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Abstract. By analyzing the Bethe-Salpeter equation for even λ£P(φ)2 models
we show that for weak coupling the mass spectrum is discrete and of finite
multiplicity below 2m. Moreover on even states of energy less than 4(m — ε)
we show that the S matrix is unitary. Here m is the physical mass and ε = ε(Λ)->0
as λ-+0. Our results rely essentially only on a simple assumption about the
analyticity of the Bethe-Salpeter kernel which has been verified for weak
coupling. For the interaction λφA, (λ/ml <ζ 1) we show that there are no even
bound states of energy less than 4(ra — ε).

Introduction

We investigate the energy-momentum spectrum for even λ0>{φ)2 models via the
Euclidean Bethe-Salpeter equation. Let P = (P°,P1) be the energy-momentum
operator acting on the Hubert space of states Jtf* and define Ωe^f to be the
vacuum. The first results concerning the spectrum of P were established by
Glimm et al. [1,2]. By using a weak coupling cluster expansion, they showed
that the closure of the span of

β, e f a O p > o (/ i)Ω, , eiχOP° ft Φo(ft)Ω, fc Cg>(lR)
ί

contains all states of energy less than (JV + l)(m — ε) for λ (depending on N) suf-
ficiently small. Here ε(Λ,)->0 as λ->0 and φo(fi) denotes the time zero field smeared
with f{. It was also shown that for even & the mass operator restricted to the odd
subspace of J f has exactly one eigenvalue m on the interval [0,3(m — ε)]. As a
result the Haag-Ruelle theory [3] yields the existence of an isometric S matrix.
It has recently been shown that S Φ l and is asymptotic in λ [4, 5,13]. For the
special case of λφA, bound states of energy less than 2m were excluded by using
correlation inequalities [2].
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The Bethe-Salpeter kernel in quantum field theory is analogous to a non-local
potential in quantum mechanics. The Bethe-Salpeter equation takes the form

R(k) = R0(k) - R0(k)K(k)R(k) (1.1)

where k = (k0, fcj denotes energy-momentum vector. Ro and R correspond to the
resolvents of the free and interacting two body hamiltonian in quantum mechanics.
See § 2 for precise definitions. Unlike quantum mechanics K is not given in closed
form. In perturbation theory the kernel K is the sum of all two particle irreducible
diagrams in a particular channel. There is a vast literature in physics which
investigates (1.1) in an approximation where K is replaced by its first order
contribution in perturbation theory. This approximation is referred to as the
ladder approximation and is frequently used by physicists to compute bound
state energies and wave functions.

In this paper we study the qualitative structure of the energy momentum
spectrum assuming strong exponential decay estimates on K in position space
(or equivalently analyticity in momentum space). These estimates have been
verified in [6] for weakly coupled λ^(φ)2 models by extending the cluster
expansion of [1,2]. In §3 we prove that these results imply that K is compact
relative to Ro. The compactness of K enables us to show that on the even subspace
of energy less than 4(m — ε) the spectrum of P is equivalent to that of a free theory
of mass m apart from possible bound states. (See § 5.) By the theory of spectral
multiplicity and the Haag-Ruelle theory, it is easy to establish a restricted form
of unitarity for the S matrix. For the case of weakly coupled λ(φ4)2 we exclude
bound states of energy less than 4(m — ε). Here we use the fact that K is repulsive
to first order for λφ4. Bound states are expected to occur for λ(φ6 — φ4) for weak
coupling because of the infrared singulatities in one or two space dimensions
and the fact that — λφ4 is attractive.

Next we wish to explain the connection between our work and that of Bros1.
Several years ago J. Bros [7] made a study of the Bethe-Salpeter equation in the
framework of axiomatic field theory. He assumes asymptotic completeness in
addition to a number of technical assumptions in order to obtain decay and
regularity properties of the Bethe-Salpeter kernel. These properties are slightly
stronger than those proved for λ^(φ)2 in [6]. Now using the Bethe-Salpeter
equation and compactness techniques, he shows that the four point function has a
double sheeted meromorphic continuation in the energy across the cut [2m, 4m].
The poles on the second sheet should correspond to resonances. Thus, although
Bros does not analyze the energy momentum spectrum (since in fact he assumes
asymptotic completeness), some of our results are implicit in his work.

