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Abstract. Let (M, g) be a causal spacetime. Condition N will be satisfied if
for each compact subset K of M there is no future inextendible nonspacelike
curve which is totally future imprisoned in K. If M satisfies condition AT,
then whenever E is an open and relatively compact subset of M the spacetime E
with the metric g restricted to E is stably causal. Furthermore, there is a
conformal factor Ω such that (M, Ω2g) is both null and timelike geodesically
complete. If M is an open subset of two dimensional Minkowskian space,
then M is conformal to a geodesically complete spacetime.

1. Introduction

Causality is playing an important role in the study of relativity. It is useful in the
investigation of black holes [1,2] and in cosmology [3,4].

A spacetime which remains causal under slight perturbations of the metric
is called stably causal. This is one of the most reasonable causality conditions
since quantum effects imply that measurements are always imprecise.

It is an interesting fact that many spacetimes which are not themselves stably
causal have relatively large subsets which are stably causal. The question arises
of how to decide if a given subset of a causal spacetime is stably causal. The first
interesting result of this paper is that if (M, g) satisfies the nonimprisonment
condition N, then any open subset EofM with compact closure E is stably causal.
This means that when condition N is valid and (M, g) is not stably causal the
stability condition breaks down near the boundary of M. A corollary of our first
theorem is that if M satisfies condition N and μ is a bounded measure on M, then
whenever ε > 0 is given there is a closed subset F of M such that μ(F) < ε and M — F
is stably causal.

Let Ω be a positive real valued function on M. The two metrics g and Ω2g
on M are said to be conformally equivalent. The function Ω is called a conformal
factor. The introduction of a conformal factor does not change the causality of M
since a curve is timelike (null) for g if and only if it is timelike (null) for Ω2g. On



180 J. K. Beem

the other hand, the causality of M determines the metric g up to some conformal
factor, [1]. The study of conformal geometry on M is equivalent to the study of
causality on M.

For positive definite Riemannian metrics one may always find a conformally
equivalent metric which is geodesically complete, [5]. The corresponding state-
ment is not true for all causal spacetimes. However, some results have been
obtained using stronger assumptions. Seifert [6, 7] has shown that if (M, g) is
stably causal then M is conformal to a spacetime which has all future directed
nonspacelike geodesies complete. Clarke [8] has shown that a strongly causal
spacetime may be made null geodesically complete. In the present paper we show
that if (M, g) satisfies condition JV, then there is a conformal factor Ω such that
every nonspacelike geodesic of (M, Ω2g) is complete. Stable causality implies
strong causality and strong causality implies condition N. Consequently, our
result is an improvement on the previous results.

In the proof we use an expanding sequence of subsets of M such that each
set is open and relatively compact. Each member of the sequence is stably causal
and hence has a cosmic time function. This cosmic time function allows us to
construct a conformal factor Ωk which is unity except for the kth member of the
sequence. The final factor Ω will be the infinite product of the functions Ωk.

2. Preliminaries

Let (M,g) be an n-dimensional spacetime. This means M is a C* Hausdorff
manifold with a countable base, a Lorentz metric g of signature ( — , + , . . . , + )
and a time orientation. The time orientation will always be determined by a C00

(future directed) timelike vector field X on M. We do not require that M be
connected.

A causal spacetime is a spacetime which has no closed nonspacelike curve [1].
A future directed curve x(ί) for a<t<b is said to have a future endpoint p

if for each neighborhood U of p there is some tx with a^t1<b such that x(t)e U
for all t1^t<b. A nonspacelike future directed curve is future inextendible if it
has no future endpoint [1].

If K is a subset of M and x(t) is a future directed curve, then x(t) is totally
future imprisoned in K if there is some tί such that x(t)eK for all t^.tv Past
imprisonment is defined in a similar fashion. An example in [1] due to Carter
shows that some causal spacetimes contain compact subsets which have non-
spacelike curves totally future imprisoned in them.

Condition N. The causal spacetime (M, g) will satisfy condition N if for each
compact subset K of M there is no future inextendible nonspacelike curve x(t)
which is totally future imprisoned in K.

In Section 3 it will be shown that the exclusion of total future imprisonment
for all compact subsets is equivalent to the exclusion of total past imprisonment
for all compact subsets. Notice that condition N does not exclude the possibility
of partial future imprisonment.

