On the Four-Valuedness of Twistors

C. J. S. Clarke
Department of Mathematics, University of York, Heslington, York Y01 5DD, England

Abstract

The spinors on compactified Minkowski space, in terms of which twistor theory is formulated, are really U-spinors. In this light zero-mass fields have no Grgin discontinuity.

I shall examine the spinors which are induced on compactified Minkowsky space, M^{c}, by twistors. The notation will follow [3], to which the reader is referred for the basic facts of twistor theory. Note in particular that I shall mainly be using concrete indices ${ }^{1}$, since the abstract index notation of [4] presupposes the existence of some particular spin structure; and it is precisely this that I wish to explore.

If Z and W are two twistors with components $\left(Z^{\alpha}\right)=\left(\eta^{\mathfrak{2}}, l_{\mathfrak{x}^{\prime}}\right),\left(W^{\alpha}\right)=\left(\xi^{\mathfrak{2}}, \sigma_{\mathfrak{X}^{\prime}}\right)$, then they determine the point $x(Z, W)$ in Minkowski space M whose components are

$$
\begin{equation*}
x^{a}=-i \sigma^{a \mathfrak{U Y} \mathfrak{x}^{\prime}}\left(\eta_{\mathfrak{Y}} \sigma_{\mathfrak{x}^{\prime}}-\xi_{\mathfrak{A}} l_{\mathfrak{x}^{\prime}}\right) / l_{\mathfrak{Y}} \sigma^{\mathfrak{Y}^{\prime}}, \tag{1}
\end{equation*}
$$

provided that $l_{\mathfrak{Y}}, \sigma^{\mathfrak{Y}} \neq 0$. Then an element g of the twistor transformation group $\mathrm{SU}(2,2)$ [5] determines a local conformal transformation \tilde{g} on M by

$$
\tilde{g}(x(Z, W))=x(g(Z), g(W)),
$$

in a domain where both sides are defined.
The two pairs of numbers which make up the components of a twistor are interpreted on M as the components of spinors with respect to a fixed coordinate basis. Not only are they related to vectors by (1), but for any Poincaré transformation \tilde{g} on M one can find a g which acts on these twistor components in the way appropriate to the spinor interpretation. Moreover, this action extends to conformal transformations, under which the $l_{x^{\prime}}$ and η^{21} transform as the components of spinors on M of conformal weight 1 (i.e. under dilatation by a factor θ they acquire a factor θ^{-1}). Hence they are describable in terms of the conformal metric alone, and so can be defined on the image of M in M^{c}. However, it is well known ([3],

[^0]p. 258) that the extensions of these spinors to M^{c}, with the extension of the \tilde{g} to globally defined transformations, leads to a four-valuedness.

Consider [5] the one-parameter family of transformations $g(\theta) \in \operatorname{SU}(2,2)$ given by

$$
\left[g(\theta)_{\beta}^{\alpha}\right]=\left[\begin{array}{cccc}
e^{-i \theta} \cos 2 \theta & 0 & -i e^{-i \theta} \sin 2 \theta & 0 \\
0 & e^{i \theta} & 0 & 0 \\
-i e^{-i \theta} \sin 2 \theta & 0 & e^{-i \theta} \cos 2 \theta & 0 \\
0 & 0 & 0 & e^{i \theta}
\end{array}\right]
$$

Then $g(\pi / 2)=i \times$ identity, $\tilde{g}(\pi / 2)=$ identity and the action of $\tilde{g}(\theta)$ carries the origin of coordinates in M down to $\mathscr{I}^{-} \equiv \mathscr{I}^{+}$and back down to the origin. If we choose a pseudo-orthonormal frame at the origin it will be dragged round this path by $\tilde{g}(\theta)$, giving for each θ a conformally pseudoorthonormal frame e_{θ} on M^{c}.

On any reasonable interpretation, we should expect $g(\theta)$ to transform spinors on M^{c} continuously, so that, considering, say, the last two twistor components, $\lim _{\theta>\pi / 2} g(\theta)_{\mathfrak{A}^{\prime}} \mathfrak{B}^{\mathfrak{B}} \eta_{\mathfrak{B}^{\prime}}$ and $\lim _{\theta>\pi / 2} g(\theta)_{\mathfrak{A}^{\prime}} \mathfrak{B}^{\mathfrak{B}^{\prime}} \eta_{\mathfrak{B}^{\prime}}$ represent the same spinor. But we cannot compare their components in the coordinate basis of M because this leads to a spinor basis in M^{c} which is discontinuous on \mathscr{F}; instead we transform to the basis e_{θ}.

A calculation shows that the components of the $g(\theta)$-dragged spinor $g(\theta)_{\mathfrak{A}^{\prime}}{ }^{\mathfrak{3}} \eta_{\mathcal{B}^{\prime}}$ in the $g(\theta)$-frame are constant as θ varies from 0 to $\pi / 4$, or from $\pi / 4$ to $\pi / 2$. Thus on return to the origin at $\theta=\pi / 2$, the e_{θ} components are unchanged, while the coordinate-basis components (i.e. the e_{0}-components) have become multiplied by $+i$. If we are to extend spinors to M^{c}, the frame $e_{\pi / 2}$ is not, as far as spinors are concerned, the same frame as e_{0}. Just as a frame acquires a spin-entanglement [6] on rotation through 2π, so e_{θ} on passing from e_{0} to $e_{\pi / 2}$ acquires a half-entanglement - let us call it a spin-rotation of π (as pointed out in [3], loc. cit.). While not allowed for spinors in the usual sense, this is permissible for U-spinors.

