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Integration of the Tomonaga-Schwinger Equation
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Abstract. Some integrations of the Tomonaga-Schwinger equation with a
non-local interaction are studied with mathematical rigor. It is proved that
the related initial value problem has a unique solution in any finite region of
the space-time corresponding to each set of space-like surfaces which covers
the region. Such an analysis can be extended to the case of quantum electro-
dynamics by the aid of a Lorentz-invariant topology introduced in the *-algebra
of electromagnetic field operators.

§ 1. Introduction

Though the Tomonaga-Schwinger equation

iδ Ψ(σ)/δσ(x) = H(x) Ψ(σ) (1.1)

in the interaction picture is most fundamental in the early quantum field theory,
it is very difficult to understand the precise mathematical meaning of this equation.
If, however, we replace the interaction Hamiltonian density H(x) by some non-
local ones, we get a clue to treat the equation mathematically. The purpose of the
present paper is to study this problem in some detail.

We start with the scalar coupling between a neutral scalar field of mass μ φ 0
and a spinor field of mass K φ 0. We work with the Hubert space

where § M is the Fock space for creation and annihilation operator-valued distribu-
tions φ*(k) and φ(k) of the neutral scalar field and ξ>D is the same for the spinor
field. We are interested in the local interaction Hamiltonian density

, (1.2)

iV[...] means the normal product



62 H. Wakita

where φ(x) is the neutral scalar field

(1.3)

(1.4)

and ψ(x) is the spinor field, both in the interaction picture. Instead of attacking
(1.2), however, we shall consider the regularized Hamiltonian density

H{x; ρ) = gNlψ{x; ρD)ψ{x; ρD)]φ{x; QM), (1.5)

where

Φ(χ; g)=$ρM(χ-y)Φ{y)dy, (1.6)
ψ(x ρ) = J ρD(χ - y)xp{y)dy , 1

φ(x ρ) = J ρD(x - y)ψ(y)dy , J

and regulators ρM(x) and ρD(x) are to satisfy conditions described in the next
section.

The derivative on the left-hand side of (1.1) is defined in the following manner.
We introduce a covering {σλ} of a space-time region in terms of one-parameter
family of space-like surfaces

σλ={(x°(x;λ),x)}9

which are to satisfy conditions given in the next section. We always put the
restriction that the region Σ(σb^σa) between two space-like surfaces σb and σa is
bounded. The derivative in question is then defined by

H m Ψ(σλ+Δλ)-Ψ(σλ)

where the denominator is the volume. Because of the formula

d\Σ(σλ>σa)\/dλ= \{dx°!dλ)dx, (1.8)

we can interprete the formula (1.1) as

idΨ(σλ)/dλ = H(λ;ρ)Ψ(σλ), (1.1')

where

H(λ; ρ) = Jiί(x; ρ)(dx°/dλ)dx . (1.9)

The main purpose of this paper is to point out that the Equation (l.Γ) has a
unique solution U(σλ, σλo)Ψ(σλo) for any initial data Ψ{σλo). The advantage of the
present approach over the usual method of using only hyperplanes is obvious
from (1.8). We have a spatial cut-off (dx°/dλ) without artificially introducing it.
On the other hand, the assumption of bounded Σ(σa>-σb) does not seem to cause
any inconvenience because any space-time point can be included inside a bounded
Σ(σa>σb).

The above analysis can be extended to quantum electrodynamics, as we shall
see in Section 4 of this paper. The main difference from the preceding situation is



Tomonaga-Schwinger Equation 63

that a Lorentz covariant field for electromagnetic potential can be introduced
only on a (pseudo-)Hilbert space with indefinite metric. We overcome this dif-
ference by introducing a Lorentz-invariant topology on the *-algebra of field
operators and taking into consideration continuous linear functionals which are
not necessarily positive. We can then obtain a similar result as before, where
U(σλ, σλo) now describe a linear mapping of certain class of such continuous
linear functionals.

§ 2. Details of Technical Definitions

In this section, we collect technical details in our paper. The regulator ρ(x) [_ρM(x)
or QD(xJ] is of the form

(2.1)

where ρ(k) satisfies the following:

(Rx) ρ( — k) = ρ(k); namely, ρ(x) is real.

For two space-like surfaces σb and σφ we write σhy-σa if x°(x;b)^x°(x;a)
for all x. The family {σλ; b^.λ^a} of space-like surfaces [called covering of the
region Σ(σbyσJ] is assumed to satisfy the following conditions:

(Cx) Any point xeΣ(σb>-σa) belongs to at least one σλ.
(C2) The function x°(x;λ) is differentiable with respect to λ, x°(x;λ) and

dx°/dλ are continuous with respect to (x, λ\ and dx°/dλ ^ 0.
The condition (C2) implies that σλί>σλ2 if λι,λ2e[a,b~\ and λ1^λ2. It also

implies that the volume \Σ(σλ>-σa)\ is differentiable and (1.8) holds.
Let §Mjv be the subspace of § M spanned by vectors with not more than

N particles and PN be the projection onto δ M j i V Let φ±(x;ρ) be defined by the
same equation as (1.6) from φ±(x) and put

Then, φχ(x;ρ) are bounded operators with domain § M , and

where

\\ρM\\2 = $ρM(k)ρM(k)dk/k°.

