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Abstract. Some time-evolution operators of a general unstable system lead
to unphysical spectrum (unbounded below) of the total Hamiltonian. Various
necessary conditions for boundeness of the spectrum are known. It is shown
here, how this spectrum can be determined, which, in particular, gives the
sufficient condition.

l Introduction

It is well-known, that the exponential decay law, though is confirmed
experimentally in a wide range, has an unphysical property; it corresponds to the
energy spectrum without (lower) bound. Also some similarly behaving decay
laws in the general scheme for description of unstable systems (developed mostly
in the last few years - see e.g. Refs. [1-5]) exhibit this unpleasant feature. Various
authors [3-7] deduce different conditions for the "reduced evolution operator"
(time-evolution operator of the unstable system itself), under which spectrum
of the total Hamiltonian is (below) unbounded. Nevertheless, the same question
arises for those reduced evolution operators which do not obey any of the men-
tioned conditions. We shall show here how the spectrum can be determined to a
given reduced evolution operator. It gives, in particular, a possibility to decide
whether a reduced evolution operator corresponds to a total Hamiltonian with
a spectrum bounded below.

In Section 2 we collect the assumptions in our description of unstable systems
and introduce some notions. Section 3 is devoted to derivation of relations
between a reduced evolution operator and spectrum of the corresponding total
Hamiltonian. A simple criterion is given for the case when the state Hubert space
of an unstable system is finite-dimensional. The last section contains discussion
of the results, a special attention being payed to connections of decay laws to the
total Hamiltonian.
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2. Preliminaries

We deal with the description of an unstable system considered e.g. in Ref. [2].
Let us remind that such a system is assumed to obey the following conditions:

(i) one can ascribe to it a state Hubert space &?w

(ii) J^M is a proper subspace of a Hubert space Jf7,
(iii) a strongly continuous unitary representation U(t) of one-parameter

group of translations is realized on ffi and jtfu is not an invariant subspace of
U(t) on J ^ for any ί > 0 .

Here Jf7 is understood to be state Hubert space of the "whole" system, i.e.
including decay products as well. Further U(t) = Qxp( — iHt) plays role of the time
evolution operator of the considered system, and H is therefore the total
Hamiltonian.

Time evolution on the space 3tfu itself is governed by the reduced evolution
operator

) = EuU{t)Eu, ίelR, (2.1)

where Eu is a projection, EUJ^ = J^U. The relations

V(t)=V+(-t), (2.2a)

W(t)\\^ί (2.2b)

hold obviously for all real t. The reduced evolution operator determines the
decay law: assuming the unstable system to be prepared at ί = 0 in a (normalized)
state ψeJ^w we define it as

Pψ(t)=\\V(ήψ\\2, (2.3a)

in particular

Pψ(t) = \(ψ9V{t)ψ)\2 (2.3b)

if dim^fM = l. More generally if the system is initially prepared in a mixed state
described by density matrix ρ, RanρC^ M , we define (cf. Ref. [8]):

PQ(t) = Tr{V+(t)V(t)g}. (2.3c)

We are interested in a class of operator-valued functions which are allowed
to play role of reduced evolution operators. Solution of this problem is contained
in the theory of unitary dilations (this theory was firstly applied to description of
unstable systems by Williams [3]); let us remind it here briefly.

Following Sz.-Nagy and Foias [9] we introduce the concept of positive
definite operator-valued function1 (PO-function).

