the estimate for

P(I(ί}),
0 ^ P(v4) - j P(dX)P(A JSΓΩ,C) ^ 2/84ε = l/42e .

Analogous arguments show that

XΩ,C) - J dλ(x)pΩ

Ω,(x; XΩ,C)\ ^ l/42ε

X β . ) - J dλ{x)pΩ

Ω{x X Ω ,) | < l/42ε .
Λ" (Ω)

and hence

Furthermore,

= S(Ω'; ^c ί^CSίΩ' ; XΩ.e)-Ξ£\Ω'; XΩ^ .

The difference in the square brackets may be expressed as the sum of three integrals

J dλ{y) J dλ(y') j dλ(y+)+ j dλ(y) J

Θ{Ω + )

j dλ(y~)
(9{Ω +
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All of them are estimated similarly and do not exceed, respectively, 2a^\ a^ and
α[j2), times Ξ(Ω', XΩ>C). For instance, the second integral is less then

\ f dλ{y) ^vl-
k = aί-nί <9(Ω'\ [k,k+ί))

we have used here Lemma LI and the estimates (*). Finally, we obtain

and hence,

Now we estimate

A ~ + (Ω)

i / ί * 7 Λ \ ( 1 \

I J i i£, ii

\ A' +(Ω)

The integral under the absolute value sign in the right hand side (RHS) of the
last inequality may be estimated like [Ξ{Ω'\ XΩ,c) — Ξ£XΩ'm9 XΩΌ)~\ above and
is less than 2a{n)Ξ(Ω'\ XΩ>C). Hence, the RHS of the inequality does not exceed
5/42ε. We obtain that

j P{dX) j dMx)p%,(x;XΩ,c)-P£XA) <5/42ε,

and on account of preceding bounds, \P{A) — P^\A)\<\/6ε. Q.E.D.
The next step is to introduce the "cutoff function fn(x) associated with the

pair (c0, Vn) where Vn(r)=V(r) if 0<r<rn and Vn(r) = 0 if r^rn. Hence,

hn(x) = hfn(x) = con(x) + X V(\x-x'\)9 xeΘ ,
x,x' ex,

0< |x-x'| <rn

and

hn(x\y) = hfn{x\y) = Σ V(\z - z'D, x, y 4= 0, x n j ; = 0.

Denote

S<2>(O';Zβ,)= f rfA(JJ) j

- hn(y) - hn(y\Γ υ y + ) ] £B(y ~ u

';X Ω , c )= ί dλ{y~) J

- hn{y~) - K(y+)- h(y\Γ υ y + ) ] EJ$~ u

ip%)f\x; XΩ.c) = Ξ^XΩ';XΩ,c)Ξ%n{x, Ω';XΩ,C).

Denote

A;Xn,c)= f
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and

Lemma 2.3. Let P satisfy the DLR equation with the g.f. f. Then for any

Proof of Lemma 23. Suppose yeΆ"+(Ω\y'eG{n\Q-\ y + eΘ{n\Ω+) and
XGΓ α i _ n i _ 1 J ( " ) nT 0 C 2 + n i J

( ΐ ) . A direct calculation shows that

e x p [ - h(y}- hn(y~)- hn(y+)- hn(y\y~ uj7+)]EM(y~ u y + \XΩ,C)

exp[ — h(yuy u y + )
k-Yn

S] Σ ψ(k) Σ ;

k> r n 1 = 1

+ 2 Σ
k>nx 1 = 1

Hence:
u,w (U ,ΛΩ,C) ^ΩtΆ(X,U 9ΛΩ,c) ( 3 ) - . - + ί β )

and, according to (**), IP^iA)- P{

n

2\A)\ < l/6ε. Q.E.D.

3. End of the Proof of Theorem 1

Denote Ln = [-rn,rn\

Oi'XLJ-ΘiLJnΓΓ) TkΘ^
\k=-rn

and JSPJ = J5?2(d?(n)(Lπ), A). < , > denotes below the inner product in JS?2. Let

Jf π(x, y) = exp [ - Λ(χ _) - /z(x+) - hn(T_rx _ |j?) - / z ^ x +1 JO]

where jc_ = x n [ — rM5 0), x + = xn[0, rw), x, ye& {n\Ln). Consider the operator
Kn in ^l given by

(XnFXx)= f dλ{y)tfn^y)F{y)

Using the inequalities (*) (which hold, of course, for hn as well as for h), it is easy
to check that Kn is a Hilbert-Schmidt operator in 5£2

n. Since Jf^(x,y)^0, it
preserves the cone of positive functions in if2.

