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The Classical Limit for Quantum Dynamical Semigroups
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Abstract. We describe a class of single-particle quantum-mechanical dynam-
ical semigroups which, in the classical limit, give rise to Markov semigroups
on phase space.

§ 1. Introduction

The close connection between quantum-mechanical dynamical semigroups and
Markov semigroups has been considerably clarified recently. Both are particular
cases of an abstract theory of stochastic processes [1,2] and the latter can also
arise from the former by restricting to a special class of states called quasi-
classical or coherent states [3,11]. As a new aspect of the connection we show
that one obtains Markov semigroups by taking the classical limit of certain dy-
namical semigroups in a suitable manner. The dynamical semigroups we start
with are of the type which arise in the weak or singular coupling limit of a quan-
tum-mechanical particle interacting with an infinite free reservoir [4, 5, 8, 9, 12,
13, 15], but we do not pursue this here.

We take the evolution of an open system to be described by a strongly con-
tinuous one-parameter "dynamical" semigroup

Γ λ ( ί ) = e x p { r 2 Z + K)ί}. (1.1)

on a Banach space V, called the state space. The unbounded operator Z is the
generator of a strongly continuous one-parameter group of isometries eZt on V
which determines the free evolution. The bounded operator K describes a per-
turbation of a "stochastic" type due to the influence of the external world. For
reasons given in the references above we examine the asymptotic form of the
evolution in the (weak or singular) coupling limit A->0, where λ is real. In typical
cases the effect of K integrated over all time is not finite, so the formalism of
scattering theory is not appropriate. Moreover Tλ(t) is generally a contraction
only for t ̂  0, so we restrict attention to such times t from now on.
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The quantum-mechanical applications arise by choosing V to be the space
SΓJffl) of all self-adjoint trace class operators on a Hubert space jf, with the
trace norm. V is partially ordered and the dynamical semigroups of physical
interest are positivity-preserving and trace-preserving, for all t ^ 0. For simplicity
of presentation and generality we develop the theory at the abstract Banach space
level, and only return to the quantum-mechanical applications in Section 4.

§ 2. Evolution in the Interaction Picture

It has been shown in [5, 7] that if V is finite dimensional, there exists an operator
\ the space of bounded operators on K such that

λ~* 0

Such a result is also sometimes possible when V is infinite-dimensional.

Theorem 2.1. Suppose that

a

lim a~\ J e-ZsKeZsds = K* (2.1)

«-• oo 0

in the strong operator topology. Then

\ime-λ-2ZtTλ(t)f=εxp{K*t)f (2.2)
A—* 0

uniformly for t in any compact interval, for all feV.

Proof. This is Theorem 1.4 of [5] except for a slight change in the proof that
3tfλ-+3tf in the strong operator topology.

We say that Z has pure point spectrum if there are o^elR and fneV such that

Zfn = Kfn (2.3)

and the linear span of the /„ is dense in V.

Theorem 2.2. // Z has pure point spectrum then the limit of Equation (2.1) does
exist in the strong operator topology.

Proof We first show that for every αelR, Z has a "spectral projection" Pa. We
define

o

so that II PI 11^1 and

lim Plfn= lim s'' }
s-^ oo s-»oo 0
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Since lin {/„} is dense in V, Ps

a converges strongly as s->oo to an operator Pa

of norm ^ 1 such that

It is clear that Pα is a projection.
If

K^a'1 ]e~ZsKeZsds
o

then l l x j g llxll, SO to prove strong convergence of Ka as α->oo it is sufficient
to prove it on a dense set. This is a consequence of

\imKJn= \ima-1]e-Zseί«»\Kfn)ds = PanKfn.
fl-^oo α->oo 0

In order to state the next result we define X to be Z-local if

limllXez7ll = 0 (2.4)
t->oo

for all fe V It is easy to show that if V is a Hubert space, Z is skew-adjoint with
absolutely continuous spectrum, and X is compact, then X is Z-local.

Theorem 2.3. If X x is Z-local, K2 commutes with Z and K = Kι+K2, then X"
exists and equals K2.

Proof.lt is an immediate consequence of the definition that K\ =0 and K\ = K2.