This paper has only started to answer the fundamental questions concerning
scattering in constructive quantum field theory. There are many techniques of
potential scattering theory such as dilatation analytic methods which may be
useful in the study of the S matrix. The most obvious open problem is to study
three body scattering for λφ4 with the three body equations presented in [8].
The spectral multiplicity techniques used to prove the main theorems of this
paper fail to yield unitarity in the three body region2. Hence the solution of the

1 We wish to thank Professor A. Wightman for pointing out this connection
2 See Remark 2 in § 2
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three body problem may give some insight into the problem of full unitarity for
λφ4. Another problem is to obtain our results away from the weak coupling
region. This requires new estimates on the Bethe-Salpeter kernel. We expect that
for strong bare coupling such estimates can be obtained by extending the recent
cluster expansion of [12].

§ 2. The Bethe-Salpeter Equation

The Euclidean Bethe-Salpeter equation for an even λ^(φ)2 quantum field model
has the following form

D\Xγ, %2!> -^3? ^4)== DQ[XI9 X2, X3 > X4.)

- $D0(xl9 x29 yl9 y2)K(yl9 y29 y3> 3>4)£>0>3> y*> *3> *ddy (2.1)

where xi = (x(ϊ xl) and yt = (y^ yl) are Euclidean coordinates and K is the Bethe-
Salpeter kernel. Here

D(xl9 x2, x3, x4) = Si4\xv χ29 x39 x 4 )-S ( 2 ) (x 1 ? x2)S(2)(*3> x4)

and

D0(xx, χ29 x3 ? x 4 )-5 ( 2 ) (x 1 ? x3)&2Xx2, x4) + S(2\xv x4)S{2\x2, x3)

and S{2\ S{4) denote the two and four point Schwinger functions respectively.
The Bethe-Salpeter kernel and (2.1) are defined whenever the physical mass is
positive [8].

We reexpress (2.1) with the following change of variables:

y X2 X i X4 X3

τ ~

with ζ = (ξo,ξ1), ^ = (^0^1)5 e t c Using the translation in variance of A A)>
K and the τ-> — τ symmetry Equation (2.1) can be written

D(τ9 ξ9 η) = D0(τ9 ξ9 η) - J D0(τ, ξ9 ξ')K{τ -τ'- τ", ξ9 ηf)

•D(τ"9η9η')dξ'dη'dτ'dτ". (2.3)

Let pz q, and k be the momentum conjugate variables of ξ9 η, and τ respectively
and set k = (ik0, kx). We define

p9 q) = jD(τ, ξ9 η)eί{τi:+p ξ+q η)dτdξdη

ToiK p9 q) = jD0{τ9 ξ9 ^e^^'^^dτdξdη

, q) = \K(τ9 ξ9 η)eiiτ'*+p'ξ+q η)dτdξdη .
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If we consider (2.1) as an equation for integral kernels of operators acting on a
space of functions invariant under ξ -* — ξ we have

where

^ ) ( £ ± * ) (2.5)

S" denotes the Fourier transform of the two point function. Using the fact that
the integral (2.2) is a convolution in the τ variables, it is easy to show that (2.2)
may be written in the following form

R(k, p, q) = R0(K p)δ(p + q) - JR0(K p)K{k> - p, qr)R(k9 «', q)dq' (2.6)

or as operators

) = R0(k)-R0(k)K(k)R(k).

The Feynman-Kac formula connects the analytic properties of R(k) with the
spectrum of the energy momentum operator P = (P0,Pί). Let dE(p) be the joint
spectral resolution of P given by the SNAG Theorem [9] so that

eix'p = $eix'pdE(p).