The spacetime (M,g) is strongly causal if for each peM and each open
neighborhood of p there is a smaller neighborhood of p such that no nonspacelike
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curve intersects the smaller neighborhood more than once. It is known [1] that a
strongly causal spacetime satisfies condition N.

The spacetime (M, g) is stably causal if the metric g has a neighborhood in
the C° open topology such that there are no closed timelike curves in any metric
belonging to the neighborhood. The C° open topology is defined in terms of
TS2(M), the bundle of symmetric tensors of type (0,2) over M. A Lorentz metric
is a cross section g:M->TS^{M) of this bundle. If V is an open subset of the bundle
TS°2(M\ then 0(F) is defined to be all C° Lorentz metrics g such that g(M) is
contained in V. Sets of the form 0{V) form a basis of the C° open topology. A
spacetime M is stably causal if and only if there is a function / on M whose gradient
is everywhere timelike, see [1]. The function / is called a cosmic time function.
When cosmic time functions exist they are not unique. Stable causality implies
strong causality.

Consider now a point p lying in an open set U of M. The causal future of p
in U for the metric g will be denoted by J+(p, U9 g). This set consists of all points
qeU such that there exists a future directed nonspacelike curve x(ή in U from
ptoq.

3. Stably Causal Subsets

Let X be a C00 timelike future directed vector field on M. For each fixed A^O
define the Lorentz metric g\_X\ on M by

g[λj 7, Z) = g( 7, Z) - λg{X, Y)g(X9 Z)

where 7 and Z are tangent vectors of M. The vector field X remains timelike
for the metric g\_λ\ and gives a time orientation to (M, g[λ]). If the vector 7 is
orthogonal to X for the metric g = g[O], then 7 remains orthogonal to X for the
metric g[λ~\. It follows that g[λ] is nondegenerate for all λ^.0. Furthermore, the
light cone of g\_λ] decreases toward the light cone of g as λ decreases toward zero.
If λί>λ2 and Z is a future directed nonspacelike vector for g\λ2\

 t n e n Z is a
future directed timelike vector for λ1.

In the next Lemma we show that locally the causality of g\_λ~\ converges to the
causality of g as λ converges to zero.

Lemma 1. Let λm—>0+ and peM. There is a neighborhood U of p such that if
and qm-^qeU with qmeJ+(rm, l/,^[AJ), then qeJ+(r, U,g).

Proof. Let exp [A]: T(M)~>M be the exponential map for g\_λ~\. Let W be an open
subset of the tangent bundle T(M) with W compact, peQxp[0](W) and assume
exp[0] is defined on an open set containing W. There is some c > 0 with exp [A]
defined on an open set about W for all 0^λ<c. Let (u1, ...,un) be normal co-
ordinates about p and (w1, ...,un, v1, ...,vn) = (u,v) corresponding coordinates on
T(M) using the natural basis. The map exp[Λ,](w, v) is a C00 function of u, v and λ
for all (u,v)eW and 0^λ<c. For each fixed λ there is a convex normal neigh-
borhood of p for g[λ]. Since exp[λ](w, v) is C00 it is possible to find a cι > 0 and a
set UCexp[0~](W) such that U is a convex normal neighborhood of p for g and
such that for all 0 ^ λ < c 1 the set U lies in a set t/[2] which is a convex normal
neighborhood for
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Let x(ί) = exp[0](MθJ tv0) for Orgίrgl be the unique geodesic for g in U with
x(0) = r and x(l) = q. For sufficiently large m there exists um and vm such that
exp[λm~]{um, tυm) for O ^ ί ^ l is a geodesic of g[λ^\ from rm to qm. Furthermore,
um^u0 and i ; m ^ 0 . Since qmeJ+(rm, I/,gf[λJ and t7ct/[AJ, the tangent vector
(ι/m, um) is future directed nonspacelike for #[/lm]. It follows that (u0, υ0) is a future
directed nonspacelike vector for g and qeJ+(r,U, g). This establishes the Lemma.

When (M, #) is a causal spacetime and £ is an open subset of M we will use
(£, g) to denote the spacetime obtained by using the metric g restricted to the
manifold E.

Theorem 2. Let (M, g) be a causal spacetime which satisfies condition N. If E is an
open subset of M with compact closure E, then (E, g) is stably causal.

