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Abstract Operator products in quantum field theory on two-dimensional
Minkowski space are expanded into a series of local operators by means of
the tensor product decomposition theorem for representations of the conformal
group. The Thirring model is used as an explicit example. Two types of ex-
pansions result. If the operator product acts on the vacuum state, we obtain
strictly covariant expansions. In general however, each term in the expansion
is only semicovariant.

1. Introduction

Operator product expansions in conformal invariant quantum field theory have
been studied [1-4] as a means to get insight into operator product expansions of
more general and physically more relevant quantum field theories. In fact the
requirement of conformal invariance restricts the structure of quantum field
theory very strongly. This supports the hope that some problems of quantum
field theory may become solvable by a nonperturbative construction in such
models.

The general treatment of operator product expansions ("Wilson expansions"
[5]) has been to multiply two local operators A(x) and B(y\ guess an infinite set
of other local operators Cn(z\ make an ansatz for the expansion of A(x)B(y) in
terms of the Cn(z) in the sense of an asymptotic expansion for x->y, and impose the
requirement of conformal invariance on this expansion at the end.

Our approach is different. We intend to apply the reduction theorem of
tensor products of representations for the conformal group into irreducible
representations to this problem. Thus we want to find all terms in the expansion
by construction. The idea is to guarantee "completeness" of the operators Cn(z)
this way. Of course this construction can only be matrix-element-wise and rep-
resentation by representation (each local operator belongs to an infinite number
of representations corresponding to different charge sectors). At the end there
remains the problem to identify these matrix elements as elements of a known
local field operator.
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The main purpose of this work is to show that such conformally covariant or
semi-covariant expansion exist and to study the difficulties connected with them.
In order to give the operator product and its singular structure a well defined
meaning, we consider a special solvable model in two-dimensional Minkowski
space: the Thirring model. Two-dimensional Minkowski space has the advantage
of possessing a small conformal group, namely the universal covering group of
SU(1,1)®SU(1, 1) whose representations and tensor product decomposition
have been studied earlier [6]. This conformal group is sufficiently small to render
algebraic calculations feasible.

In Section 2 we describe the Thirring model as a local field on the universal
covering space of compactified Minkowski space that seems to us the most
elegant presentation for our purposes. A special realization turns out to be
particularly useful. In Sections 3 and 4 we solve the operator product expansion
problem on the vacuum sector.

After deriving a completeness relation for the covariant kernels of the discrete
series that was not given in Ref. [6] we apply it to the regularized product of two
field operators /JO/^) and /J(ι/>2) It results an expansion into a series of local
operators with increasing dimension, each term of which is conformally covariant
on the full conformal group ("strictly covariant Wilson expansion"). In Sections 5
and 6 we treat nonvacuum sectors. We are led to introduce semicovariant kernels
that are infinitesimally but not globally covariant. A completeness relation for
such kernels is derived from the general completeness relation of Ref. [6]. It is
shown that this completeness relation if applied to regularized bilocal operators
always leads to a Wilson expansion into local operators, each term of which is
semicovariant under the conformal group. In Section 6 we study the regularized
operator product of fy(φ) and/J(φ). Because this bilocal operator is singular in a
representation theoretic sense, our formulas must be adapted to this case first.

We use the notations of Ref. [6], in particular the abbreviations almn, βmn that
are explained in the table of that article. The C-coefficients defined in Ref. [6]
are normalized so that N = Nd = (2π)~3.

2. Remarks on the Thirring Model

The Thirring model has been defined originally [7] by a field equation

- ΐ/ dμφ(x) = 0/[J <- \x)φ(x) + φ(x) J<+>(*)] (1)

where φ(x) is a twocomponent field (whose components are labelled by 7= 1,2)
of arbitrary spin s and dimension d. Jμ(x) is the current which in two-dimensional
Minkowski space is a free zeromass vector field and can thus be decomposed
into a negative and a positive frequency part. J'μ and φ are operators in the Fock
space of the free spin 1/2 zero-mass field. Solving the model means constructing
these operators explicitly so that (1) is fulfilled.

This solution has been achieved by Klaiber in his classic paper [8]. A bigger
class of solutions that are all isomorphic to Klaiber's have been constructed later
by DelΓAntonio et al. [9] and by Kupsch et al. [10]. DelΓAntonio's solutions are
parametrized by a pair of functions J±(p) of a certain class. This class of functions
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describes an equivalence class of irreducible representations of the operator
algebra of the zero-mass vector field Jμ(x). Each equivalence class belongs to a
definite charge sector, i.e. an eigenspace of the charge Q and the axial charge (λ
The Fock class belongs to the vacuum sector, the non-Fock classes to non-
vanishing charge eigenvalues.