For ξo = ηo=0 note that

The inner product on the right is in J f and

θ(ξί) = φo(ξί)φo(-ξ1)Ω-(Ω,φo(-ξι)φo(ξ1)Ω>Ω

where φ0 denotes the time zero field, Ω is the vacuum. Hence for /" and gΛ belonging
to C ^ R 1 ) we have

τ, ξ, *l)dηdξ

= $R(hp,q)f(p1)g{qί)dpdq

(2.7)

The convergence of the dτ integration follows from a mass gap which we assume
throughout the paper. In § 3 and 4 we study the analytic properties in k of

$R(k,p,q)f(p)g(q)dpdq.

In § 5 we discuss the consequences of these properties for the spectral measure
dE(p).

Now we state the conditions we assume throughout the paper. Let Jf7a be
the subspace of even states in Jίf of energy less than a.
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Condition (*):
A. The two point Schwinger function S has the form

+ f ( p ' + a T 1 ^ ) , O^o^™ • (2.8)2TT f
P + W m+2δo

B. The closed subspace of Jf7 spanned by

for xeR2 and / G Q R 1 ) contains
C. The Bethe-Salpeter kernel K is bounded and analytic in the region

\Imqo\9\ίmpΌ\^2δo

\Imq1\9\lmp1\£2δ1 (2.9)

Condition (*) has been established for the case of weakly coupled even
models in [1, 6] with δo = m — ε(λ) and δ1=e(λ)/29 ε(λ)->0 as λ-+0. The following
additional condition enables us to eliminate bound states in the weak coupling
region by isolating first order repulsive δ functions.

Condition (**): For sufficiently small λ>0 the Bethe-Salpeter kernel has the
form

K\xl9 ...,x4) = λδ(xί-x2)δ{x2-x3)δ(x3-xή) + λ2K\(x1,x29x3,x4) (2.10)

where K^k, p, q) is analytic and uniformly bounded in λ for k, p, q satisfying (2.9).
This has been verified for weakly coupled λ(φ4 + Q(φ))2 models in [6] where
Q(φ) is a positive even polynomial of degree greater than four.

Let ^ i n ( o u t) be the in(out) states constructed by the Haag Ruelle theory. Hence
în(out) is the closure of states

(+00)

where

and f{ι)(p) are smooth functions whose supports are disjoint and contained in
neighborhood G of the one particle mass hyperboloid. G is defined so that its
intersection with the energy momentum spectrum consists only of the one particle
hyperboloid.

Let J^d denote the closed subspace of Jf spanned by the eigenvectors of the
mass operator M = (Pl~ Pj)1/2. We shall restrict our attention to vectors of
energy less than 2(m + δ0) so we define

and also

\ in / V in /

The following Theorems will be established in § 5.
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Theorem 2.1. // condition (*) holds, then the spectrum of M\ J f j 2 m + δ o ) has at most
one point of accumulation at the threshold 2m. The unitary representation of the
Lorentz group carried by each eigenspace of M of mass less than 2m is a finite
sum of irreducible representations.

Theorem 2.2. // condition (*) holds, then

•yte?2(m + δo) -^2(m +δo) i ^2(m + δo)

I in /

Theorem 2.3. Suppose both conditions (*) and (**) hold. Then for sufficiently small λ
(and fixed bare mass)

2(m + δo), i n ,
lout/

Remarks. 1) To establish the discreteness of bound states below the threshold 2m,
it suffices to take <5 = (0,0).

2) To analyze the absolutely continuous part of the spectrum, we show that
the absolutely continuous spectrum of P has multiplicity 1. Let J^a

2

c

{m+do) be the
corresponding invariant subspace. Since the in and out states are absolutely
continuous of multiplicity one, we have

This yields unitarity of the S matrix for energy less than 2(m + δ0).
3) Note that we have excluded singular continuous spectrum for the mass

operator, but we have not excluded eigenvalues embedded in the continuum
except in Theorem 2.3.