Example 2.4. If J f is a Hubert space, V — 3ΓS{3^\ H is a self-adjoint operator on
Jf and

then eZt is a strongly continuous one-parameter group of isometries on V. If

(2.6)

then X is a bounded operator on V for which X" does not generally exist. The
possibility of this example depends on the fact that 0 is not in the point spectrum
of Z but is in the point spectrum of Z*.

A different type of result concerning the asymptotic form of Tλ(t) in the limit
λ-+0 is now treated. We define

P o = l i m a " 1 } e~Zsds (2.7)
a-^ oo 0

if this limit exists in the strong operator topology. The existence of the limit if
e~zt is a unitary group on the Hubert space V may be established by spectral
theory. P o does not exist, however, in Example 2.4.

Lemma 2.5. // Po exists, it is a projection of norm one with range

Vo={feV:Zf = 0}.
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Proof. If feV0 then Pof = f and / lies in the range of P o . Conversely if feV

zta~ι] e-^fds-a-1] e~Zsfds\
o o II

as α->oo, so

e~z<Pof = Pof

for all ί e R Therefore fe Vo.

The following theorem is similar to one in [14].

Theorem 2.6. // Po exists and Ko is the restriction of P0K to Vo then

eκ°tf (2.8)λ ~~* 0

uniformly for t in any finite interval, and for all fe Vo.

Proof Given α > 0 we denote by if the Banach space of continuous V-valued
functions on [0, a] and by WQ the subspace of functions with values in Vo. We
first establish that if geif then

converges uniformly as λ->0. By density it is sufficient to prove this when g is
continuously differentiable. In this case if

A(a) = a~1]e-Zsds
o

then

- \sA{λ-2s)g'{s)ds
ό

which converges uniformly as λ->0 to

t

tPog(t)-ί: sPog'(s)ds
o
t

= J Po0(s)ds.
o

Given /(0)e Fo we define

so that fλ€if and as in [5]
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where 3/?λ:ir^ir is defined by

(Jtrλg)(t)= f e-zλ~2sKezλ~2sg(s)ds.
o

If gei^0 then the above argument shows that jfλg converges uniformly as /l->0
to Jfg where 2tf\ifr-±1f is defined by

(J4?g)(t)=\κog(s)ds.
o

Thus jfλ converges strongly to J f on the subspace #^0, which is invariant for Jf.
It follows by induction that Jf" converges strongly to Jfn on ^ and hence that

converges in norm to

as A^O, using the estimate

\\^\\^an\\K}\nJn\

^Q is the solution of

0

so / ( ί )= exp(Xoί)/(0). It follows that

lim sup IITA(t)/(0)-β*°7(0)ll
λ-> 0 O^ί^α

sup l l e Z A

sup lle-Z A ' ϊ ίTA(t)/(0)-eX o //(0)ll

= 0.

Example 2.7. If F is the space of nxn matrices, H is a diagonal self-adjoint matrix
with distinct eigenvalues, and

then Po exists and Vo is the space of diagonal matrices.

Example 2.8. If J? = I?(WC) and F = ̂ ;(Jf) and (Hψ)(k) = ̂ k2ψ(k) for all
then Po does not exist. There is however an operator

^OR) (2.9)

which plays the same role. If ρe V has integral kernel ρ(k, k') then

(Poρ)(k) = ρ(k,k). (2.10)
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Alternatively if

Q= Σλn\ψn><Ψn\ (2.11)

then
00

(PoQ)(k)= Σ UΨM2 • (2-12)
M = l

It may easily be verified that P o is positive and linear and that

f(Poe)(fc)dfc=tr[ρ] (2.13)
R

for all QEV.

Theorem 2.9. Let Po be a bounded operator from the Banach space V into the
Banach space Vo. Let eCt be a strongly continuous one-parameter contraction semi-
group on Vo, let eDt be a strongly continuous one-parameter contraction semigroup
on V and let

CPof = PoDf (2.14)

for all f in some core 2) of D. Then

ec'Pof = Poe
Dtf (2.15)

forallfeVandallt^O.

Proof. C and D are closed operators and if fe dom(D) then there is a sequence
faeΘ such that./,-*/ and Dfn^Df. Then Pofn-^Pof and C(Pofn)^PoDf by
Equation (2.14). Therefore P 0 / e d o m ( C ) and

CPof = PoDf.