Denote
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and

H(x; A ~ +(Ω)) = j dλ{y) exp [ - h(x _) - h(x+) -

Clearly, fl. + ( . * f l , c ) , i ί( . ,4" +{

Lemma 3.1. The following representation holds:

The proof of Lemma 3.1 is immediate and based on the invariance of functions
/ and /„, on Lemma 1.1 and the definitions of hn and P^\A; XΩ>C).

Lemma 3.2. The operator Kn (resp., the conjugate operator K*) has a unique
positive eigenvector Φne^£2

n (resp., Φ*eJ£%). The corresponding eigenvalue An is
positive, non-degenerate and the largest one among the eigenvalues of Kn (resp.,
K*) in J?2

n.

Proof of Lemma 3.2. According to Proposition β' in [21, p. 274], it is sufficient to
verify that the kernel Jfn(x, y) is strictly positive. This follows from the definition

In what follows we assume that the vectors Φn and Φ* are chosen so that
<ΦW,Φ*> = 1. Denote

and

H(x;A-+(Ω)) = (H(-;A-+(Ω)),ΦΪ>-ιH(x;A-+(Ω)) if λ(A

the above formula for PfXA; XΩ.C) may be rewritten in the form

M A - + m > 0

. 0 otherwise,

where

Our aim now is to estimate (Ks

n

nH( • A +(Ω)) - Φn, H _ +( XΩ c)}. To simplify
the notations we omit, where it is possible, the symbols A~ +{Ω) and Ωc up to the
end of the section.

Lemma 3.3. Let A Γ eΓ β l _ B l _ 1 ^ ) nT β 2 + I I 1 J2ΐ ) . Then

Σ
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Proof of Lemma 3.3. According to the definition we have the following estimates

J dλ{y') j dλ(y'') exp[-h{y')-Λ(f')]

and

^expf-2m<0"'X ttffc) Σ mf

Hence,

•fΦ*(x)
β(Ln)

Now

dλ(y)Φn(y)= ί
(

The ratio Φ*(y)~1Φ*(x) is estimated as follows. Firstly,

Φ*(y) ~1 Φ*(χ)=

_ ff(">(Lw) C ( W )(L

Using (*) we conclude that the denominator is less than

J dλ(z)Φ*n(ϊ)exp[-Ψ-)-Kϊ+)Ίί• μ{®{n\Ln))
&(n)(Ln)

S j dλ{z)Φ*n{z) exp[-h(z_)-h{z+)-] exp(2rne"«).
&{n)(Ln)

On the other hand the numerator is greater than

Λ(z, 0 ) ^ ( 0 , x)

Hence,

- 2 e - c X ) , x, yeΘ{n\Ln),

and, since <ΦnJΦ*> = l,

J
>

This completes the proof of Lemma 3.3.
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Lemma 3.3 allows us to estimate

"' Σ Φ) Σ mf
The main step in the estimation of (Ks

n

nH — Φn, H_ +(• X)} is the following.

Lemma 3.4. For any Λe^BΩ such that λ(A~ +(Ω))>0

Proof of Lemma 3.4 (see [15, 22]). Denote

Θ%\Ln) = {xe G*\Ln): {P»H)(x) ^ ΦB(x)},

and

^ ) ^ Φn(x)}

the both sets depend, of course, on A~ +(Ω). Since (Ks

n

nH-Φn, Φ*

= <H,K*S n$* n>-1 = <H, Φ * > - 1 =0, we obtain

<μe;»H-Φn,Φ*>=2 f

= 2 j d^x)Φ*(x) f
&ln)(Ln) &nH

=2 J

= 2 j

./I - f

Now denote

<"»(Ln):(K* ~ 'H^x) < Φn(x)}.