4) If K satisfies condition C, then there are no bound states below m + δ0.
To see this, we observe that a bound state of lower energy would create an ad-
ditional subspace of absolutely continuous spectrum of energy less than 2(m + δ0)
corresponding to a pair of bound states. This violates Theorem 2.2.

§ 3. K(k)R0(k) is Compact

In order to obtain information about the spectral resolution of the energy
momentum operator dE(p) we shall analyze the singularities of R(ko + iε9 fcx)
where k0 and kx are real and ε->0. We shall define a Hubert space Aδ such that
K(k)R0(k) has an analytic continuation as a family of compact operators for fixed
real /q and for k0 belonging to

and arg(/co-l//c?+4m2) + α} (3.1)

for small α.
Thus matrix elements of

for fixed kx are meromorphic functions of k0 for koe^(a,δo,δί,k1). The choice
of oc is equivalent to the choice of a cut whose branch point is the threshold
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The compactness and analyticity of K(k)R0(k) rely on the choice of a rather
complicated Hubert space. To motivate our choice of Hubert space, we fix k1 =0
and consider R0(k0, 0) as a bilinear form on L2(R2)xL2(R2). For |Re/to |<2m,
R0(k0,0) is analytic in k0.

However, Ro(ko,0) is not analytic when |Refco|g:2m even when Imfcoφ0.
This is because

has a real solution peR2 whenever |Re/co |^2m. We can regain analyticity in k0

(for Imfc0φ0) if we replace L2 by a space of analytic functions. To illustrate this
idea, note that if f(ρ0) is analytic and bounded for \lmpo\^a

is analytic in fe0 for 0 < Re fe0 < 2m + a. We eliminate singularities of the integrand
by shifting to contour of integration to I m p o = ±a.

We now turn to the definition of our Hubert space. Let w(p) =
16m2] ~ 2 / 3 . Let Aδ be the Hardy class of functions analytic in the region

and such that f(p)=f( — p) with the norm given by

i = sup f |(w/)(p + iα)|2dp. (3.2)

— O^O'̂ i) a n d Ig= {α = (α0, α 1 ) | |α 0 |^2(5 0 ; | α 1 | ^ 2 δ 1 } and dp = dpodpx.
In x space the norm is equivalent to

I) f\\2 __ Γ | Γ W f i Ύ v ) ! 2 e 4 < 5 o | j c o L 4 5 i | x i | j β 3}

where [w/]"(x) is the Fourier transform of [w/](p) and dx = dxodxv We shall
show that K(p)R0(k) maps ^ to Aδ.

Theorem 3.1. Let f =gx -g2 where g{eAδ and let k1 be real Then as a function of k0

\R0(k,p)f(p)dp (3.4)

has an analytic continuation for k0 in @(ot, δ0, δv kx) for α and δ1 sufficiently small
Moreover if 0 < k0 < 2(m + δ0) we have

j o ( / c o + iε9 kl9 p)f(p)dp

0 for 0<k0<]/l4+4m2

16π2(k2 - k2rι'2{k2 -k\- 4m2y1'2f{A~k ^0, (k2 - k\ -4m 2) 1/ 2) ( j

for \/k\ + 4m2 < k0 < 2(m + δ0).

Here Ak is the complex rotation defined so that

(i(fc§-fci)1/2,O). (3.6)
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Proof. Since Ro is invariant under the complex rotations A and det/l = 1 we have

\R0{k0, ku p)f{p)dp = \RMl - k\γ'2,0, p)f{Λϊ 1p)dp .