The class of solutions constructed by Kupsch et al. [10] is a subclass of the
DelΓ Antonio solutions that is parametrized by two complex numbers w
Imw± >0. In fact we find

+,

J±(p) = ̂ w±. (2)

In Ref. [10] the Thirring model has been investigated in order to establish its
conformal covariance. The labels w+ are conformally invariant [thus the relation
(2) may be not quite correct, since the conformal transformation property of the
functions J±(p) is unknown].

The two charges β, Q can be combined into the two renormalized chiral charge
operators

β± = -i[(α-l)β + G8-l)β] (3)

where α, β are arbitrary real parameters introduced by Klaiber [8]. They allow
us to express the three constants of the model g, d, and s. In fact, as auxiliary
quantities we introduce C+ by

) = φ(x)(Q±+C±] (4)

C±=+i[(α- !) + (/?- l)y5] (5)

[y5 is a diagonal matrix with the elements (— l)y] and

N±=C2

±. (6)

Then g, d, and s are

0=π(α-j8) (7)

d=ί(N++N_)=i[(α-l)2+08-l)2] (8)

s = i|α-l| |0-1| . (9)

For technical reasons it is advantageous to replace the variables x± by angles

<P±'.

x±=x°±x3 = tg(φ±/2\ -π<φ±<+π (10)

(H)

Then we extend the field operators onto the infinitely sheeted universal covering
space of compactified Minkowski space [11], that is: we let φ± assume values
from — oo to + oo by

(12)

This definition allows us to present the conformal transformation as

. (13)
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Namely in a "local" form. The Wightman functions for these field operators are
boundary values of analytic functions of the variables φi±—φj± in the lower
half plane.

Restricting the field operator to a charge sector (« + ,«_)

Q±Π(n+,n.) = n±Π(n+,n,) (14)

yields

f(φ±+2π9φ^Π(n + 9n.) = ein(2C^+N^f(φ)Π(n + 9n^. (15)

Thus f(φ)Π(n+, n_) is a co variant operator belonging to the representation

of the conformal group [6] with

2 / + - l = - J V +

fτ± = C±n+ +^N± mod 1 .

This behaviour, namely that only projections of local operators on charge
sectors are conformally covariant is typical for conformal covariant field theories
[4,11,12].

The operator / depends on α and β. For u = β=l we obtain the σ-field (a
pathological case)

β=1. (17)

For this we need the explicit operator form of f(φ) [10]. We apply a Klein trans-
formation

σ(φ) = (2πΓ* exp i(π/2)(β + Q)σ(φ) . (18)

The operator field σy(φ) is then a constant unitary operator, e.g.

t (19)

σ (the same as σ) is not invariant under conformal transformations [see (33)].
In a lightlike basis the vector field Jμ(φ) has the components J+(φ+) and

J_(<p_). J+ does not depend on φ_ etc. In the canonical basis [10] we can de-
compose the components

m=° (20)
-1

By definition the positive (negative) frequency part involves the negative (positive)
powers of eίφ±. The simple form (20) is obtained from Equations (3.57), (3.72),
Ref. [10], and (11) by putting

w ± = + i . (21)

This realization of the Thirring field turns out to be particularly simple, namely σ
commutes with both creation operators c\^m and annihilation operators c± ? m

[c±,m,σy] =[4,«^y]=0. (22)
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Thus J±(φ±) — π~1Q± commutes with the σ-field.
We introduce the source operators

(23)
+ ίOO

Then the Thirring fields can be presented in the form

p±]. (24)
±

A standard product of operators can be regularized by extraction of a singular
factor

[2<sin^±-^±-^
J iJ'

• Π [2i sini(w± - v>,± -iO)]c^4ll{y}M;M J{φ}n; {φ}J (25)
;'</ J

with

±..

- Σ cί[/v)(v/±)+έ± jr

x exp/ {positive frequencies} . (26)

We start the investigation of conformal covariance with the currents. The
transformation behaviour of J+ (φ±) is

J±(φ±). (27)

Thus J+(φ+)(J_(φ_)) transforms apparently like a vector of

^ + ®^->X±=(/±,τ ± )

with [compare (13), (15), (16)]

_ = 0. (28)

@χ+ and Q)^_ possess invariant subspaces ^(

χ

+

+

} and ^(^} [6] spanned by the
elements eiq±φ± with

2-J+-q+ = -™+\ m _π 1 7 / Λ Q Λi . > m+ — υ, i, z, ... (/^j
i - j _ - ^ _ - - m _ J -

or

g+ = l,2,3,... ( = 0,1,2,...)

