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Abstract. Relativistic canonical systems and their symmetries are defined and
classified within the class of canonical systems treated in a previous paper.
Their algebra of variables contains a subset of "monotone" variables which
satisfy a certain uniqueness condition and are later shown to increase strictly
in the course of the dynamical evolution of the system on all physically ac-
ceptable states. This leads to a unique space-time interpretation of relativistic
canonical systems. Finally we study space-time factorizations of such systems
and introduce the appropriate notion of states. For a certain simple class of
states the theory is shown to describe the motion of relativistic matter in
some external gravitational and electromagnetic field.

1. Introduction

In this paper we shall study a certain class of canonical systems, the general
theory of which we have developed in [1]. Let us briefly state the basic notions
and results obtained there.

A canonical system is an ordered set containing a canonical manifold M
(with canonical form Ω, see [2]) and a canonical vectorfield Y on M (the
kinematical vectorfield). The algebra 9I(M) of differentiable functions on M
(these are called variables) contains a subalgebra 2I0 which is required to satisfy
a set of Kinematical Axioms: Under the Poisson bracket operation 2I0 is maximal
commutative and is mapped to itself by variables from the subset F(2I0). Both
9I0

 and y(2lo) have only the zero variable in common and determine the dif-
ferentiable structure on M (such sets of functions which define a differentiable
structure on M are called sufficient sets).

The Hamiltonian vectorfields generated by variables in 2ί0 define a quotient
manifold N of integral submanifolds in M. To any variable A in 2ί0 there cor-
responds a unique differentiable function A* on N, and vice versa. The vector-
fields X on N are in bijective correspondence with variables Px in some submodule
of functions 911:

{Px, A}* = X(A*); A in 210, Px in ̂  . (1.1)
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There exists a unique diffeomorphism of M with the cotangent bundle L*(N)
over its quotient, and the canonical structure is completely determined by the
equations :

i) {A,B} = Q , (1.2)

ii) {PX9A}*

iii) {PX9PXί}

for A, B in 9ί0; Px, PXί in 2 .̂ The function ί1 ,̂ XJ is in 2I0 and defines a closed
differential 2-form ωF on N by:

iv) F(Ar,Ar

1)* = ωF(A',A r

1).

Finally one obtains a unique nowhere degenerate symmetric tensorfield g
on N by:

i) g<d^*,dB*)={yμ),B}*, (1.3)

and the kinematical vectorfield Y is given by :

ϋ) τt(p) = {T,F} + Y°(F), F in 31 ,

where 2T is the function on L*(7V) corresponding to g, and 7° vanishes on 9I0.
The subclass of canonical systems we study here is singled out by an additional

set of Relativistic Axioms; these systems are called relativistic canonical systems.
The most important of these axioms postulate the existence of "monotone"
variables and a certain uniqueness condition for them.

In Chapter 2 relativistic canonical systems and their symmetries are defined
and classified. By studying the trajectories defined by the kinematical vectorfield
the notion of permissible integralcurves and of a physical submanifold are intro-
duced. Monotone variables behave in a strictly monotone way along any trajectory
in a physical submanifold. They should hence be considered as time-like variables.

Finally the most important Relativistic Axiom is deduced from the postulate
that the initial value problem for the kinematical vectorfield shall admit a unique
solution for any initial surface defined by some monotone variable in the physical
submanifold. This leads to a unique space-time interpretation of relativistic
canonical systems, according to which the quotient manifold N must be considered
as the space-time of general relativity.

In Chapter 3 we study space-time factorizations, which provides some motiva-
tion for our notion of states. These are defined as positive linear functional on
variables with compact support, which result from integration over hypersurfaces
of constant time. The differential forms required for this are called state forms.
They describe completely the motion of the matter present and define the current
vector and energy-momentum tensor of the matter. Some aspects of Y-in variant
forms are discussed. The detailed theory of state forms and the resulting equations
of motion for the classical fields will be developed in a subsequent paper.