Then the RHS of the last equality is less or equal than

2 ί dM&UKΐ-Ήm-ΦMΦfo)
0<"j (Ln)

•ίi- ί d^x)Φ (x)[ylIΓ
1jriI(Jc,Jθ]Φ (y)" 1

V
There are two possibilities: θ e ί ^ L , , ) and 0eΘ%\Ln). At first suppose that
0eΘ("\Ln). Then according to the above estimate forΦ^i(y)~1Φn(ic),

According to Lemma 3.2, for any fixed positive F l 5
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Since j f „(*, y) g exp [ - h(x _) - ft(x+)], we deduce from this that AnS μ{(9{n\An)) <
exp(2e~Corn), and hence the RHS of the preceding estimate is greater or equal to
exp( — 4e~corn). Finally, in the case 0eΘ{H\Ln) we obtain

ί GO

the last equality holds because (Ks

n

n~1H — Φn, Φ*}=0,
If 0G ^ ( L J , we can repeat the arguments replacing everywhere &{+{Ln) and

β^+ίZJ by $("}(Ln) and $("}_(Ln) and vice versa. We arrive to the same bound.
By repeating this procedure sn times and taking into account that (]H — Φn\,

Φ*>^ (H + Φπ, Φ*> = 2, we obtain the statement of Lemma 3.4. Q.E.D.
According to Lemmas 3.3 and 3.4, we obtain the estimate

^o } y ψ(k) T m{P} + 2e co(rn + l) — sne
 4corn}.

With our choice of n (see (**)) the following lemma holds:

Lemma 3.5. Let P satisfy the DLR equation with the g.f. f. Then for any

Proof of Lemma 3.5. Clearly, it is sufficient to consider the case λ(AΩ

 + ) > 0 . Ac-
cording to preceding estimates,

\(PU2\Λ XΩ>C)- P{

n

3)(A)\ <2/28ε(l - l/28β)"1 < l/7ε .

Integrating over T α i _ n i _ 1 = 2ί ) nT α 2 + M l ^
( " ) and taking into account that

P(Tαi _Πl _j.^^0Tα 2 + W l«2 (; ))^ 1 — l/42ε, we obtain the statement of Lemma 3.5.
Now suppose there are two solutions, F and P", of the DLR equation with

the g.f. /. Then, according to Lemmas 2.2, 2.3 and 3.5, for any v4e23Ω,

\F(A) - P[3\A)\ < l/2ε, \P'\A) - P^\A)\ < l/2e,

i.e., \F(A)-P"{A)\<ε. Since ε is arbitrary small, F{A) = F\A\ This completes the
proof of Theorem 1.

We conclude this section by a remark used below. The arguments of Sections
2, 3 may be summarized as

Lemma 3.6. Let P be a solution of the DLR equation with the g.f.f. Given ε>0
there exists n such that for any Ω = [ α 1 ? α2) where oc1<oc2

 a r e integers, any

K.(A;XΩ.e)-P(A)\<8.

We emphasize that although all constructions of the two last sections are
given for fixed £2, the choice of n does not depend on it. This fact will be used in
the proof of Theorems 2 and 3,
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4. Conditional DLR Equation

Ergodic properties of the r.p.p. P being the solution of the DLR equation with
the g.f. / are closely connected with the conditional probability measure
H'I®[o,oo)) where the σ-algebra 23 [ 0 o o ) *s t r i e smallest one containing all 33 Ω,
ΩC[0, oo). A useful construction relevant to P( |23[0>00)) may be given as follows.
Denote

Ά = Ά\ Π (J J? .
k n^k

In other terms, Xei iff for almost all n9 Xe£{ϋ\ Clearly, Je33, and P ( J \ J ) ^
inf £ P ( ^ } ) = 0 according to Lemma 2.1, i.e., P(J) = 1.

Let X e J ; we say that a probability measure έP^^^- X) on the σ-algebra
®(-oo,o) generated by 93β5 ΩC( — oo, 0), is a solution of the conditional DLR
equation with the g.f. / if for any b.B.s. Ωc(— oo, 0) and

Theorem Γ. Lβί / satisfy the conditions (11—13). For any Xel there exists a
unique solution ^ ^ ^ ( X) of the conditional DLR equation with the g.f f If P
is the solution of the DLR equation with the same g.f, then

for P-almost all X.