?.=0,1,2,... (=1,2,3,...). (30)
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At the same time (because τ+ and τ_ are zero) @χ+ and Sΰχ_ possess invariant
subspaces ^~} and ̂ ~_} spanned by the canonical basis vectors with the opposite
sign of q± as (30). Independence of J+(φ+) on φ_ means in fact, that it lies in

(q- = 0) with respect to φ_. From now on we shall neglect the superfluous variable
in such cases.

Despite the fact that

as the expansion (20) of J(±\φ±) shows, we obtain

. (31)

Thus J(±\φ+) is not properly covariant. This is due to the fact that Ug does not
act on the basis vectors but on the operator coefficients. It is impossible to define
another negative frequency part which would not have such second term in (31)
involving the charge operator. Of course (31) is compatible with (27) and the
conformal invariance of the charge operators.

The subtraction point zoo in (23) is not conformally invariant. It goes into a
point ς

(32)

In order that the Thirring field (24) is covariant we must have compensating terms
from the σ-field, namely

xσ,Π {exp;C±[Γ(

±

+)(g + ρ± argα±]}. (33)
+

Moreover (12) and (24) are compatible if σ is constant on the whole covering
space (and not only on one sheet).

The multilocal operators (26) transform as

± l i

x Yl \a±eίψj>± + β±\ + CJ'±Σ*\RM».w)m[.{φa}n

m, {φjm] (34)
/

with

3. A Completeness Relation for Discrete Series Representations

We consider the operator product
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There is no special motivation to study just this product. It is a simple but by no
means trivial choice. This product can be regularized as described in the preceding
section [Eq. (25)]. Under this regularization a conformally covariant Wilson
expansion of the unregularized product goes into a conformally covariant ex-
pansion of the regularized product. Thus it suffices to treat the regularized product.

If it acts on the vacuum we obtain from (26)

x(σp 2 |0>. (36)

Applying the conformal transformation (34) this state vector transforms as a
representation

with the parameters

2/ 1 + -l=2/ 2 + -l=-2N +Jί± J2± ±

τl±=τ2± = +N+ modi .

We assume that 2N + are non-integral.
The two representations χ± ± and χ2 ± are equivalent in this case. Both admit

invariant subspaces of the type ̂  + ). These are spanned by the canonical basis
elements with

i-Λ±-4i± = -wi± ί

mi±=°» 1»2> . (38)

Thus the state vector (36) lies in the representation space

and belongs to a tensor product of four discrete series representations. That is
characteristic for acting with the operator product on the vacuum state.

We want to reduce this product representation (36) into irreducible representa-
tions. The reduction formula of Ref. [6] is not applicable. Therefore we use the
formalism developed in Ref. [6] to derive in brief the correct formula. The starting
point is the Burchnall-Chaundy expansion [6]

&')= Σ d^$k\z) (39)
k=0

with

4l+ 42 =43, 01+42 =43

The dk will be given below after some simplifications [that are not yet possible
in (39)]. χ1 and χ2 are assumed to possess invariant subspaces of the type
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We choose the subscripts qi9 q[ to belong to these subspaces. Then

The representation X3(k) = (j3(k),τ3) admits an invariant subspace ^~\ We find

Ph(k)(7\ _ d-J3(k)(7\—

if bfoth q39 q3 belong to ^X3/^χ~} and zero else. Thus the sum on the r.h.s. of (39)
is restricted to the finite number of terms

(43)

Inserting (41), (42) into (39) and going to z= 1 we end up with

mi +m2
δβι«A2«tf=δ«3tf Σ dk (44)

k=0

Due to the Kronecker deltas in (44) we can set q3 = q'3 and in all common factors
of the sum <h=#i, ^2 = ̂ 2 This gives a simplified expression for dk

sin π2;3(fc)] ̂ (5)̂ (5) . (45)

Our aim is to rewrite (44) in the form of a completeness relation for covariant
trilinear kernels and their duals. First we need a kernel that maps ^^®^^
into @χc. We prefer χ°3 over χ3 because the dimension of the operator with co-
variance χ°3 increases with k [see Eq. (58)] as is required for a Wilson expansion
into local operators. The dimension of a local operator is namely bounded from
below by positivity, whereas arbitrary high dimensions can be created by deriva-
tions.