2. Relativistic Canonical Systems and Their Symmetries

In this chapter we shall study a certain class of canonical systems, for which a
complete kinematical interpretation can be obtained. According to this inter-
pretation the quotient manifold N we have constructed in [1] will appear to be
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identical to the space-time of general relativity. These systems will be called
relativistic canonical systems. They satisfy an additional set of Relativistic Axioms,
concerning the dynamical vectorfield of the system. The concepts necessary to
formulate these axioms are introduced below; they will be discussed thoroughly
later on.

Consider the relation between functions in ^Ά1 and vectorfϊelds on the quotient
N established by (1.1). This relation may be extended to symmetric tensorfϊelds of
higher order. Denote by 2lk the 2I0-module generated locally in 31 by monomials
of degree k in functions from Γ(210) By 2Γ we denote the corresponding module
generated by all sets 9ίfc with k^r. We state the following Proposition without
proof; this would be analogous to the proof of Proposition 2.4 in [1].

Proposition 2.1. Let F be in 21, then F is in 9ίfc if and only if:

ξΛAί°ξΛA2°-°ξάAk(F) iS in 9I0

for any set (Aί9 . . ., Aj) of functions from 9I0. For any F in 21* there exists a unique

symmetrical tensorβeld Dp defined by:

The kernel of the map Dk in 21* zs the submodule SI*"1.

Let Tk be any symmetric tensorfϊeld of degree fc. There exists a unique function
PT in 2ϊfc which is mapped to Tk by the map Dk. Denoting the commutative tensor-
multiplication by "®" one has for the maps D and P:

Dl

F

+k, = Dί

F® />*, P^s = Pl

τ - Pk .

Identifying the isomorphic algebras 2I0 and 2I(JV) the maps D*, and Pk are
easily seen to be 2I0-linear. Hence we obtain a unique isomorphism D of the
subalgebra 21 °° of locally finite sums of functions from all sets 2Ik with the sym-
metric tensorίield algebra over N. D is an isomorphism of commutative algebras
over the ring of functions 2I0.

With an obvious shorthand notation we have the following relations in 21°°:

i) {2I*,2P}C2I*+J'~1 (2.1)

ii) y(2I0)c2l1? 7(2I*)C2I* + 1.

It follows that Y is a derivation on the subalgebra 2I0u2l°°. The first relativistic
axiom will require that Y be a derivation on subalgebra 21 °° alone, without its
ring of coefficients 9I0. This means that Y should act monotonely with respect
to the graduation in 9ί0u2ί°°.

The second axiom concerns the existence of "monotone" variables on M,
and a certain uniqueness condition imposed on them. These variables will appear
to increase strictly in the course of the dynamical evolution of the system for all
physically acceptable states. They may therefore be considered as time-like
variables.

Definition 2.1. Let A be in 9I0, and U an open submanifold of the quotient N.
A is called monotone over U if
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The set of monotone variables over U is denoted by K(U).
A is called monotone if it is monotone over N. Let A be monotone over U.

The positive set KA(U) associated to A over U is defined as the set of all monotone
variables B over U for which:

ii) {Y(B\A}*>Qin U.

Relativistic Axioms: Let (L*(JV), Ω, 7) be a canonical system.
R.i) 7(210 cSliUS^.

R.ii) There exists a monotone variable.
R.iii) For any open submanifold U of N and any variable A monotone over U

one has: KA(U) = KB(U) for any BeKA(U).
A kinematical system satisfying these Axioms is called a relativistic canonical

system (RCS).

Proposition 2.2. The axiom R.iii) is equivalent to :
R.iii') For any open submanifold UofN and A, B in K(U) either : { Y(A)9 £}* > 0,

or: {Y(A),B}*<Qin U.