Proof of Theorem Γ. We give here a sketch of the proof omitting details which
are analogous to that in the proof of Theorem 1. The existence of a solution for
Xe J may be proved, as above, by using the methods of [8]. So we prove the
uniqueness. Given X e J , there exists no = no(X) such that Xel^ for any n^n0.
Given ε>0, choose n so large that n^n0 and the inequalities (**) hold. Let
Ω=[α 1 ?O) where α x < 0 is an integer; the notations nί and Ω~ used below have
the same sense as in Sections 2, 3. Denote Ω^ = Ω " u Ω = [ α 1 - n t , 0) and for

Denote

= J d/l(j7-)exp[-^ujr)]E(xu}7|y (_O O ) α i_M i )uX [ 0 ? J ,

(P<n>(β-)

(Pθf)n (*l ^/(-oo,α1-«1)

=S<1)(ΩΓ; ^ - ^ ^ - ^

To simplify the notations we omit, where it is possible, the upper and lower
indices Ω, Ωj[,(—oo,0), etc., keeping in mind that pf(x\Y,X) below denotes
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,oo))5 *=1,2, etc. We first approximate 0>{A\X) by

Lemma 4.1. Let &(- X) be a solution of the conditional DLR equation with the
g.f. f obeying (11—13). Then for any

The proof of Lemma 4.1 is analogous to that of Lemma 2,2 and we omit it.
The next approximation is

= J dλ(y) J

= f
6?(")(Ω-)

p<2)(x; Z, y)=Ξ<2>(βΓ X, YΓ'S^x, Ω1 7, X),

and

Lemma 4.2. L^ί ^ ( X) be a solution of the conditional DLR equation with the
g.f. f where f satisfies the conditions (11—13). Then for any

\ X)\ < l/6ε .

The proof of Lemma 4.2 is analogous to that of Lemma 2.3 and omitted.
/ -i \

Denote L~ = [ - rn, 0) and Θ{n\L~) = Θ(Ln) n f] TkΘ ̂  <n) in this section <e\
\k=-rn I

denotes the space <£2{G{n\L~\ λ) and < , > its inner product. Let

consider the operator K~ in if\ given by

(K;F)(x)= J dλ{y)^-n{

Introducing the functions

#-(*)= ί dλ{y') J

and

H(x,A+(ot1);X)= ί

£ B ( T β l - r

we have the following
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Lemma 4.3.

ιχ. X) =

The spectral analysis of the operator K~ is analogous to that of Kn. Finally,
introducing

where Φ~'* is the positive eigenvector of the conjugate operator {K~)*, we obtain
an assertion which is analogous to Lemma 3.5.:

Lemma 4.4. If 0>( ; X) satisfies the conditional DLR equation with the g.f. f then
for any

Now the proof of the uniqueness of the solution of the conditional DLR equation
is completed as above.

The proof of the equality ^ ^ ^ ( X) = P( |93[O> ̂ (X) is based on applica-
tions of Fubini's theorem and the proved uniqueness of the solution of the (un-
conditional) DLR equation. We omit it from the paper.

We summarize the above considerations as follows.

Lemma 4.5. Let P (resp., ^ . ^ ^ ( X\ XeΆ) be the solution of the DLR (resp.,
conditional DLR) equation with the g.f. f satisfying the conditions (11-13). Given
ε>0, there exists n such that for every Xe J n J ( + }

O IΛjJ V CXL \_*-S ί QQ Q\ \ j -/V )<) i I ^ ^ O ?

where S>\Zn^Q"1\-\ X) is the restriction of the probability measure ^{-M Q)( ;X)

on ©[_„,,_„;,.