In order to accomodate the form (45) we choose as C-coefficient (that is: the
matrix element of a covariant trilinear kernel in the canonical basis)

),qι + q2\Xι><lι I %2> fo)

)Γ(α035)Γ(α245)Γ(α345)FίJ(l)/Γ(α135) (46)

with

U(k) = (-jmτJJ3(k)=ϊ-h-J2 + k. (47)

This is obtained from the coefficient Cx (Ref. [6], Eq. (7 la)) by a renormalization
and is therefore properly covariant

-limπ2[sinπ(i-j2+τ2)sinπ(i+73-τ1-τ2)Γ(α024)Γ(α135)]

= lim — π2[sin π(j —j2 + τ2) sin π(j1 +j2 -f τ t + τ2)] ~ 1

x Res Cί(χcι,q1 + q2\χi,qίιχ27q2). (48)
J3=J3(k)

The limit is understood as follows. Keep τ1 and τ2 off the discrete series values
first (i.e. ^—ji — τi are nonintegral) and sQtj3=j3(k). Then go with τί and τ2 to the
prescribed values.
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The C-coefficient (46) has a remarkable symmetry property. If Xι = χ2 it is
symmetric (antisymmetric) in qγ and q2 for even (odd) k. Moreover it can be shown
to map ^1

+)®<^Γj[*) into ^χp(kγ Thus for χί =χ2 the symmetry (antisymmetric)
part of the tensor product is mapped into the direct sum (over k) of ^3t(^ with
even (odd) k.

Another property of the C-coefficient (46) is of utmost importance: It is a
polynomial in q^ ana q2. Consequently the trilinear covariant kernel corresponding
to it is a differential operator. In fact, we use the realization Fp(ί) = Fp(l9092) to
rewrite (46) as

1,ί2) (49)

where Qk(qι,q2) is the polynomial

Qk(qι,q2}= Σ (-i)
m = o l

x(2j2-*)*-m(ϊ-Λ-«l) f c-m (50)

Both the symmetry of C and its property to map F(^]®F(^2

} into F(*3\k) can be
inspected from this expression (50) for Qk(q^ q2).

If K is the kernel corresponding to C and if (φl9

ly φ2)

-2π(Γ(α023)Γ(α245)/Γ(α135)Γ(α235))

ιs=φ2 = φ3. (51)

As dual kernel we use Ki(χl9 φ^ χ29 φ2\lc^(k\ φ3) (Ref. [6], Eq. (107)). It has a
symmetry property related to that of K (46). If k is even (odd) and χ1=χ29 the
image oϊ^(^k} consists of symmetric (antisymmetric) functions of
With C, (46), and C3 we can write

dk=2j3(k}(- 1)*- J2-T

x C(χc

3(/c)5 qι + q2\χl9 q^fa, q2) -

Introducing the integral kernels themselves into (44) we have

S'1(φί-φ1)S'2(φ^-φ2)^(2π)3 £ 2/3(fc) f rfφ(- 1)-̂ -̂
fc=0 0

2π 2π

X^(χ1 ?φ
/

1;χ2,φ/

2 |χ
c

3(fe),φ) J dipt

Here we made use of the intertwining operators S^χl-^χ^S'^ψi) defined by
(Ref. [6], Eq. (37))

&φj = Γ(l - 2j:)(2π) ~^-2ί sin^φ, + iO)] + 2jί - 1 (54)

that serve as projection operators onto ^t

+). It is the kernel K that restricts the
space (fc) to (

}

fe) in (53).
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4. A Strictly Covariant Wilson Expansion

We apply the results of the preceding section to the operator R\yy\_\φl9 φ2~\. First
we define

ok+k_(ψ)=Tl {Qk±(-ί8/d(Pι±> -i8/S(p2±)}RiyγίWι,φ2l\φί±=φ2±=v± - (55)
±

This operator is local as a finite derivative of a multilocal operator. Our construc-
tion guarantees that its projection on the vacuum charge sector

Ok+k_(ψ)Π(0,0) (56)

is covariant according to the representation

ti + (k+)®ti-(k-). (57)

Projections on Π(n+, n_) are also covariant with j± the same as in (57) and τ +
the same as for the projection of jR;yy[;φ, ψ] itself. The dimension of this operator is

= k_
(jo)

The explicit form of the operator Ok+k_(ιp) is

0*+*-(V>) = Π {βfe±(-πC± J±(ψ±), -πC±J±(ψ±))}
±

R',γγ[',ψ>ψ']:

+ derivative terms. (59)

The normal product means: Place J(±\ψ±) + (2π)~ίQ± to the left and J(+ }(tp±) +
(2nΓlQ± to the right of Λ;yy[;φ,φ].