Hence we need only establish the theorem for kί = 0. We represent R0(k,p) using
(2.5) and (2.8). Let JR 0 0 be defined by

R00(k, p) = 32[(p - k)2 +4m2y1t(p + k)2 + 4m2] " 1

and set δR0 = R0 — Roo. Recall k = (ik0, /q). For k1 =0 note that

^ 1} (3-7)
ιkopo

In order to establish the analyticity of $Roo(k,p)f(p)dp we consider the region
a n d its complement R2~Q. Then we have

= ί Roo{hp)δf(p) + \Roo(hp)δf(p)dp + $Roo(Kp)f(0,Pl)dp (3.8)
Q' Q

where δf(p)=f(p)—f(0,pί). The first integral on the right is clearly analytic in k
since Roo has no singularity for peQ. By (3.7) the second term on the right of (3.8)
equals

8j[(p + fc)2+4w2]-1^dp-8j[(p-fe)2 + 4 r n 2 ] - 1 ^ d p . (3.9)
Q WQPO Q tkoPo

Since (ikopo)~1δf(p) is analytic for |ImJp0 |<2(m + (50) we can shift the contour
of integration to Impo= —2δf

0, +2<5'O, in each of the two integrals in (3.9) re-
spectively. Here <5Ό<<50. This yields analyticity in k for |Re/co|<2(m + (5o). The
region Q is used to ensure the convergence for large p of the integrals in (3.9).
Because

lim ImR00{k0 + ίε, kί9p) = 0 (3.10)

uniformly in p when 0<Refc0<2m, the two terms of (3.9) do not contribute to
(3.5) for 0 <Re k0 < 2m. Moreover because they are analytic in the region 0 < Re/co <
2(m + (50), they don't contribute to (3.5) in the same region.

The analyticity of

μR0(k,p)f(p)dp
R2

also follows by shifting the contour of the p0 integration and again it is easy to
see that (5JR0 makes no contribution to (3.5).

Now it remains to analyze the final term of (3.9). We compute the p0 integral
explicitly by the method of residues. This yields

+ 00

I R00(k,p)dpo = 8π{lkoμ(Pl)(μ(p1)-ko)Γ1 -ίkoμ(Pί)(μ(Pl) + /c0)]-1} (3.12)
— 00

where μ(pί) = (pl +4m 2 ) 1 / 2 . To compute the limit of (3.5) as εJ,0 we use the identity

lim- J fc(y 2=h(r) when re(a,b). (3.13)
εio π (a,b) (v — r) + ε
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Let v = μ(pί) then

x dv.
J/V-4m 2

By (3.12), (3.13) and the symmetry f(p) = f( — p), we have

lim J
ε j O R 2

+ 00

= lim8π J
ε | 0 -oo

= lim8π j ε[.k0v((v-k0)
2 +ε2)T1(v2 -4m2)-l/2vf(0,(v2 -4m2)1/2)dv

ε | 0 2m

- 16π2/(0, (/c0 -4m2)1/2)/cό x(/cg - 4 m 2 ) " 1 / 2 (3.14)

which yields (3.5) for the case k1=0. Note that the second term on the right of

(3.10) does not contribute since Refco>0.

To establish the analyticity of

f f&PMi (3 15)

across the cut (2m, 2(m + δ0)) we deform the contour of the pγ integration to the
contour given by

{ s + is \s\<δ'ί

s + iδ'i s>δ\

s-iδ\ s<-δ\

Along this contour

μ(t(s)) = 2m + is2/2m

Hence for δ\ and α > 0 sufficiently small (3.15) has an analytic continuation for
k0 in @)(μ, δ0, δ'l9 0). This completes the proof.

Theorem 3.2. // condition (*) holds, then for fixed k1 and geAδ the operator

K(k)R0(k):g->$K(k, p, q)R0(k9 q)g(q)dq

has an analytic continuation as a Hilbert-Schmidt operator from Aδ to Aδ for

/coe^(α,<Ui).