If fe dom(O) then eDsfe dom(D) for all s^O and

^eCit-s)Poe
Dsf

as

= ec«-s\-CP0 + P0D)eDsf

= 0
so

The same holds for all fe V by density.
The above theorem will be used in Section 4 to relate a quantum dynamical

semigroup to a Markov semigroup on momentum space.

§ 3. Asymptotic Limits between Two Spaces

When one tries to relate a quantum dynamical semigroup to a Markov semigroup
on phase space, difficulties arise immediately because of the non-existence of
a canonical phase space distribution for an arbitrary state. One has therefore to
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allow the projection between the spaces V and Vo to depend on λ, and to take
the classical limit at the same time as the limit Λ->0. We write down in this section
only the abstract part of the theory, the applications being in Section 4.

Throughout this section we suppose that Tλ(t) = eZλt is a strongly continuous
one-parameter contraction semigroup on the Banach space V for all small enough
λ>0. We suppose that Pλ:V-*V0 are operators of norm one into the Banach
space Vo for all small enough Λ>0. We also suppose that T0(t) is a (not necessarily
continuous) one-parameter contraction semigroup on Vo, with infinitesimal
generator Z o which need not be densely defined, but is always closed [6].

Theorem 3.1. Let Q) be a core of all Zλ and let Pλ@Q dom(Z0) for all λ. Suppose
that if fe@ then

\\Z0Pλf-PλZλf\\SKλ\\fΠLλ\\Zλf\\ (3.1)

where Kλ and Lλ are independent of f Suppose also that if fe2 then

\im{Kλ\\f\\+Lλ\\Zλf\\} = 0. (3.2)

Then

hm\\To(t)Pλf-PλTλ(t)f\\ = 0 (3.3)

for all fe V, uniformly for t in any finite interval.

Proof dom(ZA) is a Banach space for the norm

\\f\\λ = Kλ\\f\\+Lλ\\Zλf\\

and (Z0Pλ — PZ^} can be extended from Θ to a contraction Aλ:dom(Zλ)^>V0.
If fedom(Zλ) then there exist fne3> such that /„->•/ and Zλfn-*Zλf. Therefore
ll/B-/llA->0and

It follows that Pλfe domZ0 and

Z0PJ-PλZJ = AJ

for all fe dom(ZΛ). The inequality (3.1) therefore holds for all fe dom(ZΛ), which
is invariant under Tλ(t). For such /

\\_pZ0(t-s)p Zxs

SKλ\\ez-sf\\+Lλ\\Zλe
z*sf\\

SKλ\\f\\+Lλ\\Zj\\.
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Therefore if fe9

which converges to zero as Λ->0. The same holds for all feV by density.
We say that T0(t) is a dual semigroup if Vo is the Banach dual of a space W

and T0(t) is the adjoint of a strongly continuous one-parameter contraction semi-
group on W.

Theorem 3.2. Suppose that Pλ:V^V0 are contractions for λ^O and that for all

ψ = Pof (3.4)

in the weak* topology of Vo. If TQ(t) is a dual semigroup on Vo and the conditions
of Theorem 3.1 are satisfied then

\imPλTλ(t)f=To(t)Pof (3.5)

in the weak* topology of Fo, for all fe V and ί ^0 .

Proof We combine Theorem 3.1 with the observation that since T0(ί) is weak*
continuous

\imTo(ήPλf=To(t)Pof

in the weak* topology of Vo for all fe V and ί ^0.

§ 4. Markov Semigroups on Phase Space

We consider a certain quantum dynamical semigroup on the state space V =
of a single spinless particle in one dimension, so that =# = L2(IR). The free Hamil-
tonian is given in the momentum space representation by

on the usual domain, and

eZt(ρ) = e-iHtρeiHt

defines a strongly continuous one-parameter group of isometries on V whose
infinitesimal generator Z is given formally by

Z(ρ)=-i[H,ρ]

or by

(Zρ)(Kk)=^(k2-h2)ρ(Kk) (4.1)

in terms of the momentum space kernel of ρ. The domain 3) of all ρeV whose
integral kernels in momentum space are continuously differentiable and of com-
pact support is dense and invariant under eZt and therefore is a core for Z.
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The Weyl operators W(k, x) are defined on L2(IR) by

{W{Kx)ψ}(h)= exp[ixk/2-ixK]ψ(h-k) (4.2)

and satisfy the relation

W(k, x) W(k\ x!) = W(k + k',x + x') exp [i(kxf -Kx)/2~] . (4.3)

We define a positive definite measure σ on IR3 as a complex measure with
a decomposition

σ{da,db,dh)= Σ μn(da)μjdb)vn(dh)

where μn are complex measures, vn is a positive measure and

IIMIN Σ HμJI2HvJI<oo.
n=l

A larger class of measures σ can no doubt be allowed in the following theory.