Inserting the operator Ok+k_(ψ) into the completeness relation (53) yields

t ± = o ±

x Γ(4 iV± - 1 + fc±)Γ(l - 2N± - fe±)(/c± IΓ(2N± + k±))~ 1

) . (60)

This is a Wilson expansion indeed.
In fact we have [see (54)]

(Γ(α245)/Γ(α235))Kd3(χ1? φι;χ2, φ2\&(k\ φ3)
2π

= ί dφKd

3(χl9φ1'9χ29φ2\χ3(k)9\p)S'3(ψ-φ3). (61)
o

This intertwining operator maps Ok+k_(φ3)Π(O,O) into Π®χ3±(fc±)/^Γl(fc±)
+

On this function (with operator expansion coefficients in the canonical basis) acts

x [2z sin|(φ2 - φj]\2i sin^(ιp -φ1- zΌ)] ~α235

x [2i sini(tp - φ2 - iO)] ~α°13 (62)
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with

(63)

Because the second and third factors in (62) are boundary values both from below
in the complex φ-plane, their product is, as a distribution, C°° in φv and φ2. Thus
the first factor determines the asymptotic behaviour for φ1->φ2 Each term in the
expansion (60) behaves like

φ2±-φ1±)]^ (64)

for<p 1 ±->φ 2 ± .
Finally we consider the four-point function

(65)

Its harmonic analysis "in the s-channel" reduces to the analysis of the function

<0|R;yy[;φ1,φ2]^;yy[;Vl,φ2]|0> (66)

that is determined by (60). By covariance arguments we have

iO)]-2Λ^>-1 (67)
±

and consequently

= (2π)12 M t + t_
fe±=0 ±

-l + /c±)Γ(l-2N±-fe±)/k±!Γ(2]V±+/c±)]2

'±-v>±-ιΌ^

(68)

Thus Mk+k_ enters the "reduced amplitude".
If it were possible to find a simple expression for the state \2N+ -f k+ , 2JV_ + /c_ >

± v ± |g+,«-> (69)

we could calculate Mk+k_ by projecting (67) onto these states. One form we

+k±)6(k±\)2Γ(l-2N±-k±Γ2Sk±} (70)

obtain for Mk+k_ is

with

k k-m k-m

m = o r=o 5=0 \ w \k-m-r\k-m-s

[Γ(2N + r)Γ(2N + k- r)Γ(2N + s)Γ(2N + k - s)} ~ 1 .
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We have not been able to sum this series. From the symmetries of this series we
can derive that

S k =0for fcodd.

5. Semicovariant Kernels

In the general case we use the completeness relation of Ref. [6], Equations (111),
(115), (120), (122) instead of (52). One might think that a covariant expansion can
be obtained by shifting the contour of the principal series integral such that the
Rej3-»oo. In fact, poles of the integrand at

(/-type poles) or at

(τ-type poles) contribute several series of residues. In general a j-type pole does
not belong to a discrete series representation. The residue of such pole contains
a covariant kernel with the asymptotic behaviour for (Pι-^φ2 (as a distribution
in<p 3)

\Kd\^const\sm^(φl-φ2)\-^+h + h-\Rej^ (74)

[see (80), (82), (86)] that becomes more and more singular with increasing fc.
Shifting the contour to the left, yields the same result. A reasonable asymptotic
expansion (Wilson expansion) can therefore not be generated this way. In addition
the residues contain matrix elements of operators that are nonlocal in general.

To overcome this difficulty we proceed as in the theory of Regge poles [14].
An analogous problem with the asymptotic behaviour is solved there by exploiting
the symmetry under χ->χc and by splitting the "covariant" Legendre functions
of the first kind into "semicovariant" Legendre functions of the second kind.
Covariance (semicovariance) means in this context validity of the addition
theorems on the whole (only on part) of the group SU(1, 1) [15].