1 We formulate the statements of Sz.-Nagy and Foias with respect to purposes of this paper. The
notion of PO-function as well as the assertion of the following theorem are in [9] considered for more
general functions V: G->i?pf), G being a (topological) group
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Definition 1. A function F IR-^if(^f) (whose values are bounded operators on a
Hubert space Jf) is called positive definite if the inequality

(2.4)

holds for any integer n and arbitrary ψu ...,ψneJ^; ίl5..., ίMeIR. 2

Remark. If dimJf = 1, the present definition coincides with the usual definition
of positive definite function F:1R->C - cf. Ref. [10]. The condition (2.4) is then
expressed as follows: for any integer n and arbitrary α l 5 ...,αMe(C; ί1;..., ίneIR,
the inequality

Σ WjVfa-t^O (2.4a)

holds.
We are interested especially in those PO-functions which are weakly continuous

(WPO-functions). Let us now formulate for our purposes the following theorem
originally deduced by Sz.-Nagy [11]:

Theorem!, (i) Let U:IR->if(Jf7) be a unitary representation of one-parameter
group of translations on 3^, and let 3tfu be a subspace of ffl. Then the function
V: V(t) = EuU(t)Eu is PO-function and obeys V(0) = Eu. Moreover, if U is continuous
(weakly or strongly, what is the same due to unitarity), then V is also continuous.

(ii) Conversely, to any PO-function V :ΊK->^(J4?U), V(0) = Eu, there exists a
unitary representation L/:IR->.£?(Jf) ("the minimal unitary dilation") of one-
parameter translation group on some Hilbert space Jtif, J^DJ^fu, so that it holds

for all t and the space Jf7 obeys the minimality condition

U TJ(t\ i/P 1 3 /<-) £\

Moreover, if V is weakly continuous, then the representation U is (weakly, and
therefore also strongly) continuous.

Corollary. The function V: R-> if(J^u) can be a reduced evolution operator on JfM

if and only if it is WPO-function such that V(0) — Eu.

This class of reduced evolution operators is, however, too large. Some of them
can be excluded, because they violate physical assumptions, which are to any
system (especially to an unstable one) naturally ascribed. As we have mentioned,
a reason for such exclusion can consist of the fact that the Hamiltonian H (generator
of the minimal unitary dilation) corresponding to given V(t) has a spectrum
(below) unbounded.

Let us show some reduced evolution operators with this unpleasant property:

2 Notice that the relation (2.4) implies |(φ, V(t)ψ)\^(ψ, F(0)ψ), F(0) being Hermitian and positive,
and V + {t) = V( — ί); these conditions are closely connected to (2.2)
3 The symbol Mλ means the linear envelope of a set M, i.e. the collection of all finite linear combina-
tions of vectors belonging to M
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Theorem 2. (i) Let {V(t)}t>0 be a continuous semigroup of contractions, i.e.

V(h)V(t2)=V(t1 + t2)9 tl9t2^0. (2.6a)

Equivalently, let any regeneration of a decayed state be forbidden:

EuU(h)(I-Eu)U(t2)Eu = 0, tut2^0. (2.6b)

(ii) Let a regeneration be forbidden after a finite time Tr:

V(h)V(t2) = V(t! + ί2), t! Z Tr> 0, t2 ^ 0 . (2.6c)

(iii) Let V(t) be weakly bounded by an exponential, i.e. let ψ,χeJ4fu and y > 0
exist so that

(2.6d)

(iv) For ά\mJtfu = \ let the integral

(2.6e)

diverge.

Any of the conditions (i)—(iv) implies that the spectrum σ(Ή) is (below) un-
bounded. Moreover, the validity of (i) or (ii) implies σ(H) to be the whole real line.

For proof of this theorem see for example [3] - (i),.. [4] - (i), [5] - (i), (ii),
[6] - (iii), [7] - (iv). Negation of each of conditions (i) ~ (iv) is necessary conditions
for V(t) to correspond to a (below) bounded spectrum σ(H). In the next section
we shall show a sufficient condition.