Proof. Denote by g the nowhere degenerate tensorfield defined in (1.3,i). Assume
that for some q in U: g(dA*> dB*)(q) = 0. Choose an open submanifold VatqinU
such that for some constant d one has :

g(dA*9 dA*), g(dB*, dB*)^d', g(dA*, dB*)<d.

Then we have for the function C = A + B\C<=KA(V\ CeKB(V), however A is not
in KB(V) contradicting R.iii). Conversely assume this situation is met for three
monotone variables A, B, C over V. Then for some q in V we have:

g(dA*, dC*)(q) - d > 0; g(dA*9 dB*)(q) = - b < 0 .

However the function D = d-B + b C is \n K(V\ and we have g(dA*9dD*)(q) = fy
contradicting R.iii'). QED.

Theorem 2.1. Let (L*(N), Ω, Y) be a relativistic canonical system. The nowhere
degenerate tensorfield g on N defined by Y is of signature (1, π— 1) everywhere.
The dynamical vectorfield Y is Hamiltonian: 7=£dH, where 2H is the function on
L*(N) defined by g\2H = P2

g. In any associated chart (U; Q\ Pr] we have

Proof. By R.ii) there is a monotone variable A, hence g(dA*, dA*)>0 on N. By
Proposition 2.2 there cannot exist a differential d#*, such that g(dB*, dB*)>0 and
g(dA*, dB*) = Q. Hence g is of signature (1, n— 1). By [1], Theorem 3.2 we have to
show that 7° vanishes. However [Y°(PX),B}=YΌ({PX,B})-{PX, Y°(B)} = Q for
B in 9ί0, hence Y°(PX) is in 2ί0. On the other hand ξdτ(Px) is in a^u^, and the
same is true for Y(PX) by R.i). Hence Y°(PX) = Q, and thus 7° = 0. QED.

We obtain a physical interpretation for any given RCS if we interpret the
integralcurves of 7 as defining the trajectories of physical particles. Their equations
([1], (3.4)) then describe the motion of these particles of unit charge in the gravita-
tional field described by the tensorfield g and the external electromagnetic field
described by the closed 2-form ωF. Note that no additional dynamicle principle
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is required for this result apart from the Kinematical and Relativistic Axioms.
We shall now consider this "external field interpretation" somewhat more closely.
The important Relativistic Axiom R.iii) will be shown to result from a physical
postulate concerning the initial value problem for the integral curves of Y.

Let γ be some integral curve of Y with p on γ. By projecting onto the quotient
N we obtain a corresponding curve 7* in N which we shall call a trajectory through
q = π(p). The tangentvector defined by this trajectory at q is just the projection

oϊYp:

Y*(A*)=Yp(A)=Y(A)(q9ωq). (2.2)

As p varies over the fixed submanifold p*=π~1(q) in L*(N), the corresponding
projections vary over the set of directions into which trajectories through q may
go. By (2.2) these directions define the corresponding values for all functions in

y(9I0) on p*.
Since these values uniquely determine the points on p*, and hence the integral-

curves through p*, we conclude that any trajectory is uniquely determined by a
single point on it plus its direction at that point.

Now consider the values which variables like Px take along some fixed integral
curve γ. It is not difficult to see that except at points where Px = 0 for all X there
exists a function B in 9I0 such that:

pχ = χ(β*) along y resp. y* , (2.3)

and B* is determined uniquely up to a constant along the corresponding part
of y*. We shall call B a parameter associated to y, and the points on y are just
given by (q, dB*)9 q on y*. However from (2.2) we obtain:

Y*(A*)=Y(A) (q, dB*q)={Y(A\ B}(p}={Y(B\ A}(p) . (2.4)

Thus the integral curve through q of the vectorfield generated by the function
Y(B) is just the trajectory through q. In this sense we may say that the trajectories
on JV are generated by the first order derivatives of their associated parameters.
This connection between the dynamical evolution of the system and the trans-
formations generated by the momenta variables Px is the essential content of the
kinematical axiom K.iv) stated in [1].