Since the asymptotic behaviour of the covariant kernels [6]

for φ1-xjP2

 as distributions in φ3 is relevant, we investigate the functions

= Sdφ3e™**Kd(χl9φι 9χ29φ2\χ3,φ3) (75)
o

for any element

0β3(<P3)
 = ei9393 (76)

of the canonical basis of 3)^ [6]. The function L can be explicitly given in terms
of hypergeometric functions 2Fί of the argument
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Using a well known identity [16] these functions are split into two hypergeometric
functions of argument

i_e-i(<P2-<Pί-ίO) ^

This way the function (75) is decomposed into two parts

= La(Xι> <Pι X2, Ψ2\I^ <?3) +
 Lb(Xι> 9ι X2 ? <P 2 I;C3> 43) (78)

of different asymptotic behaviour for φ1->φ2-
If we set (see Ref. [6], Eq. (83a))

(79)

we get Kd = Kd

i and correspondingly La = Lla

/ nβ3~τι-τ 2

045))-^F1(α0135α123;^34;l-^^2^ (80)

Similarly we have for

^3=+ϊ«235-τ 1 (81)

Kd=Ki and correspondingly La = L3a

4)Γ(α045))-^F1(α035,α235;^34;l-^ί(φ^ (82)

The C-coefficients may be subjected to an analogous decomposition

«3) (83)

We find the symmetry relations

Cite, q3\Xί, ί! χ2, ίa) = SNSN CiOίs, ίa lXi , ίi X2, ί2) (84a)

ι,βι;χ2.«2) (84t))

and

^3e(Xi» «ι ί to, 9z 1^3.9s) = r?12*\r?™*\A^1' qι'X2'q2^3'q^'1 (<Xl23)* (^24-5)
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It follows that in the principal series contribution (Ref. [6], Eqs. (Ill), (113)) we
can replace

CiC\-C{C, by 2[Λ3βCi -ΛlaC3 ]
exploiting the symmetry of the integral contour and the principal series measure
under the replacement of j'3 by —j'3.

Moreover it follows that asymptotically

\Lb\~\2sm(φι-φ2)/2\-κ^(l + 0(φί-φ2)). (86)

Therefore La(Lb) has a decreasing singular behaviour of φ t — φ2 ->0 with increasing
(decreasing) Rej3.

The corresponding semicovariant kernels are defined by

Qa(x^9ilX2^2\X^93)-(^r^e~iq^La(Xi^^X2^2\X3,q3) (87a)
43

Qafoi, <Pί X2, Ψ2\X3, Ψ3) = (2πΓ1 Σ e~'β3*3A(*ι, Φi ί X* Ψ2\X3, q3) (87b)
53

This summation can be performed. The semicovariant kernels turn out to be
linear combinations of the covariant kernels with non-invariant coefficients

Qla = aKd

ί + b'Qxp{-ίπ(jί-J2 + τ± +τ2) sign sm(φί-φ2)}Kd

3 (88a)

Q3a = aQxp{ + iπ(j1-j2 + τ1+τ2)signsm(φί-φ2)}Kd

1+bKd

3. (88b)

The factors α, fo are

a = -f sinπα235 sinπ(| +73 — τ t — τ2)/sinπ2/3 sinπ(/Ί —Λ + τι + τι) (89a)

b = — sin πα013 sin π(^ +;3 + τ t + τ2)/sin π2/3 sin π(/Ί — J2 +
 τι + τι) (89b)

It is obvious that Qla and Q3α are related by

ρ3α=exp {zπ(/ι -7*2 + ̂ ! +τ2) sign sin^! -φ2)}βlfl. (90)

Due to this linear dependence between the relations (88a)5 (88b), Kd or Kd

3 cannot
be expressed by the semicovariant kernels βlfl, Q3α alone.

If the covariance property of the covariant kernels (Ref. [6], Eqs. (52), (74)) is
expressed by differential equations we see from (88) that the semicovariant kernels
satisfy the same differential equations as the covariant kernels except at a set
of measure zero. For infinitesimal group transformations semicovariant and
covariant kernels behave therefore in the same fashion except possibly for their
boundary conditions.

We start from the completeness relation in the form given in Ref. [6], Equations
(111), (115), (120), (122). We obtain as principal series part

2π

(2π)4sin~1π(j\-j2 + τί + τ2)^dμ(χ3)PS J dφ3{Q3a(χl9φ1;χ29φ2\χ39φ3)
o

KI(XS, VilXί, φ'ι #2, φ'2) - 6Jxι, <pιi ̂  92 \x^ 93)
x K3(χ3, φ3\χi9 φ\ χ2, φ'2)} . (91)

With the shorthands
α=/ι -J2 +τι + τ2> sign sin<j0=ε(φ) (92)
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and (90) we may write this

2π

(2π)4 J dμ(χ3)PS J

(93)

This form is still equivalent with the original expression Ref. [6], Equation (111).
We want to deform the contour into the right half plane and thus expand (93)
into a series of residues of poles of the integrand.