Theorem 4.1. // σ is α positive definite measure on IR3 define B: V-+ V by

B{ρ)= j W(h, b)*ρW(h, a)σ{da, db, dh) (4.4)
IR3

and Re^(^f) by

R = J w{h, a) W(h, b)* σ(da, db, dh). (4.5)
IR3

Then the closure of the operator Zλ defined on 3) by

Zλ(ρ) = λ-2Z(ρ) + B(ρ) - ±(RQ + ρR) (4.6)

is the infinitesimal generator of a strongly continuous one parameter contraction
semigroup Tλ(t) on V. Moreover Tλ(t) is positivity and trace preserving for all ί^O.

Proof If Bnh is the bounded operator

Bnh=\W{Ka)μn{da)
IR

then
00

B(ρ)= Σ B&QBnhVM)
n= 1

so B is a bounded and positivity preserving operator on K The operator R satisfies

for all ρe V. The derivation of the properties of Tλ(t) may now be found in [1,2].
The dynamical semigroup Tλ(t) is of the type which has been obtained in

a weak or singular coupling limit [4, 8, 13, 15] of a particle interacting with an
infinite reservoir. We can relate it to a Markov semigroup on momentum space
with little difficulty. Let P 0 : ^ s ( j f )^Z/(IR) be the projection of Example 2.8.
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Theorem 4.2. Let T(t) be the norm continuous Markov semigroup on ^(IR) with
infinitesimal generator given by

00

{(B0-R0)f}(k)= Σ \\βn(k + h/2)\2f(k + h)vn(dh)
n=l IR

00

- Σ \\βn(k-hβ)\2vn(dh)f(k) (4.7)

n= 1 IR

where μn is the Fourier transform of μn. Then

T(t)Poρ = PoTλ(t)ρ (4.8)

forallρeV, t^0andλ>0.

Proof By Equation (2.10) it is clear that PoZρ = 0 for all ρe@. The iritegral kernel
of B(ρ) is

(Bρ) (k k') = J J exp [ibh/2 + ibk] ρ(k + h,V+h).
« = 1 IR3

exp [ - iah/2 - iakΓ\ μn(da) μn{db) vn{dh)
00

= Σ
Therefore

(P0Bρ)(k)= £ ί\
M = 1 IR

= (BoPoρ)(k).

Similarly

(Rρ + ρR)(k,k')=Σ ί exPU(ha-hb)β1 •
n=l ER3

{W(0,a-b)ρ}(k, k')μn(da)μn(db)vn(dh)+ conj.

= X J exp[i( f l - b){hβ - fe)]ρ(/c, k')μn(da)μn(db)vn(dh) + conj.
M = 1 I R 3

= Σ $\μn(k-hβ)\2Q(k,k')vn(dh)+con}.
« = 1 IR

Therefore

1 1 = 1 IR

The proof is completed by an application of Theorem 2.9.
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We now define the Banach space Vo to be the space of all finite complex
measures on phase space IR2, with the usual norm. Vo is the Banach dual space
of the space C0(IR2) of all continuous functions on IR2 which vanish at infinity,
and contains Z/(IR2) as a weak* dense subspace.

We let ez*x be the strongly continuous one-parameter contraction semigroup
on C0(IR2) with infinitesimal generator

:)~ Jx

+ f l\μn(k-h/2)\2f(k-Kx)vn(dh)
n=ί IR

oo

- Σ $\μn(k-h/2)\2vn(dh)f(k,x). (4.9)
n=ί IR

The dual semigroup T0{t) on Vo is a Markov semigroup; in other words if
μ is a probability measure on IR2 then so is T0(t)μ for all ί^O. The semigroup
T0(t) leaves Z/(IR2) invariant and on this subspace is strongly continuous with
infinitesimal generator Z o given by

+ Σ Ufin(k
n=l IR

00

- Σ $\μn(k-h/2)\2vn(dh)f(hx)
n = 1 IR

= (Cof + Bof-Rof)(k,x) (4.10)

say. Note that

(βCoί/)(fc,x) = /(/c?x-/cί) (4.11)

describes free classical motion on phase space and that Bo and Ro are the phase
space versions of the corresponding operators of Theorem 4.2. Therefore T0(t)
physically describes free motion of a classical particle subject to random impulses.