We shall now for any integral curve consider the change of its associated
parameter along the corresponding trajectory. This will lead to the notion of
"permissible integral curves".

Definition 2.2. Any integral curve y of Y is called permissible if any associated
parameter increases along the corresponding trajectory:

Any maximal open submanifold of L*(N) containing only permissible curves
is called a physical manifold L$(N).

We realize that the parameters associated to permissible curves are exactly
the variables which are monotone over some open submanifold U. For any
canonical system an integral curve is permissible if and only if the function defined
by the tensorfield g is non-negative along this curve (see Theorem 2.2 of [1]). In
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particular non-relativistic particle mechanics may be characterized by the fact
that all curves are permissible. We shall now specialize again to RCS and derive
the Relativistic Axiom R.iii) from a simple postulate. This postulate requires
that the initial value problem for the vectorfield Y has a solution in any physical
manifold for all submanifolds defined by monotone variables.

Initial Value Problem: Let U be an open submanifold of L*(N\ and Uf a
submanifold in U defined by an equation F=f= const, F in 91(17). Does there
exist an open submanifold V in U containing Uf such that the following equivalent
statements hold:

i) Through any point in Uf there passes a unique integral curve of F in F
which is not tangential to Up and different points correspond to different curves
in V.

ii) For any function Gf in 2l(C/y) there exists a unique Y-invariant function G
in 9I(F) such that:

Y(G) = Oin V;G=Gfon Uf.

By considering a suitable chart at some point on Uf ([4]; I, § 3.1) we realize
that the integral curves of Y are just the characteristic curves of the partial dif-
ferential equation resulting from ii) in that chart. The necessary and sufficient
condition for the Initial Value Problem of that differential equation posed by the
submanifold Uf to have a solution (see for example [4], 2. Kap., §2) may be
reformulated as:

7(F)ΦOon(7 /. (4.5)

By covering Uf with charts as above it is not difficult to demonstrate this
result for all of Up Hence the Initial Value Problem has a solution if and only if
Y(F)ΦO on Up and thus either 7(F)>0 or Y(F)<09 since Uf is connected.

Postulate 2.1. Let U be an open submanifold of JV, and L$(U) any physical sub-
manifold of L*(U). Then for any submanifold in L*(t/) defined by an equation
B = b = const with monotone variable B over U the Initial Value Problem has a
solution.

Proposition 2.3. Any kίnemαtίcαl system satisfying the Initial Value Postulate 2.1
satisfies the Relativistic Axiom R.iii).

Proof. For any A, B monotone over U the point (q, dA*) with q in U is in some
Lξ(U), hence the Initial Value Problem posed by B at (q, dA*) has a solution, and:

Y(BKq,dA*)={Y(B),A}*(q)>0,

or
[Y(B),A}*(q)<0.

Since U is connected, one of these inequalities must hold on all of U, and by
Proposition 2.2 the Axiom R.iii) is satisfied. QED.

For a relativistic canonical system we may define two physical manifolds.

Proposition 2.4. Let (L*(N), Ω, Y) be a relativistic canonical system with Hamil-
tonian H and monotone variable A. Then any physical manifold is equal to one of the
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following disjoint open submanifolds.

ϋ) L*=(p|/f(p)>o,rμ)<o).
The proof is immediate from Proposition 2.2. We may conclude from this

the important result that the Initial Value Problem posed by A has a solution in
any physical manifold. Choosing a definite physical manifold, say LJ amounts to
choosing a definite orientation of time with respect to the integration parameter
of 7, and turns A into a positive timelike variable. Furthermore it is not difficult
to see that for any B monotone over some U we have:

Y(B) >0 or ϊ{β)<0 in Lg([7)

hence the Initial Value Problem posed by B has a solution in that part of Lg
projecting onto U.