There are poles of the analytically continued Plancherel measure (Ref. [6],
Eq. (98)), poles of Qla, and poles of the curly bracket in (93). We skip the detailed
calculation [17]. Most of the poles cancel against zeros and against the contribu-
tions of the discrete series. There remains only one series of poles whose residues
survive, namely those at

n —i—? — 7 — i — k k —0 1 ? Γ94Ϊ(ΛQ2 Λ. — 2 J \ 12 J 3 — v , Γv — w, JL, Z*, ... \^S~J

or at j3(k) as in (47) and no discrete series terms. The resulting "asymptotic com-
pleteness relation" is

e2«i^δ(φ1-φ'1-2πk1) e2πί^δ(φ2-φ'2 -2πk2)
— — 00 &2 =

(%-J2 + τ2)ε(φι-<P2) oo /
v^ V -/~

l

_

sinπ(i-;2+τ2) £0

2π

x ί dφ3Qla(χ1,φίιχ2,φ2\χ3ίφ3)lΓ(a024Γ
1K1(χ3,φ3\χ1,φ

f

1;χ2,φ
f

2)']
o

(95)

We have not investigated whether the right hand side of (95) converges in any
sense and represents the left hand side distribution.

The kernel Γ(α024)~1K1 contained in (95) consists of a differential operator
that creates a vector in ^/c(fc) and of an intertwining operator for the mapping
@χc(k)-*^χ3(k)' Explicitly we find for the case that χ3(k) does not belong to the
discrete series

x [_δ(φ1 — φ2) + periodic repetitions] Qk( — ίd/dφ1, —id/dφ2) (96)

with the polynomial Qk (50). Thus by applying the asymptotic completeness
relation (95) to a (regularized) bilocal operator we obtain a semicovariant Wilson
expansion into local operators.
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6. A Semicovariant Wilson Expansion

We study now the regularized operator product

Λ[/y(φ)/>)] (97)
on a charge sector n+,n_. We find [labels 1(2) refer to the first (second) factor
of (97)]

Jι±=J2± = +2>τι± = c±n±>τ2± = -c±n± modi . (98)

We assume that we are dealing with a non-degenerate case in the sense that τ1 ±

are non-zero and therefore

τ 1 ± +τ 2 ± = l ,τ 3 ± =0. (99)

We decompose the operator (97) into two commuting factors

RUy(φ}fl(ψ)~]=M+(φ + ,ιp + )M_(φ_,ψ_) (100)
by

+iβ±(φ±-^±)]}. (101)

We subject them independently to the asymptotic decomposition (95). Thus we
may skip the labels + in the sequel wherever we deal with one of the factors (101)
separately.

The asymptotic completeness relation is not directly applicable to the case
τ3 = 0 (e.g. the measure factor is divergent), but we adapt it to this case by a certain
limiting procedure. Since \— j3(k) is an integer, we have to deal with a singular
case where @X3(k} possesses two invariant subspaces ^(

x

+

3(k) and ̂ {^\ Of course
as intermediate representation we choose χc

3(k) instead of χ3(k) because we want
to get a local operator.

The trick of adjusting Equation (95) to the case (98) consists in splitting every
term in (95) into factors each of which assumes a well defined limit. This limit is
defined as follows:

1. Go withj'3 to j'3(/c), assume 7^,72 to be purely imaginary, τ 3 φO;
2. Go withj L tO7'2 still on the imaginary axis, keep τ3 fixed;
3. Go with72 to +2% keeP τ3 fixed;
4. Go with τ3 to zero.
We denote these limits in this order by "Lim". Then we define for k= 1, 2, 3, . . .

sinπτ2Γ(α024)Γ(α245)

J dφ\ J dφ'2Kl(χc^φ?>\χl,φ
!

l\χ2,φ'2}M(φ'^φ'2)Π(n + ,n_}. (102)
o o

This definition can be seen to be valid on each charge sector (w + J n _ ) and leads
to a charge sector independent operator Ok(φ3) at the end.