Proof of Lemma 4.5. Given ε > 0 choose n such that
a) for every fe= 1, 2,..., and any
b) for every Ω = [α1 ? α2), any

The first possibility follows from the definition of ^ ( _ 00> 0)( X) and the estimates
(**), while the second one is the assertion of Lemma 3.6. According to the definition
of ^ ( - o o ^ X), for every nf>n1 and any Ae?&{-n,^ni) we have

J _

and according to the conditions a), b), the RHS of the inequality is less than ε.
Taking the suprema in the left hand side (LHS) of the inequality we arrive to the
assertion of Lemma 4.5. Q.E.D.
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5. Proof of Theorem 2

In this short section we prove the regularity of the r.p.p. P. Clearly we can consider
only the case Ω = [ — α, α) where 0 < α < oo is an integer. It suffices to find a subset
J 'CJ, i ' e S , such that P(i ')=l, and for any i

We choose & = Ά\\f) [j (T_a_nι_1ϊ
{!l)nTa+nβ^)}(vQmQmbQv:nι=n1{n) =

[ k n^k J

Φn +1) +1). In other terms, Xe J2' iff for almost all w, Xe T_α_ni _ i ^ n T ^ ^ i ? .
As above, it is not hard to see that such J ' has P-mesure 1.

We now prove the limit relation above. Given XeΆ\ there exists no~no(X)
such that XeT_α_n i_1^

(" )nTα + Π l^
(ΐ ) for every n^n0. Given ε>0, choose n so

large that n^n0 and the assertion of Lemma 3.6 holds. Take JV0 = α + w1. Then
allJV^iVo
a) XeT-ji-iΆ^nTjtΆ^ because of the monotonicity of mf\j=ί,2....,
b) PΩ

ΩN{A>XΩ^ = P%{A>Xfrc) where Ω = (-a-N + N0, a + N-N0).
Hence, according to Lemma 3.6,

Taking the supremum of the LHS of the last inequality we obtain the assertion
of Theorem 2.

6. Proof of Theorem 3

The invariance of P follows from Theorem 5,8 of [8] (see the footnote 6, p. 119).
For reader's convenience we give a sketch of a direct proof. By the invariance
of the g.f. /, for any b.B.s. ΩcΩ'cR1

Then the assertion of Lemma 3.6 implies that \P(A)- P(TtA)\<2ε. This gives the
invariance of P.

In what follows we use standard notions and notations from ergodic theory
(see, e.g. [20]). The assertion of Theorem 3 means that for every teR1, Tt is a
generalized B-shift. We prove this for ί = l 5 the general case may be considered
in a similar way, using a slight modification of the construction of sections 2-3.
The key statement in the proof of the B-property of the r.p.p. P is Lemma 4.5.

Let ξ be the countable partition of Si whose elements are

Let ηt be a decreasing sequence of S[Ofl)-mesurable countable partitions of Ά
00

such that η^ξ and \ / ^ = © where Ϋ\X= \j Tkηt. [It is easy to give examples
I k= - o o

of such sequences, see, e.g., [23].] According to Theorem 2 of [24] it is sufficient
to verify that every ηt is weak Bernoulli. Take ε>0 and choose n so large that

)ύ Σ p(Tk^>m^ί)S Σ μ(^>m(n))<4υ<ε, and the assertion of Lemma 4.5
ko k+i u i k + 1
k=o

holds. Let n'>nί be an integer; denote by {D } (resp., {D'j}) the collection of
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n'-nι
ι !

elements of \/ Tkηι jresp., \J TkηX and by E{n) the union of those D which
fc = O \ k=-n' I

either belong to (J Tkl>m{n) or have the P-measure 0. By the choice ofn,

( Λ ))<ε.
Now letD;.(t£(w). Then

fcgn

by Lemma 4.5. This gives the estimate

o S 1
and hence

o< 1-ε

Similarly, for any Ae^B^-

P(j

and hence,

i — ε

i.e.,

1-ε '

Here P(A/D[) (resp., P μ / D n J ? ) ) and P[~n'^n'\ /D'^ (resp., P [~"'"Π l )( /D;n
J(+})) denote the conditional probability of 4̂ under D\ (resp., D nJ ( " } ) and the
conditional distribution on S[_II,>_Πl) under D (resp., D j n J ^ ) respectively.

Since

ί)"1 ί

we obtain, by Lemma 4.5 and the above estimate,

1 —ε

Finally, for D\(tE{n)

j

and hence, ηι is weak Bernoulli.
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