3. The Spectrum of Minimal Unitary Dilation

The first thing which we need is some general expression of WPO-functions. Let
us start with the Bochner-Khintchin theorem:

Theorem 3. To any continuous positive definite function F:IR—>C (see Remark to
Definition ί) there exists a bounded real function ω, non-decreasing and continuous
on the right, so that

00

V(t)= ί e-ίλtdω(λ), teR. (3.1)
— oo

Conversely, any such function ω defines through (3.1) a continuous positive definite
function V.
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For proof see e.g. Ref. [10]. Notice further that the function ω (which determines
a Lebesgue-Stieltjes measure on 1R) can be found to given V(t) by means of the
formulae (cf. Ref. [10])

iη)=$ V(t)eίt{ξ + ίη)dt, η>0, (3.2a)V(t)eίt{ξ + ί

o

1 λ1
= - lim $Reφ(ξ + ίη)dξ, (3.2b)

71 η^0+ 0

ω ( λ ) = - l i m ωo{λ) + ωo(λ + 0 ) . 4 (3.2c)
λ~> — 00

λ

In particular, if ω is absolutely continuous, i.e. if ω(λ)= J f(λ)dλ,feL(]Sty, the
— oo

formulae (3.2) reduce themselves to the inverse Fourier transformation. We shall
generalize now Theorem 3 for the case of WPO-functions:

Theorem 3a. An operator-valued function F:IR-»J2f(J^u) is weakly continuous and
positive definite if and only if there exists an operator valued function F :IR->if (J>fu)
such that

(a) for all AelR the operator F(λ) is Hermitian,
(b) for all λ, μeΊR, λ^μ, it holds F(λ)^F(μ)SF{oo\ F(oo) being a Hermitian

operator on 3^u,
(c) F is weakly continuous on the right, i.e. for all ψ, φeJ4?u it holds (ψ,F(λ + 0)φ)

= (ψ,F(λ)φ),
(d) F(λ) is related to V(t) by means of the equation

V(t)= j e-a'dF(λ). (3.3)e-a'
— oo

Remark. The formula (3.3) has to be read as follows: to a given t and arbitrary
?u the equality holds

(ψ, V(t)φ)= J e-iλtd(ψ, F(λ)φ). (3.3a)
— oo

Other formulae containing integrals of the type (3.3) are understood in the same
sense.

Proof.. Sufficient Condition. Let a function F obeying (a — d) be given. Let us
choose an integer n and some (arbitrary) ί l 5 . . . , ί n elR; ψu ...,xpneJ^u. Then we

obtain

n π oo

Σ {ψϊViu-tj)ψj)= Σ ί
i,j=l i,j = ί - o o

= J d(t eiλt'Ψi,F(λ) Σ e ' %
- o o \ i = l

4 The function ω defined by (3.2c) obeys the condition lim ω(2) = 0; under this condition the
correspondence V<->ω is one-to-one Λ->-OO
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so that V is positive definite. Further for any xpe Jtfu the function (ψ, V(t)ψ) as the
Fourier transform of a finite Lebesgue-Stieltjes measure [see (3.3a)] is continuous.
The polarization identity (cf. e.g. [12]) implies now the weak continuity.

Necessary Condition. For any ψeJ^u the function (ψ, V(t)ψ) is positive definite
so that according to Theorem 3 a function ωψ exists:

(ψ,V(t)ψ)= J e-ίλtdωψ(λ).
— oo

Let us define for any /leIR the operator F(λ) in the following way:

{ψ, F(λ)φ) = \ {ωψ + φ(λ) - ωψ _ φ(λ) - iωψ + iφ{λ)

iφ(λ)}. (3.4)

Since F(0) is a bounded operator, the operator F(λ) is obviously bounded; it
assures that its definition through "matrix elements" is consistent. One easily
verifies (a — c) with the use of properties of the functions ωφ(λ) = (ψ, F(λ)ψ). Validity
of the Equation (3.3) follows directly from the definition of the function F(λ). •

One can find the function F(λ) corresponding to given WPO-function V(t)
by means of the formulae:

a (3.5a)

= ~ lim }[Φ(ξ + iη) + Φ+(ξ + iηy]dξ, (3.5b)
zπ ^-^o+ o

F(λ) =- - w-lim Ω0{λ) + Ω0(λ + 0), (3.5c)

which follow easily from (3.2), (3.4) (see Remark following Theorem 3a). The
function F(λ) constructed in this way corresponds uniquely to given V(t\ because
due to (3.5c) it obeys the condition

w-limF(λ) = 0, (3.6)
λ~> — oo

which removes the possible non-uniqueness F(λ)-+F\λ) = F(λ) + FQn Fo being any
Hermitian (/l-independent) operator.