We investigate these operators first. With

1? φ2)Π(n+, n_)= X Mqιq2e
l*ίφί + i*™ (103)

9132

Π(n+,n_) = Σωβ3e'«w (104)
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we have

Here P^ql9 q2) is a polynomial of degree k in q± and #2. Explicitly it is

x3F2(i-k-q1-q29l-k,l-q2; l-k-q2, l-^-^ l). (106)

Inserting (105) into (104) we obtain after summing over all charge sectors

Ok(φ^ = Pk(-id/dφ^ -id/dφ2)M(φ1,φ2)\φί=φ2 = φ?) . (107)

Performing the differentiations leads to

Ok(φ3) = (2πΓ*2d{:Pk(πCJ(φ3\-πCJ(φ3)'.

+ derivative terms} . (108)

The derivative terms involve derivatives of J, they appear for fc^4 only.
In general we find easily

2) (109)

so that we may normalize

) = (2k-2)lOk(φ3)nJ(k- 1)! (110)

-f lower order and derivative terms. (Ill)

This definition can be used also for k = 0

(2π^2~dOk(φ3)nor\k=o = umt operator. (112)

Next we insert (102) into the asymptotic expansion (95). We apply the same
limit as in (102) to the residual factors in the completeness sum (95). We introduce
the kernel

φ2,φJ = (2πΓ*Σeiq3(φι~φ^

and for k = 0 (consider k as continuous variable in this context)

+ periodic repetitions. (114)

In the interval \φ1 — φ2\ <π we end up with the following asymptotic expansion

M(φi9φ2)~ Σ ^ll-e-^-^Ύ f χ^φi9φ29 φ,)Ok(φ3)nθΐdφ, . (115)
k=Q

For practical purposes the representation (113) of χk(φ^ φ2, φ3) is very useful.
We can expand the hypergeometric series into powers of 1 — e~

ί(φ2~φι) and perform
the summation over g3 term wise. This way we can easily reorder (115) into an
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asymptotic series with increasing powers of (q>2-<Pi). The Taylor expansion of
M(φl9φ2) results, as we expect.

The expansion (115) is valid for any charge sector. We sandwich the operator
now between two states

<0|Λ(φ1)Λ[/^2)/ί(Vι)]/ί(ψ2)]0> (116)

which can immediately be expressed by the Wightman four-point function.
Inserting (115) yields an expansion of the matrix element (116) into the matrix
elements

W(φ1,φ2,φ3)

(H7)

that represent covariant three-point functions. Conformal covariance of this
function determines it up to a constant factor, namely

with

Xl,2 = (Jl,2> τl,2\ Xl,2=(~~Jl,2> *• ~τl, ,. .„,

The normalization constant Ck+k_ can be determined by the following
argument. χd

1± and χd

2± are discrete series representations that possess states of
lowest repectively highest weight. We project both sides of (118) on these states.
We find

Ck+k_ =(2π)2 7 [] {dφ1±dφ2±e^* -*»>*"*}
o +

xW(φι,φ2,φ3). (120)

On the other hand this projection reduces the field operator in the four-point
function (117) to the σ-field (17), (18)

Ct+t. =(2π)522\0\σγOk+(φ3+)norOk_(φ3_)norσl\θy . (121)

In our realization of the Thirring field (21), (24) where the current operator
commutes with the σ-field except its charge operator part, the matrix element
(121) can be computed easily. We can neglect the derivative terms of (108), because
they do not contain a charge operator part. This gives finally

k±(-N±9+N±)/(2k±-2)l} (122)

where the curly bracket is defined to be one for k± =0.

7. Conclusions

Though our concrete examples in the present work concern with the operator
product expansion of two particular field operators in the Thirring model, the
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principle should be obvious and further generalizations to other operator products
are quite straightforward. As a byproduct of working in two-dimensional space-
time with a soluble field theoretical model we see explicitly the fulfilment of the
meromorphy hypothesis for conformal partial waves which was essential to get
the operator product expansion in the general approach, for example, taken by
Mack [18]. With all the group theoretical problems completely in our control
(of course, in two dimensions) and the Thirring model it would be now very
interesting to study in detail well-known difficulties related with the locality
and crossing symmetry arising in the aproach to the conformally covariant
quantum field theory based on dynamical equations.
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Note Added in Proof. The authors proved recently that for the Thirring model and an operator product
which does neither commute with the chiral charges nor is applied to the vacuum state the semi-
covariant expansions do not recombine to a Wilson expansion in terms of local operators.