Proof. Assume E is not stably causal and let λm be a decreasing sequence of numbers
with λm->0. For each m there is a closed curve σm(t) for O^trgl lying in E with
σm(0) = σm(l) and σm timelike future directed for the metric #[λ w ]. Extend the
parametrization of σm by defining σm(t + k) = σm(t) for all O^Ξίrgl and integers k.
The curves σm are both future and past inextendible nonspacelike curves for
g\_λ{\ For each m choose a point pmeσm. The sequence {pm} must have a sub-
sequence converging to some peE since E is compact. Lemma 6.2.1 of [1] implies
the curves σm must have a limit curve σ which contains p, is nonspacelike for g\_λ{]
and is both future and past inextendible in M. Since σm CE we have σC£. Lemma 1
implies that σ is nonspacelike for the metric g. The curve σ is future and past
inextendible for g since it is future and past inextendible for g[_λ{\. The curve σ
contradicts condition N and establishes the Theorem.

Corollary 3. Let (M, g) be a strongly causal spacetime. If E is an open and relatively
compact subset of M, then E is stably causal.

Theorem 4. Let (M, g) be a causal spacetime. The following three conditions are
equivalent.

1. Condition N.
2. For each compact subset KofM there is no past directed and past inextendible

nonspacelike curve x(t) which is totally past imprisoned in K.
3. Each open subset E of M with compact closure E is stably causal.

Proof. Theorem 2 states that 1 implies 3. Furthermore, the proof of Theorem 2
shows that 2 implies 3.

Assume that condition 3 is _yalid. Let K be a compact subset of M. There is
always an open subset E with E compact and KcE. Since E is stably causal it is
strongly causal. Therefore, there can be no future (past) directed and future (past)
inextendible nonspacelike curve x(t) of E which is totally future (past) imprisoned
in K. The same statement must be true for E replaced by M. Consequently, 1 and 2
are valid and the Theorem is established.

For the next two results let μ be a Borel measure on M such that μ(M)< oo.
The measure μ need not be related to the Lorentz volume element on M. A
measure μ with μ(M)<co always exists, compare [1].

Theorem 5. Let (M, g) be a causal spacetime which satisfies condition N. If μ is a
measure with μ(M)<oo, then for each ε>0 there is a closed subset F of M with
μ(F)<ε and M — F stably causal.
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Proof. A simple argument shows that without loss of generality we may assume
M is connected. It is known [5] that a connected manifold may be given a com-
plete positive definite metric g. The Hopf-Rinow Theorem [9] implies that if d
is the distance function obtained from g, then all subsets of M which are bounded
with respect to d have compact closure. Fix a point qeM and define Hk={p\k—
1 :g d(q, p) < fc} for fc= 1,2, 3,. . . . The sets Hk are disjoint Borel sets with compact
closure. The countable additivity of μ implies

μ(M) = Σμ(Hk).

Consequently, there is some m such that the union of all Hk with k^m has measure
less than ε. Let F be the union of all Hk with k^m. The set F is a closed set. Further-
more, M — F has compact closure. The final result now follows from Theorem 2.

Corollary 6. // (M, g) is strongly causal and μ is a measure with μ(M) < oo, then M
less a suitable set of arbitrarily small measure is stably causal.

4. Conformal Changes

In this section we will obtain the main result. A causal spacetime satisfying
condition N will be shown to be conformally equivalent to a spacetime which
has all nonspacelike geodesies complete.

A geodesic x(t) of M with t an affine parameter is complete if it can be extended
to arbitrary positive and negative values of its affine parameter, see [10]. A space-
time is null and timelike complete if all null and timelike geodesies are complete.
When all geodesies are complete the spacetime is called geodesically complete.

The causality of (M, g) and (M, Ω2g) is always the same, however, the geodesies
of g and Ω2g can be quite different.

If x1, x2,..., xn are coordinates for a neighborhood U(p) and re U(p), then the
ϊth coordinate of r will be denoted by x\r).

Lemma 7. Let (M, g) be stably causal and let f be a cosmic time function with grad/
always future pointing. If peM, then there is a neighborhood U(p) with coordinates
x \ x 2 , ...,x" such that χ 1 (r)=/(r) for all reU(p).