Let V(t) be now a reduced evolution operator, i.e. WPO-function such that
V(O) = EU. The minimal unitary dilation U(t) of V(t), as well as its generator H we
may write in the form of spectral representation

U(t)= j e-ίλtdEH(λ\, H= J λdEH(λ). (3.7)
— oo — oo

The function EUEH(. )EU fulfills the assumptions (a — d) of Theorem 3a and,

moreover, it obeys the condition (3.6). Thus (2.1), (3.3), and (3.7) imply

) = EuEH(λ)Eu, A e R , (3.8a)
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and

(3.8b)

Conventionally σ(H) denotes the spectrum of H; further we shall introduce
the following notion:

Definition 2. Let V(t) be a reduced evolution operator. The set CΓ[F]ΞΞ {AeIR|
F(λ + ε) — F(λ — ε)>0 for all ε>0} is called energy support of V(ή.5

Now we are in position to prove our main theorem:

Theorem 4. Let V(t) be a reduced evolution operator and H be generator of the
corresponding minimal unitary dilation. Then

(3.9)

In particular, if σ[F] is (below) bounded so is σ(H).

Proof. A point λ0 does not belong to σ(H) if and only if there exists η > 0, EH(λ0 + η)
-EH(λo-η) = 0 - cf. [12]. Then (3.8a) implies λoφσ[V~], and therefore σ[V~\C
σ(H). On the other hand, let us consider the set

Jί=[j U(t)jeu.
ίeR

If λ0 φ σ[V\ there exists η >0 such that F(λ0 + η) — F(λ0 - η) = 0. Then the relation

(*) (φ, EH(λ0 + η)ψ) - (φ, EH(λ0 - η)φ) = 0

holds for any φeJf, because such expressions one can write as

(φ,EH(λ)φ) = (ψ, U + (t)EH(λ)U(t)ψ)

for some ψe^fu. Using the fact that U(t) for any t commutes with EH(λ) we obtain

(φ, EH(λ)φ) = (ψ, EH(λ)ψ) = (ψ, F(λ)ψ).

Since EH(Δ) = EH(λQ-\-η) — EH(λ0 — η) is a projection on Jf, the relation (#) implies

EH(A)φ = 0

for all φeJί. Let us assume now £H(zl)Φ0, i.e. that there exists χeJtf, \\EH(Δ)χ\\ =
ε>0. The minimality condition (2.5) states that the linear envelope Jίλ of Jί is
dense in J^, so that to given χ one can find a finite linear combination

n

Xo= Σ OLiψ^φ^Jί, | | χ-χ o | |<ε . Then it holds
i = l

what contradicts to the assumption £H(zl)Φ0. Thus we obtain λoφσ(H), and
consequently σ(H)Cσ\_V~\. •

5 Let us point out that the present definition is suitable also for complex continuous positive definite
functions we have then σ[V^ = {λeJK\ω{λ + ε) — ω(λ — ε)>0 for all ε>0}.
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Discussion of this result will be performed in the next section. Here we show a
simple consequence:

Corollary. If dim J4?u<co, the relation

σ(H) = σ[v] (3.10)

holds, where v(t) = ΎrV(t\ ίelR. In particular, if ' σ[v] is (below) bounded so is σ(H).