We shall finally discuss the notion of symmetry for relativistic canonical
systems. Let φ be a canonical transformation on L*(N) leaving Y invariant:

F<>φ for Fe9I. (2.2)

It is not difficult to check that for any such transformation the subalgebra
satisfies all Kinematical Axioms if 210 does. However 0(2I0) will in general

be different from 9I0. We call φ a symmetry of the relativistic canonical system
considered if in addition to (2.2) it permutes 9I0 :

0:8lo-»9lo (2.3)

It follows from (2.3) that φ permutes the integral submanifolds generated
by 2I0, and hence induces a diffeomorphism φ° on the quotient N.

Theorem 2.2. Let φbea symmetry of the relativistic kinematical system (L*(N)9Ω, Y).
Then

i) Φ°[0] = 0,
ii) 0°[ωF]-ωF,

where ωF and g are defined as in (1.2) and (1.3), and φ° corresponds to the induced
diffeomorphism φ° on N. The symbols in i) and ii) denote the corresponding trans-
formed quantities.

Conversely let φ° be a diffeomorphism on N satisfying i) and ii). Then there
exists a unique symmetry φ inducing φ°.

Proof. We have for any A, B in 2I0

= {Y(φ(A)),φ(B)}*

= g(d(φQ(A*))9d(φ"(B*))

which is equivalent to i). Furthermore we obtain from this

iii)
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for any Px in 7(210), and hence for any Px in 91̂  By a similar calculation as above
we conclude for the function F ( X 9 X 1 ) defined in (1.2, iii):

iv) φ(F(X, X1) =

which is equivalent to ii). Now let φ° be a diffeomorphism satisfying i) and ii).
Consider the map φ: 21-̂ 21 defined by:

φ(A)* = φQ(A*)9 A in 2I0

It is not difficult to check that φ is well defined and corresponds to a permuta-
tion of the points in L*(N\ hence defines a diffeomorphism φ on M. By (1.2) and
iv) we may conclude that φ{F, G} = {φ(F\ φ(G)} for F, G in the sufficient set

Ii, hence φ is canonical. Finally we get:

φ(Y(A)=Y(φ(A)),

and by calculating the image under φ of the expression for Y({Y(A)9B})\ A, B
in 2I0; we obtain:

v) φ(Y2(A))-Y2(φ(A))ismVί0.

However φ maps every homogeneous subspace 9Ifc to itself, hence by R.i)
the term v) vanishes and we have:

φ(Y(F))=Y(φ(F))

for F in 2I0u7(2I0), which implies that 0[7] = 7. QED.

3. Space-Time Decomposition and States

In this chapter we shall define the notion of states for relativistic canonical systems,
and discuss a certain simple classe of states. The detailed theory of states which
comprises the equations of motion for the classical fields will be developed in a
subsequent paper. It will be instructive to briefly study a certain decomposition
of the classical algebra of variables beforehand, which corresponds to the distinc-
tion between timelike and spacelike variables.

Let A be a monotone variable (R.ii), and X be the associated vectorfield
defined by :

PX={Y(A\AΓ1Y(A)'9{PX9A} = 1. (3.1)

The canonical vectorfields defined by Px and A commute, and we shall assume
for simplicity that both generate one parameter groups. By arguing along similar
lines as in [1] we may show that the set of maximal integral manifolds of both
fields can be turned into a manifold L|, which we call the reduced manifold. The
algebra of differentiable functions on L| is isomorphic to the subalgebra :

2ίR = (F in 9I;{PI,F} = μ,F} = 0). (3.2)

The Poisson bracket maps 2ίκ to itself and is easily seen to induce a unique
Poisson bracket on the reduced manifold.
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Any given integral manifold w is diffeomorphic to JR2, with A and Px defining
global coordinates. On the physical submanifold w0 = wnLo we have:

i) dH/dP=-{A9H}=Y(A)>Q9P=Px', (3.3)

hence we may introduce H and A as coordinates on w0. Any variable F in 31 may
thus on L$ be considered as a unique function FR on L| depending on the ad-
ditional parameters H and A :

ii) F(p) = FR(w,H,A).