It is somewhat difficult to associate the Markov semigroup T0(t) with the
quantum dynamical semigroup Tλ(t) because a state ρeV does not have a canon-
ical phase space distribution. As λ-+0 the following maps define a scaling of the
states similar to one used in [10].

Lemma 4.3. If φ,ψeJ4? the formula

^ (4.12)

defines a bounded linear map



124 E. B. Davies

with

KJ^WφWWψL (4.13)

If φ = ψ is a vector of norm one then P^ φ is positίvity preserving and

\{Pλ

φφQ){Kx)dkdx=trlQ\ (4.14)
IR2

for all ρeV.

Proof By a scale change we may assume that λ=l, and by the spectral decom-
position of ρ we may assume that it is a pure state ρ = | O <£l It *s therefore
enough to prove that

-1- j \(W{k,x)φ,ξ>\2dkdx

for all φ, ξeJΊP. But

x)φ, O exp[-ixfc/2]

J e-ixhφ(h-k)ξ(h)dh.
IR

Therefore by the Plancherel theorem

^ J KW{k,x)φ,ξ>\2dxdk
2π R2

- J \φ(h-k)ξ(h)\2dhdk
IR2

= J|φ(/c)|2|^)|2d/z^/c-llφll2lldl2

IR2

as required.
In order to apply Theorem 3.2 we need the following result.

Theorem 4.4. Let φeL2(IR) fee α wraί vector in Schwartz space and define the unit
vector φλ by

φλ{k) = λ-β/2φ{λ-βk) (4.15)

where l < β < 2 . // Pλ = Pλ

φλψλ for all λ>0 and P0:V^V0 is defined by

(Poρ)(dk, dx) = Q(k k)dkδo(dx) (4.16)

then

\im Pλρ = Poρ (4.17)

in the weak* topology of Vo for all ρeV.

Proof By density arguments it is sufficient to prove that

lim J (Pλρ)(K x)f(K x)dkdx= j ρ(k, k)f(K 0)dk
λ^O IR2 IR
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whenever ρeQ) and / is continuous and of compact support. For such ρ and /

lim J ρ(K k)λβ-2\φ(λβ-2x)\2f{K x)dkdx= J ρ(fc, k)f{K 0)dk
λ^O IR2 IR

where φ is the Fourier transform of φ. Moreover

j (Pλρ)(k,x)f(k,x)dkdx
IR2

- J ρ(k,k)λp-2\φ{λβ-2x)\2f(k,x)dkdx
IR2

k x

Also

1 J ρ(Λ, h')e~iλ"2χh>φλ(h' - k)eiλ~2χhφλ(h- k)dhdh!

IR2

- J ρ(Kk)e-iλ~2χ{h'-h)φλ(hf)φλ(h)dhdh'
IR2

1

IR2

= ^—72 ί c ( l ^ l + I^Ί)IΦA(^OI \ψχ{h)\dhdh!

= ^tλ2P'2 ^ (lAl + lA'l)l^ f t/)l l φ ( f t ) l d ω f t /

which converges to zero as 2->0 uniformly with respect to fc and x. This completes
the proof.

In the following theorem, the main result of this paper, we take Pλ and Po

to be defined as in Theorem 4.4.

Theorem 4.5. If ρeV andt^O then

hmPλTλ(t)ρ=To(t)Poρ (4.18)

in the weak* topology of Vo.

Proof By Theorem 3.2 we need only verify that the conditions of Theorem 3.1
are satisfied. We verify the inequality (3.1) for each term of Zλ in Equation (4.6)
separately, the core 2 being the space defined at the beginning of this section.