In the above Lemma let U(p) be the coordinate neighborhood where x1,..., xn

are the local coordinates. There exists b2>b1>f(p) and a neighborhood
V(p) C U(p) such that any future directed nonspacelike curve which intersects
V(p) must also intersect {reU(p)\x1(r) = c} for all b1^c^b2. Assume without
loss of generality that b3 is a positive number such that any future directed non-
spacelike curve x(t) which intersects V(p) must have |xι(ί)|rgέ>3 for all ί^2 and
all t with f(p)^x1(t)^b2. Assume also that the coordinate domain of U(p) includes
all x such that f{p)^x1^b2 and |x ί |^2fe3.

Let (x, v) = (x1

i ...,x", v1,..., υn) be the natural coordinates on T(U(p)), the
tangent bundle over U(p). Let L, δl9 δ2, and <53 be four numbers with b1<δ1<
δ2<δ3<b2 and L ^ l . Let S(δl9L) be the compact set of tangent vectors (x,v)
such that x1 = δί,\xi\^b3 for z'^2, L = Σ(vj)2 and (x,v) is future pointing. By
choosing δuδ2, δ3 sufficiently close together we may assume each future directed
nonspacelike curve which intersects {x\x1 = δ1,\xι\^b3 for i^2} also intersects
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{x\x1=δ3, |x ί |^2i>3 for z^2}. Given any fc>0 it is always possible to find a C00

function Ω which is identically one for reM unless reU(p) and δ2<x1(r)<δ3

such that any geodesic x(t) of Ω2g with (x(0), x(0))eS(δu L) increases its affine
parameter by at least k in going from the hypersurface f(ή = δ2 to the hypersurface
f(r) = δ3. The metrics g and Ω2g are exactly the same except for reU(p) with
δ2<x1{r)<δ3.

In the Theorem which follows we will make use of the neighborhoods U(p%
V(p) and the numbers b1 = b1(p\ b2 = b2(p), and b3 = b3(p) which are constructed
as in the above paragraphs. The numerical restrictions on δγ^δ^p), δ2 = δ2(p\
δ3 = δ3{p\ L, and k are ^ ( p ) < δ 1{p)<δ2(p)<δ3(p)<b2(p), LTtl and k>0.

Let U(p0) and Uip^ be given with coordinates xι

0 and x\, respectively. If
reL/(po)π£/(/?!), then Xo(r) = x[{r)=f(r). However, it may hapepn that Xo(r)Φ
x[(r) for i^.2. Notice that if £>i(Po)^i(Pi) w e m a y choose the δι(p0) and δiip^
such that <53(Po)<51(pi). The corresponding conformal factors Ωo and ί^ will
then be different from unity on disjoint sets.

Theorem 8. Let (M, g) be a causal spacetime which satisfies condition N. There is
some conformal factor Ω such that (M, Ω2g) is null and timelike complete.

Proof. Assume without loss of generality that M is connected. Choose a fixed
qeM and let g be a complete positive definite metric on M with corresponding
distance function d as in the proof of Theorem 5. Let W(k) = {r\k -1 < d(q, r) < k}
and B(k)={r\0^d(q,r)<k}. The sets W(k) and B(k) are open subsets having
compact closure. Theorem 2 implies B(5k) is stably causal and hence has a cosmic
time function fk. Assume grad/is always future pointing on B(5k). The idea is to
define inductively a sequence of functions Ωk such that Ωk is identically one except
possibly on the set W(4k-l)uW(4k)vW(4k+l). The final conformal factor Ω
will be the infinite product ΠΩk of the functions Ωk. Actually, for each fixed k the
function Ωk will be defined by a finite induction and will, in fact, be the finite
product of functions Ωk.

The definition of Ωk will vary according to if k is even or odd. Let Ω0=l.

Case 1. Let k be odd
Let gk = Ω2

0...Ω
2

k_1g. For each peW(4k) use the cosmic time function fk and
define U(p), V(p\ b^p), b2(p\ and b3{p) as described above with U(p)C W(4k— l )u
W(4k)uW(4k+l). The sets V(p) form an open cover of the compact subset
W(4k). Let V(px\ ..., V(pm) be a finite subcover such that/ k (p f )</ k (p i + 1) and
bi(Pi)Sb1ip2)S "Sb1{pmy Choose the <5's as above with the further restriction
that <53(pί)<<51(p/ + 1) for all i = l, ...,m — 1. For each i we wish to construct a
function Ώ'fe which is identically one except for reU(pι) with δ2(pi)<fk(r)<δ3(pi).