The vectorfields corresponding to differentiation with respect to these param-
eters are given by:

iii) XH = d/dH=-Ύ(AΓlξdA

iv) XA=

These vectorfields define a unique decomposition for any differential 1-form.
By considering the form dP we obtain:

(3.4)

ii) dH = Y(A)(dP - (dP)R) - Y(P)dA

ϋi) y (F) = A(dH, dF) = Λ(dH, (dF}R + XA(F)dA)

= Y(A) A(dP-(dP)R, (dF}R + XA(F)dA]

= Y(A)ί - A((dP)R9 (dF)R) + XA(F)~\ .

Now the differential form (dF)R is just the differential of the function FR,
considered as a function on Lj£ alone. Hence we obtain the following decomposi-
tion.

iv) Y(AΓ1Y=-{PR,...}R + d/dA.

The first term is tangential to any manifold w0, and hence defines a vectorfield
on L| which depends upon the additional parameters H (=mass) and A ( = time).

This field is just the canonical field generated by the Hamiltonian PR with
respect to the induced Poisson bracket on L|. We emphasize that PR must be
considered here as a function on L| only, the parameter H and A being kept fixed.
The second term is just the partial derivative with respect to the time A. In
particular we obtain for any F invariant under Y:

dFR/dA = {PR,FR}R. (3.5)

This relation has led to the wide spread belief that the momentum associated
to a timelike variable is the Hamiltonian with respect to that variable. However
this is not the case if we consider the momentum P as a function of all relevant
parameters as it is necessary for a fully covariant formulation. The actual Hamil-
tonian is the mass-squared-variable H. The integration parameter associated
to H is easily seen to be (mass)" * x proper time); it is related in a strictly associated
way on the physical manifold to any timelike variable. Finally we emphasize
that the reduced manifold we have constructed is a quotient manifold rather
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than a constraint submanifold [3]. This allows us to treat the mass as a genuine
additional variable, rather than as some fixed constant. The constraint surface
corresponding to some fixed value h of H is given by the equation :

pχ = (pχ)R for A arbitrary, H = h = const. (3.6)

Let us now define the notion of states appropriate for our theory. In the
framework of the reduced manifold states would correspond to measures on LJ,
depending upon the additional parameters A and H. If we allow in addition for
integration over the mass variable H, the analogue in the original manifold would
be a set of surface measures defined on submanifolds of constant time.

Proposition 3.1. Let A be a monotone over U. Any submanifold Va defined by an
equation ^4 = α = const in π~1(L/)0 is orientable.

Since Y(A)>0 on π"1(ί/)0 = π-1([/)nLJ the (2n-l)-form μ(7,...) defines an
orientation on Va, where μ is the canonical 2n-form on L* (see [2]). We shall
always integrate (2n — l)-forms with respect to this orientation over submanifolds
like Va which are defined by monotone variables.

Definition 5.1. A state form is a closed (2n— l)-form ω on L$ such that:

J F ω^O
V a

for any positive F with compact support and for any integral taken over some
submanifold defined by some monotone variable A as in Proposition 3.1.

Consider the dual of the state form ω, which is the vectorfield ω* defined by:

i) /4ω*,...) = ω(...). (3.7)

It is not difficult to check that ω being a state form is equivalent to :

ii) ω%4)^0 in π'^t/Jo for A monotone over 17.

If ω is some state form then a given multiple F ω with F^O is a state form
if and only if

iii) ω*(F) = 0,

and hence if F is constant along the integral curves of ω*. These curves may be
interpreted to define the trajectories of massive particles. The discussion of such
trajectories in Chapter 2 corresponds to the special case where ω* is proportional
to 7; we call such forms 7-invariant.