Hence,

φN(x ρ) = PNφ(x ρ)PN = φ^(x;ρ) + φΰ(x ρ)

is a bounded self-adjoint operator in § M . Furthermore, we can show that φN(x;ρ)
is uniformly continuous with respect to x in the uniform operator topology
(w-topology for short); namely, for any given ε>0, there is a positive number δ
such that, if |zjx| + |zjxo |<^, then

N(x + Δx;ρ)-φN(x;ρ)\\<β
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for any x. For Ψeξ>MtN

φN + 1(x;ρ)Ψ = φ(x;ρ)Ψ. (2.2)

We restrict the domain of φ(x) to (J § M i V , where it is essentially self-adjoint.
N

We note that ψ(x ρ) and ψ{x;ρ) are bounded and uniformly continuous with
respect to x in the w-topology.

The above consideration shows that H(x;ρ) is an essentially self-adjoint
operator whose domain is

GO 00

U §>N= U $M,N®%D
N=0 N=0

Let PN be the projection upon ξ>N. Then,

is a bounded self-adjoint operator with domain §,

\\HN(x;ρ)\\<cN1/2\\ρD\\2\\ρM\\, (2.3)

and further, HN(x; ρ) is uniformly continuous with respect to x in the w-topology.
It follows from (2.2) that

(2.4)

for any Ψeξ)N.

§ 3. Integrations of the Equation

The interaction Hamiltonian

H{λ ρ) = \H{χ ρ){dx°/δλ)dx (3.1)

on a surface σλ can now be defined rigorously as follows: As HN(x; ρ) is continuous
with respect to x in the w-topology, it is easy to show that HN(x;ρ) (δx°/dλ) is
Bochner integrable [1, V] on σλ with respect to the volume element dx. Hence,

(Bochner) (3.2)

is well-defined, it is continuous with respect to λ in the w-topology, and

\\HN(λ;ρ)\\^$\\HN(x;ρ)\\\dx°/dλ\dx

If a covering {σλ} is specified for the region Σ(σb>-σa), then C(ρ; λ) can be replaced
by one constant C(ρ) irrespective of λ. Put

H(λ;ρ)Ψ = HN + 1{λ;ρ)Ψ

for any Ψeξ>N. Then it follows that H(λ\ρ) is an essentially self-adjoint operator
with domain (J§JV, and we can understand the Equation (3.1) in the sense that

H(λ;ρ)Ψ=\lH(x; ρ)Ψ](dx°/dλ)dx (Bochner)
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for any Ψe$yN.

Now, we consider the equation

ίdΨ(σλ)/dλ = HN(λ;ρ)Ψ(σλ) (3.3)

for the Hamiltonian given by (3.2). Put
00 λ λn λi

UN(σλ, σλ0)= X (-0" \dλn J άλn_,... J dλ,
n — 0 λ o λ o λo ^ . x

As HN(λ;ρ) is continuous in the w-topology, each term of the right-hand side is
well-defined in the sense of the Bochner integral, and the norm of the nth term
is less than (n\y1Nn/2Cn(ρ)\λ — λo\

n. This series converges in the u-topology and
defines a unitary operator UN(σλi σλo). It is continuous with respect to λ in the
w-topology, and

UN(σλ, σλι)UN{σλl, σλo) = UN{σλ, σλo). (3.5)

We can show that UN(σλ, σλo) is differentiable in the w-topology and that

id UN(σλ, σλo)/dλ = HN(λ; ρ)UN{σλ, σλo). (3.6)

This implies that the initial value problem of the Equation (3.3) has a unique
solution given by

Ψ(σλ)=UN(σλ,σλo)Ψ(σλo)

for any Ψ(σλo)eξ>. As these assertions are very plausible, we omit the proofs2.
We are thus in a position to study the main problem of this article; namely,

the initial value problem of the equation

idΨ(σλ)/dλ = H(λ;ρ)Ψ(σλ) (3.7)

for the Hamiltonian H(λ;ρ\ the self-adjoint extension of H(λ;ρ) given by (3.1).
Put

U(σλ,σλo)Ψ= £ ( - 0 " f dλn ξ d λ n _ 1 . . . ϊ d λ 1
n — 0 λo λo λo ,~ £v

lH(λn;ρ)H(λn-1;ρ)...H{λ1'9Q)Ψ]

for any Ψe{Jξ>N. If Ψe$yN, the integrand of each term of the right-hand side is
strongly continuous, and the Bochner integrals are well-defined. The norm of the
nth term is less than

and hence the series converges in the strong sense. This means that U(σλ, σλo) is
well-defined as an operator with domain \Jξ>N. It is easy to show that

υ{σλ,σλΰ)Ψ=\imυN{σλ,σλ0)Ψ
N

Some of related problems are studied in [1, XIV] and [2]
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for any Ψe (J $N in the strong sense, and this implies that U(σλ, σλo) can be extended
as an isometric operator with domain § . This extended operator satisfies

U(σλ,σλo)=limUN(σλ,σλo) (3.9)

N-»oo

in the strong operator topology, and from (3.5)

U{σλ, σλl)U(σλί, σλo)=U(σλ, σλo). (3.10)

In the same way, we can show by a direct calculation that, for any Ψe[Jξ>N,

Ψ(σλ) = U(σλ,σλo)Ψ (3.11)

is differentiable with respect to λ in the strong sense, and

ίdΨ(σλ)/dλ= lim H(λ; ρ)UN(σλ, σJΨ .