Proof. The finite dimension of 34?u assures that the functions ί (ί) and ΎrF(λ) are
defined. The function υ(t) as a finite sum of continuous positive definite functions
is continuous and positive definite (cf. Theorem 3); one can express it as

v(t)= J e-iλtdΎΐF{λ).
— oo

There holds obviously φ ] C σ [ F ] . On the other hand, all the functions (ψ,F(λ)ψ)
are non-decreasing, i.e. TrF(λ + ε)-ΊΐF(λ-ε) = O implies F(λ + ε)-F(λ-ε) = 0,
and consequently φ

4. Discussion

Theorem 4 together with the formulae (3.5) shows, how the spectrum of total
Hamiltonian can be found to a given reduced evolution operator. Let us point
out, that this procedure often simplifies:

(a) in the case of finite-dimensional 3tfu Corollary of Theorem 4 can be applied;
its main advantage is that the all necessary informations are contained in one
complex function only,

(b) under some reasonable assumptions about V(t) (see e.g. [5] - Theorem 4.2)
the function F(λ) is absolutely continuous (in the weak sense), then we may
replace the formulae (3.5) by the inverse Fourier transformation,

(c) in various models the reduced evolution operator is determined by means
of the function F(λ) (remember the Breit-Wigner formula and its modifications),
then one is able to apply Theorem 4 directly.

Let us notice that alternative formulae to (3.5) of this paper could be deduced
from Bochner theorems used to the similar aim by Sinha [5].

The second question which we shall discuss here concerns decay laws. Since
they represent themselves directly measurable quantities (probability of non-
decay at a given time), one can naturally ask whether it is possible to determine
the energy spectrum from them. A knowledge of decay laws for sufficiently many
states of the considered system gives to us the operator-valued function V+(t)V(t) —
cf. (2.3). Problem is now the following: does the function V+(t)V(t) determine the
Hamiltonian or (what is the same) does it determine the function V(t)Ί

In the most simple case dimJ^M = l a reconstruction of the function (ψ, V(t)ω)
from its modulus can be realized, however, some information about a behaviour
of this function for complex values of t is needed [7]. Generally, the problem is
expressed by the equation

V + (t)V(t) = P(t) (4.1)
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where P(t) is a given operator-valued function with the following properties:
(i) the operator P(t) is positive (and therefore Hermitian) for all ίelR,

(ii) PίO) = EM,
(iii) for any feIR the inequality \\P(t)\\ <£ 1 holds,
(iv) P(t) is weakly continuous with respect to ί.
One can also assume P(t) to obey some other (physically motivated) conditions.

Notice that P(t) need not be positive definite, if d i m J f w > l : in such a case the
condition analogous to (2.2a) would have to hold

but V(t) need not generally commute with V+(t).
Up to our knowledge, it is not known, under which assumptions there exists a

WPO-function V(t) solving the Equation (4.1). If such a solution exists, then it is
not a unique one:

(a) a function W(t)V(t\ W(ή being any strongly continuous representation of
one-parameter translation group on Jfw, solves the Equation (4.1) together with
V(t); if for example [ F ^ ) , W(t2y]=0 for all ίl5 t2elR, then positive definiteness
of V(t) implies the same property for W(t)V(t\

(b) if [V+(ή, V(t)~] =0 for all ί > 0 , then the function V+(ή solves the Equation
(4.1) together with V(t); if V(t) is positive definite so is V+(t).

We do not know, whether (a) and (b) are all possible non-uniquenesses of
solutions of the Equation (4.1) or not.

Concluding this part of discussion, a solution to "existence and uniqueness
problem" of the Equation (4.1) is needed in order to decide whether a given
operator-valued function P(t) corresponds to some unstable system (i.e. represents
a collection of decay laws) in the present formalism. Assuming now P(t) to be
such a function (to which a reduced evolution operator V(t), and consequently
a total Hamiltonian H corresponds), we can easily see the following consequence
of the non-uniqueness (a) (which is the more substantial one); for example an
operator H' = H + G which obeys the conditions

(i) G is self-adjoint,
(ii) G is reduced by J^w,

(iii) G commutes with H,
can be taken by the same right as a Hamiltonian giving the function P(t). Excluding
the physically irrelevant possibility G = α/, αeIR, the present example shows
that a knowledge of P(t) alone need not be sufficient in order to determine the
Hamiltonian.

Acknowledgment. The author is indebted to Prof. V. Votruba and Dr. M. Havlίcek for helpful and
inspiring discussions.
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