Proof Let U be the unitary map from Aδ to L2(IR2, dx) defined by

Then the Hilbert-Schmidt norm of UK(k)R0(k)U~~ι is bounded by

1 ^

^const\w(p)2[_\K{K P + i2δ, q')R0(k, q>~ \q[)Blq[ -q)dq'Ydpdq
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where

Bδ(q)= 1 1

To bound the q' integral we follow Theorem 3.1 where / in (3.4) is replaced by

f(q' q, p, k) = K(k> p + i2δ, qf)w ~ \<f)BJ«ί - q).

From the proof of this theorem it is easy to show that the integral has an analytic
continuation in koe@ such that

|jΛ0(fc, <ZW> q, V, k)dqf\^constw(q).

Hence (3.16) is bounded by

§w(q)2w(p)2dpdq < oo .

Theorem 3.3. Let T(k0) be an analytic family of compact operators for k0 belonging
to a domain 3). Then either

(i) (1 - Tiko))'1 does not exist for all koe@
or

(ii) (1 — T(/co))-1 is meromorphic in 2 i.e., there is a discrete set SC^ of poles
such that T(ko)v = v has a solution for koeS. For koe@>\S, [1 — TXfco)]"1 exists
and is analytic.

The proof follows from well known facts about compact operators [10]. The
above formulation of the theorem has been frequently used in quantum mechanics.
See [11] for example.

Theorem 3.4. For fixed k1 the operator [1 +K(k)R0(k)~]~1 is meromorphic for

Proof. We exclude conclusion (i) of Theorem 3.3 by noting that if Imfc0 is suf-
ficiently large the norm of the operator K(k)R0(k) goes to zero so that

fyk)]-1 exists.

§ 4. The Absence of Bound States

If condition (**) is fulfilled, the Bethe-Salpeter kernel is given by repulsive
δ function to first order in perturbation theory. This condition enables us to
exclude bound states for weak coupling. The basic idea of the section is to eliminate
the infrared singularity of R0{k) for k near the treshold by considering the
operator

Λ/o(fc)=[ΛoW"1+λ5]"1 (4.1)

where δ = δ(x1—x2)δ(x2—x3)δ(x3—x4). Let R'0(k,p,q) the integral kernel of R'0(k)
acting on functions geAδ in the following way

[R'o(%](p) = j Ro(K V, q)g(q)dq . (4.2)
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Note that R0(k)geA$ because R'0(k) is a continuous form on AδxAδ, where A$
is the strong dual of Aδ with respect to the L2 inner product. Let

and set

ceS

Lemma 4.1. Let R0(k)9 R0(k), R'0(k, p, q\ and R0(k,p) be as above and ke$*. Then

λd\k) Ro(k,p)Ro(k,q)
RΌik, v, q)=Λ0(fe, P)t(p -q) (4.3)

λd2(k) + l d{k) d(k)
where

d2(k) = $dpR0{k,p).

Proof. A straightforward computation for ψ1eAδ using (4.3) yields:

λ λ2d\k)

~ M\k) +

where c(k) = $dpR0(k,p)ψ1(p). And for ψ2 belonging to the range of R'0{k) we have

o \k) + λδ)ψ2(p) = ψ2(p) +

This completes the proof.

For Im k0 sufficiently large it is easy to verify by Neumann series the following
identity

kT1 (4.4)

where K\ is defined by (2.10). By analyticity (4.4) holds in
We shall show that for sufficiently small λ

has no poles in {(/c0, fc1)|0^Refco^2(m + δo), Imkί=0}.
It suffices to show that for

(4.5)

where || ||H s denotes the Hilbert-Schmidt norm in Aδ. From Theorem 3.2 it is
easy to show that ||Ki(fe)JRΌ(fc)||HS is uniformly bounded (independent of λ) when
koe<3 is bounded away from the threshold ko = \/k\+4m2. In the following
theorem we establish (4.5) for k0 near the threshold using the fact that

JR0(k, p, q)dpdq = d2(k) - λd\k)[_λd2{k) + 1 ] " 1

- d2(k)lλd2(k) + 1 ] " ι = Θ(λ~ *). (4.6)

Note that this bound holds even as d2(k)^>oo.
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Theorem 4.2. Suppose conditions (*) and (**) /zo/d, αrcd RΌ(k) is defined by (4.3).
Then (4.5) toZώ /or fc1=0 0<Refco<2(m + (5o), uniformly as Im/co->0.