This implies that Ψ(σλ) belongs to the domain of H(λ; ρ) and satisfies the Equation
(3.7). By the same estimate as (3.9), we can show that U%(σλ, σλo) is strongly con-
vergent and hence U{σλ, σλo) is unitary.

Remark. The Equation (3.8) can be rewritten in the familiar form

U(σλ,σλo)Ψ= £ ( - O W 1 f ... f dxndxn_ί...dxί

TPlH{xn;ρ)H{Xn-ilQ) ..H(x1;Q)]

for any Ψε\Jξ>N, where TP is Wick's chronological operator in the sense that it
rearranges a product of operators in the same order as of the covering {σλ}. It
has usual expansion in terms of Feynman diagram where two point τ-function
is in terms of ΓP-product and has a regulator ρ. The difference between TP-product
and the usual time-ordered product (based on constant t hyperplanes) tends to 0
as the regulator ρ approaches to a delta function at the origin. This shows also
that the dependence of U(σλ, σλo) on the covering {σλ} vanishes in the same limit
at least for each term of the expansion (3.8).

§ 4. Case of Quantum Electrodynamics

We shall be interested in the regularized Hamiltonian density

H(x ρ) = ieN [φ(x ρD)yμψ(x ρD)] Aμ(x ρA). (4.1)

The fermion fields generate CAR algebra, which causes no problem. We shall
introduce a topology on the *-algebra 91^ generated by electromagnetic field
Aμ(x;ρA). (It is a free *-algebra divided by ideals generated by free equation of
motion and commutation relations.)

Let J£={F} be the set of all Lorentz frames with a fixed origin. For each
?, we consider the Fock space ξ)A(F) (with positive metric) where AQ and
( ΐ = l , 2 5 3) annihilate vacuum Ψ0(F). We shall denote the representative of

on this space by Q(F). Let ξ)AίN(F) be the subspace of ξ>A(F) spanned by
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vectors with not more than N particles. We denote by τs(F) the topology of %A

given by the collection of semi-norms \\Q(F)Ψ\\, Ψe\Jξ>AiN(F). Let

namely, the weakest topology in the class of topologies each of which is stronger
than every τs(F). Then τs is a Lorentz-invariant topology in tyίA. Any vector
Ψ(F)e[Jξ>AiN(F) gives a linear functional

f(Q) = (Ψ(FlQ(F)Ψ(F))

which is continuous with respect to τs. Any vector with a finite number of photons
in the Gupta-Bleuler formalism also defines a τs-continuous linear/functional.

We now go over to the algebra

of field operators for the whole system. For each F eS£, it has a representation on
the Hubert space

Let PN(F) be the projection onto ξ>AiN(F)®ξ>D and let

H^x; ρ, F) = PN(F)H(x ρ)PN(F).

Then the integral

HN(λ; ρ, F) = $HN(x; ρ, F)(dx°/dλ)dx (4.2)

and

UN(σλ,σλ0;F)= f (-if | dλn)dλn^...)dλ,
n — 0 λ0 λ0 λ0 ,. ^ .

ίHN{λn, Q, FW^λ^, Q, F)...H^λ, ρ, F)]

can be defined and the latter gives the solution of

idU^σ,, σλ0; F)/dλ = HN(λ; ρ, F)UN(σλ, σλo; F). (4.4)

In the same way, H(λ; ρ) and U(σλ, σλo) can be defined by

H{λ;ρ)=\H{x;ρ){dx°ldλ)dx (4.2')

and

U(σλ, σλa) = f ( " 0" ί dλn f dλn _!... f dλ,

This operator U(σλ, σλo) is the solution of

idU(σλ, σj/dλ = H(λ ρ)C/(σΛ, σ λ o ), (4.4')
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which is a modification of the Equation (l.Γ) The operators UN(σλ, σλo F) and
U(σλ, σλo) are unitary in the sense that U* = U~1, and

U(σλ, σj = lim UN{σλ, σλo; F).

The operators l/(σλ5 σλo) do not belong to 21. Rather than adding them to 21,
we consider the mapping from *F(F)e U ^ , N ( ^ ) ® S D to Ψ(σλ) = (7(σλ5 σAo) ^(F),

JV

which induces a linear mapping of continuous linear functionals because Qn->0,
2ne2I, with respect to τ s implies

Qn(F)U(σλ,σJΨ(F)^O

in ξ,(F).
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