Lemma 4.6. There is a constant Kλ such that Kλ-+0 as λ->0 and

! ρll t r (4.19)

for i
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Proof. If ρ e ^ then

(Pλλ-2Zρ)(k,x)-(CoPλρ)(k,x)

Λ ί ^2(h'2-
2 ZΛ2πλ

-eίλ~2χh φλ(h-k)dhdhf

1
ί (-kίλ-2hf+kiλ-2h)ρ(Kh')e-ίλ-2χh'φλ(h>-k)

2

ea xhφλ{h-k)dhdh'

\{ψ-k)2-{h-k)2}ρ{h,h )

,-iλ 2xfi' „ /ί,/ ]ΛAλ-2xhφλ(h'-k)eιλ xhφλ(h-k)dhdh'

where

has ZΛnorm independent of λ. Therefore by Lemma 4.3

\\Pλλ-2Zρ-CoPλρ\\x

ύλ2β-2\\ψλ\\\\φλ\\\\oK

= λ2<i-2\\ψ\\\\φ\\\\ρ\\tγ.

The proof is completed by putting

K A = A 2 " - 2 l l V l l l lφll .

Lemma 4.7. There is a constant Kλ such that Kλ^0 as λ^>0 and

\\B0Pλρ-PλBρ\\aKλ\\ρ\\tr (4-20)

for all ρs3>.

Proof. We have to compare

(PλBρ)(k, x)= - ^ 2 J <ρ^(h, a)W(k, X~2x)9x,

ί, b) W(k, λ-2x)φλ}σ(da, db, dh)

with

n = l IR

, λ~2x)φλ, W(k + h, λ-2x)φλ) vn(dh).
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The quantity to estimate is

J \(PλBρ)(k,x)-(B0Pλρ)(k,x)\dkdx
πt 2

^ Σ 1 \<QW(h, a)W(k, λ~2x)φλ, W(h, b)W(k, A'2x)φ,>
n=ί I R 5

- * ) ] I \μn\(da)\μn\(db)vn(dh)dkdx .

By the dominated convergence theorem it is sufficient to show that for each
a, b, h the integral with respect to fc, x converges to zero with λ in a suitable manner.

h= ^- ί \<QW(K a)W{K x)φλ, W{K b)W{k, x)φλ)
2π

^ ί \<QW(K X)W{K a)φλ, W(k, x)W(h, b)φλ)

- (ρW(k, x)W(h, 0)φλ, W(k, x)W{h, 0)φλ}

^ {\\W(Ka)φλ-e-iha/2W(k0)φλ\\

+ \\W(Kb)φλ-e-ihb/2W(KO)φλ\\}\\ρ\\tr

by Lemma 4.3. Therefore

which does indeed converge to zero as λ—•O.

Lemma 4.8. There is a constant Kλ such that Kλ-+0 as λ-+0 and

\\RoPλ-iPλ(RQ + QR)hSKλ\\ρ\\tr (4.21)

for all ρe@.

Proof. We have to compare

(Pλ(ρR))(k x)= ^ ί <QW(k a)W(K b

W(kλ-2x)φλ}σ(da,db,dh)

with

(R0Pλρ)(k, x) = - ^ Σ \{QW(k,λ'2x)ψλ,
111 A n = 1 IR
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The quantity to estimate is

J \(Pλ(QR))(k, x)-(R0Pλρ)(k, x)\dkdx
IR

Λ Σ I KQW{K a)W{-K -b)W(k, λ~2x)φλ, W(k, λ-2x)φλ)
n=ί IR5

-<ρW(k,λ-2x)φλi W(Kλ-2x)φλ)

• exp[i(fc-Λ/2)(6-α)]| \μn\(da)\μn\(db)vn(dh)dkdx.

By the dominated convergence theorem it is sufficient to prove that for every
a, b, h the following quantity converges to zero with λ.

h= ^ ί \<QW(K a)W(-h, -b)W{h x)φλ9

-{ρW(k, x)φh W(k, x)φλ> exp[i(k-h/2)(b-a)]\dkdx

= ^- f \<QW(0, a-b)W(K x)φλ, W(k, x)φλ>

~(ρW(Kx)φλ, W(kx)φλ} exp [ik{b-α)]|dkdx

x)φλ}\dkdx

^ \\W(09a-b)φλ-φλ\\ llρlltr

which converges to zero as /l->0.
-By taking adjoints we similarly find that

f \(Pλ(Rρ))(K x)-(R0PχQ)(k, x)\dkdx
IR2

converges to zero with λ in a suitable manner.

Note Added in Proof. A proof of Theorem 2.1 may also be found in Kato,T.: On a matrix limit theorem.
Linear Multilinear Algebra 3, 67—71 (1975)
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