Proo/. As in the proof of Theorem 3.2, it suffices to show that

const
oίfc p', q')f2(q' ^dpdtfl g — p w(q) (4.7)

where

By (4.3) and (4.6) we see that (4.7) follows from bounds of the form

\$Ro(k, p)ίg(p; q)-g(0; qy]dp\ £ const w(q) (4.8)

where g(p; q) = f1(p)f2(pi q) or g{p\q) = f2{p\(i) etc. Here we follow the proof of
Theorem 3.1. First we replace Ro by JR 0 0 in (4.8) since by complex translation it
is easy to show that δR0 has no singularity near k = (2m, 0). We set

> <ύ=g(p> <i)-g((Q>Pil 4) 5

so that reasoning as in (3.8) and (3.9) one can show

|JJR00(/C, p)δg(p9 q)dp\ ̂  const w{q).

Using (3.12) the key estimate reduces to a bound on

= 4π J [μ(piXμίPi)2 - fc2

0)]"x[gf((O, P l ) , β ) - ^ ( 0 , q)-]dPl .

We split the dpx integral into \pγ\ ̂  1 and |p 1 | ^ 1. For |p t | ^ 1 there is no singularity
near fc0 = 2m. and so

J>1

For | p i | ^ l let g"(pί; q) be the smooth function defined by

3,Pi)',q) = g((0,0), q) + Pi k—^((0,p x ); ^)

^ const w(q).

using the Pι~+—Pι symmetry, we see that the integral over Ipjrgl reduces to

r Pi9"(Pi> Φ

I P I I ^ I

^ const w(q).

This estimate is elementary using the factor of p 2 to cancel the infrared divergence
of the denominator when fco-»2m.
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§ 5. The Energy-Momentum Spectrum

In this section we show how the results of § 3 and § 4 can be applied to give informa-
tion about the energy momentum spectrum. Let A\ be the subspace of functions
in Aδ which are independent of p0. Note that the span of eίxPθ(f) for feA\ and
xeR2 is dense in J f 2(m + δo) because A\ contains the Fourier transform of functions
in Cξ(R}\ We recall the formula (2.7) which connects R(k) with the spectral
resolution of P,

kj l—ϊ-r-
\Po~κo

for feAl and Im/co + 0. Let ί i b e a smooth function. Then for real k0 we have
Km f </, ImΛ(fc0 + iε, k^Km

= Km J φ i - fcj Im [(p0 - k0 + iε)-x + (p0

i ~ K)h(Po)d{θ{f\ E(p)θ(f)} (5.2)

where supp/zClRΛ For the last identity we have used (3.13). Now let us consider
the spectrum of P for energy less than 2m.

Lemma 5.1. The spectrum of the mass operator below 2m is contained in the poles
1

Proof. lϊb<2m is not a pole of [1 + K(k0,0)Ro(ko, 0)]~1 then since R(k) is analytic
in a neighborhood of (b, 0) (with no cut) we have for k0 near b and kι small

ε |0

By (5.2) we have

j dE(p)eixPθ(f)
\p-(b,O)\<ε

= J e^dE(p)θ{f)
|p-(fc,0)|<ε

= 0.

Lorentz covariance implies that dE(p) has no support in a neighborhood of
the hyperboloid of mass b.

Lemma 5.2. On each eigenspace of mass less than 2m the representation of the
Lorentz group is a finite sum of irreducible representations.