Definition 3.2. Let ω be a state form and A be monotone. The state defined by ω
at time A = a is given by the positive linear map:

S(ω,α):G-> f G ω
A = a

for variables with compact support, where the integral is taken over the sub-
manifold defined by A = a in L§.
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We may express any state by integration in the reduced manifold:
00

J G ω=\dH \ lG ω*(A) Y(AΓ^R(H,a)μR(H,a) (3.8)
A = a 0 L£

where μR is the canonical volume element in the reduced manifold: μ =
ωR(H,A). The function ω*(A) Y(A)~1 is the corresponding density. For Y-
invariant state forms it is just the function F defined by ω* = F- Y with Y(F) = 0
[see Eq. (3.5)].

In order to write down equations for the classical fields we need quantities
like the current and the energy-momentum tensor, which serve as sources for the
classical fields. These quantities may be obtained for any given state form ω by
first integrating at any point q in N over that part Kq of the cotangent space
contained in the physical manifold L$ :

Proposition 3.2. Let ω be a (2n-ί)-form on L*. Then:

i) ω0(*X«)=f ωOΪ*,...)
κq

defines a (n— I)- form on N, where ξx is the canonical vectorfield generated by Px.
(We have used a single symbol X to denote a set of n— 1 vectorβelds on N.) If ω
is closed and vanishes on the boundary of Kq the form ω0 is closed. For any sub-
manifold Va as in Proposition 3.1 one has:

ii) f ω = J ω 0.
Va π(Va)

If we assume that N is orient able, we may define dual objects for differential
forms on N by means of the metric g. The dual of the form ω0 in Proposition 3.2
is a vectorfield J(ω) which we call the current defined by ω. Within some given
chart at a point in π(Va) we may write the integral ii) in terms of the components of
J(ω) and of the surface differential form dσ :

(3.9)
Va π(Va) k

Now consider forms like ω' = G ω, where ω is some state form. We have:

ii) J(A-ω) = A*J(ω) for A in 2I0,
iii) J(Px ω)= T(X\ ω) for Px in 3 .̂

The current J(ω) is conserved since ω is closed. The map T:X->T(X;ω) is
easily seen to be an 2I(Λ/)-linear map of vectorfields on N, and hence to define a
mixed vector-covector field of degree 2. We call this the energy momentum field
defined by ω. Higher order tensorfields result from considering functions G in 91^
fe>l. For 7-invariant state forms we obtain particularly simple expressions for
the components of these fields in some chart (U, Ak) with associated chart (π~1(t/),

(3.10)
k Kg

ii) 7» = ~ "
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where dσ(p) is the volume element defined by the metric (glk) in Kφ F is the density
function: ω = Fμ(Y, ...), and d is the determinant of (gίk); n = 4. The tensor T
satisfies in this case the known conservation law for charged particles of fixed
unit charge moving in the classical fields g and F:

Let us summarize the important features of the concept of states we have
introduced so far. In order to define a state two ingredients are required. The first
is a state form ω. This form completely describes the dynamics of the physical
system as far as the motion of the matter is concerned. Furthermore by Proposition
3.2 and (3.9) it determines the current vector and energy-momentum tensor of the
matter. The second ingredient is some space-like hypersurface in N. This can be
chosen at will, corresponding to the non-uniqueness of the notion of equal time
for different space-time events. Given both, expectation values may be formed
by integrating the form over the corresponding hypersurface in L*. Thus we may
say that in order to represent observations in our theory we must specify both the
variable to be observed and the instant of time with respect to some time variable
at which the observation is to be made. Both aspects are necessary for a theory
of observations in general relativity. To our opinion they are represented in a
very natural and satisfactory way within our canonical framework.

In the present paper we have treated the dynamical vectorfield Y and the
canonical form Ω as fixed and independent of any particular state form. The
equations of motion for the classical fields represented by these quantities will be
treated in a subsequent paper, where we shall present a canonical theory of state
forms.

This theory will allow for a discussion of charges and spin degrees of freedom
as well.
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