Assume Ω{,...,Ωk~
ι have been defined. Let g = (Ωl...Ωίf1)2gk. Consider

x(t) a future directed nonspacelike geodesic of (B(5k\ g) which is future and past
inextendible in B(5k) and satisfies (x(0),x(0))eS((51(pί), 1). Because B{5k) is stably
causal there must exist some t1 < 0 such that x(t1)eW5k. There is some positive
constant crgl such that if ^rgίrgO, then g(x(t\ x(i))>c. Therefore, there is some
neighborhood Q of (x(0), x(0)) in ^ ( ^ ^ ^ 1) such that if y(t) is any future directed
nonspacelike geodesic of (JB(5fe), g) which is future and past inextendible in B(5k)
and WO),y{Q))eQCS{δ1 (pf), 1), then y(tx)e W5k and ^(y(ί), y(ή)>c/2 for all
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The compactness of ^(^(p;), 1) implies there is some L^l such that if x(t) is any
future directed geodesic of (B(5k),g) with (x(0),x(0))eS(δx(pi),L), then ί < 0 with
x(t)eB(k) and x(s)φ W5k for all ί g s ^ O , implies g(x(t\x(t))^l. The function Ω^
will be identically one except possibly for reUipi) with δ2(pi)<x1(r)<δ3(pi). We
require that if x(t) is a geodesic of the new metric Ω[g with (x(0), x(0))e1S(^1(pί),L),
then x(t) must increase its affϊne parameter by at least k in going from the hyper-
surface f(r) = δ2(pi) to the hypersurface f(r) = δ3(pt). If ( x ^ i ^ e S ^ , ) , ! / ) and
L'^L, then the geodesic x(ί) increases in affine parameter by at least (L')~1Lk
between the hyper surfaces.

Let Ωk = Ω{...Ωk and gk+1=(Ω0Ω1...Ωk)
2g. Let x(ί) be a future directed

nonspacelike geodesic of (M, #fc+1) which is future inextendible and has x(ί1)Gβ(k)
with ^(x(ί1),x(ί1))=l. If t2 is the first t greater than tx with d(q,x(t)) = 4k, then
ί2-ί!>fc.

Case 2. k even
When k is even the construction of Ωk is similar to the above. The difference

is that instead of increasing the affine parameter of future directed geodesies we
increase the affine parameter of past directed geodesies. Construct Ωk such that
if x(ί) is a past directed nonspacelike geodesic of (M, (Ω0...Ωk)

2g) having x^el^fc)
and £/(x(ίi), x(ίi))= 1, then x(ί) increases its affine parameter by at least k in going
from x(ίx) to the first point x(ί2) with d(q, x(ί2) = 4fc.

Define Ω = ΠΩk and let x(ί) be a future directed nonspacelike and future
inextendible geodesic of (M, Ω2g). There is some fc0 such that x(0)eB(ko). We wish
to show x(ί) is defined for all t > 0. Assume without loss of generality that #(x(0),
x(0))=l. For each odd k^k0 we have x(0)eB(k). Hence x(t) increases its affine
parameter by at least k in going from x(0) to the first ί > 0 with d(q, x(ί)) = 4fc. Thus,
x(ί) is future complete. A similar argument shows x(ί) is past complete and finishes
the proof.

5. Geodesic Completeness

For a restricted class of spacetime the methods used in Section 4 can be modified
so that (M, Ω2g) becomes geodesically complete rather than only null and timelike
complete. The proofs will be omitted in this section.

Let (M, g) be a two dimensional spacetime which has no closed nonspacelike
curves and no closed nontimelike curves. This spacetime (M,g) will be called
doubly stable if there are functions fί and f2 such that grad/\ is always timelike
and grad/2 is always spacelike. Clearly, any open subset of the two dimensional
Minkowskian space is doubly stable.

Theorem 9. Let (M, g) be a two dimensional spacetime which is doubly stable. There
is a conformal factor Ω such that (M, Ω2g) is geodesically complete.

Corollary 10. Let (M, g) be the two dimensional Minkowskian space and let F be a
closed subset ofM. There is a conformal factor Ω such that (M — F, Ω2g) is geodesical-
ly complete.
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