Proof. Let b<2m be an eigenvalue of M. Then from (5.1) we have for small ε > 0

(2π/)"1 § <f,R(ko,0)f}dko

\ko-b\=ε

= J S(p!)d<0(/)E(p)0(/)>. (5.3)
\b-po\<ε

Note that since the poles of [1 +K(k0,0)Ro(ko, 0)]" * are simple [by (5.1)] we have

0 = [1 + K(b, 0)Ro(b, 0)] § [1 + K(kO9 0)Ro(ko, 0)] - HkQ . (5.4)
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The compactness of K(b,0)Ro(b, 0) and (5.4) imply that the range of <j>[ ] - 1 is
finite dimensional, say of dimension n. Hence (5.3) as a bilinear form is of rank n.

Now suppose the Lorentz representation is rc + 1 reducible. Then there exist
n + 1 vectors v{ belonging to distinct components of the representation such that

)vjy = δίjδ(p2

0-p2

ί-b2)dp

for small pv Since the vt can be approximated by vectors eίx'pθ it follows that
the form (5.3) has rank n + ί which is a contradiction.

Next we analyze the spectrum above 2m. We shall show that apart from
possible bound states the energy momentum spectrum is absolutely continuous
and of multiplicity 1.

Let ct be the poles of [1 + K(/co,0)Ro(/cθ50)]~1 above 2m. For a Cc[2m,2(m +
δo))9 let

= |J
eeC

where

Lemma 5.3. Let C= {cj. Tfterc /or keΩ/C and feAδ we have

lim</, ImΛ(fc0 + ίe, ̂ i ) / > ^ = Um< W W , Imi?0(/c0 + fe, /c)W(k)f}L2 (5.5)

W(k) = lim [1 + K(k0 + fβ, fcJΛoίfco + ^ fci)] " ' (5 6 )

Remark. By Theorem 3.4 W(/c) is well defined and bounded for kφC.

Proof. Let z = (kλ +ίε, kt) and for an operator T(z) let

Note that

ImΛ(z) = Im{Λo(z)^(z)} = ( I m R o W ) ^ ) - Λ o ( 5 ) lm(W(z)),

and

Since

R0(z)W(z)K(z) = 1 -

the above identities yield

lmR(z)= W{z)* ImRo(z)W(z)-Ro(ϊ)W(z)(lmK(z))Ro(z)W(z). (5.7)

As εjO, (ImX(z))JRo(z)-^0 in the strong operator topology on Aδ hence the
second term on the right side of (4.7) vanishes as ε JO, and the lemma follows.
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Remark. Lemma 5.2 and (5.2) imply that for pφC and feA\

d<θ(f)E(p)eiχ-pθ(f)}

is absolutely continuous with respect to Lebesgue measure.

Next we show that eιx'p acting on the absolutely continuous spectrum of P is
unitarily equivalent to multiplication by eιxP on L2(Ω, d{2)p) i.e. the absolutely
continuous spectrum is of multiplicity 1.

By Theorem 3.1 we can compute the right side of (5.5). For feAδ and keΩ/C
we define

(Lf)(k) = π(k2

0-k\γl\kl-k\-Amψ\Wf)lΛk(0,(k2

0-k\-

Then we have

lim (g, ImR(k0 + ie, /c)/> = {Lf){k)(Γglk)

and so by (5.2)

d(θ(g\ (^

Let N be an open set containing C, (c^^i)). Then the above identity enables
us to define a unitary map

U: E{Ω - N)je -+L2{Ω - N, dp)

which extends the map

U:E(Ω~N)eix'pθ(f)->eiχ '(Lf)(p).

We have used the fact that eix'pθ(f) is dense in je2{m+δo).
Proof of Theorems 2.1 and 2.2. By the Haag Ruelle theory, P acts on E(Ω) Jtf i n

out

as a free energy momentum operator. Hence the multiplicity of eix'p is one on
E(Ω)J4?in. Since

E(Ω - iVpT i n C E(Ω - N)Jf
out

inclusion must be equality for each neighborhood N of C. The proof of Theorem
2.3 follows immediately from Theorem 2.2 and Theorem 4.3.
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