We recall [1] that U-spinors are defined on a space-time X by extending the bundle $L(X)$ of all pseudo-orthonormal frames to a $U \operatorname{Spin}_{+}(1,3)$-bundle $U(X)$, where $U \operatorname{Spin}_{+}(1,3) \simeq\left(\operatorname{Spin}_{+}(1,3) \times U(1)\right) / Z_{2}$ (with the non-trivial factorisation); just as spinors are defined by extending $L(X)$ to a $\operatorname{Spin}_{+}(1,3)$-bundle $S(X)$, $\operatorname{Spin}_{+}(1,3) \simeq S L(2, C)$ being the covering group of the Lorentz group. If a loop in $L(X)$ is lifted to $U(X)$ it defines a transformation in $U(1)$ which, in the case of spinors on M^{c} belongs to the subgroup $G=\{1, i,-1,-i\}$. In this case the group of $U(X)$ reduces to $\left(\operatorname{Spin}_{+}(1,3) \times G\right) / Z_{2}$ and we have generalised spinors, as described in [2]. [Note that any generalised spinor bundle E with group
$\left(\operatorname{Spin}_{+}(1,3) \times H\right) / Z_{2}$
can be extended to a U Spin-bundle by forming $(E \times U(1)) / H$. On the other hand, the two-plane bundles over S^{2} with no spin structure [7] do not admit a generalised spin structure but do admit U-spinors, since their dimension-three cohomology is obviously trivial. Thus U-spinors are more general than generalised spinors.]

Finally, consider zero-mass fields on M^{c}. These are specified by

$$
\begin{equation*}
\phi_{A B \ldots D}\left(x^{a}\right)=\oint W_{A} W_{B} \ldots W_{D} f\left(W_{\alpha}\right) I^{\beta \gamma} W_{\beta} d W_{\gamma} \tag{2}
\end{equation*}
$$

where W_{α} is a lower-index twistor (an element of the space dual to upper-index twistors), restricted by $\left(W_{\alpha}\right)=\left(W_{2}, i x^{\mathfrak{B B}} W_{\mathfrak{B}}\right)$. As usual, f is of homogeneity degree $-n-2$, where n is the valence of ϕ. As before, transform to the e_{θ} basis by the conformal spinor transformation $S_{0 \mathfrak{B}}{ }^{\mathfrak{H}}$. Since $S_{\theta \mathfrak{B}}{ }^{21} \overline{g_{\theta \mathfrak{A l}}{ }^{\mathfrak{E}}}=$ identity (the bar denoting complex conjugation, needed for passing from $l_{\mathfrak{x}^{\prime}}$ to $W_{\mathfrak{Z}}$), on applying $g(\theta)$ to W we have the e_{θ}-components given by

$$
\tilde{\phi}_{2 \mathfrak{B} \ldots \mathfrak{D}}^{\theta}\left(\tilde{g}(\theta)\left(x^{a}\right)\right)=\oint W_{\mathfrak{A}} W_{\mathfrak{B}} \ldots W_{\mathfrak{D}} f\left(\overline{g(\theta)} W_{\alpha}\right) \times I^{\beta \alpha} \overline{g(\theta)_{\alpha}}{ }_{\alpha}^{\gamma} \overline{g(\theta)}{ }_{\beta}{ }^{\delta} W_{\delta} d W_{\gamma}
$$

the contour being homologous to that in (2). Here the tilde and superscript θ on ϕ simply indicate that the components are expressed in the e_{θ} basis.

The discontinuity across \mathscr{I} is obtained by comparing values at $\theta=-\pi / 4+0$ and $\theta=\pi / 4-0\left(\mathscr{I}^{+}\right.$and \mathscr{I}^{-}, respectively). Recalling that $g(\pi / 2)=i g(0)$, and hence $g(\pi / 4)=i g(-\pi / 4)$, and using the homogeneity of f, we find

$$
\begin{equation*}
\tilde{\phi}_{2 \mathfrak{Q B}}^{\pi / 4} \ldots \mathfrak{D}\left(y^{a}\right)=i^{n} \tilde{\phi}_{\mathfrak{A} \mathfrak{B}, \ldots \mathfrak{D}}^{-\pi / 4}\left(y^{a}\right) \tag{3}
\end{equation*}
$$

where $y^{a}=\lim _{\theta \rightarrow \pi / 4} g(\theta) x^{a} \in M^{c}$. But we already have, from considering the spinrotation of e_{θ}, that

$$
\begin{equation*}
\tilde{\eta}_{\mathfrak{x}^{\prime}}^{\pi / 2}(0)=-i \tilde{\eta}_{\mathfrak{x}^{\prime}}^{0}(0) . \tag{4}
\end{equation*}
$$

Thus the spin-rotation expressed in (3) is precisely that which is expected for a continuous spinor field of the indicated type, found by conjugating (4) and taking an n-fold tensor product.

In short, there is no Grgin discontinuity.

References

1. Whiston, G. S.: Lorentzian Characteristic Classes; to appear in General Relativity and Gravitation
2. Clarke, C.J. S.: General Relativity and Gravitation 5, 163-167 (1974)
3. Penrose, R., MacCallum, M.A.H.: Twistor theory: an approach to the quantisation of fields and space-time. Phys. Rep. 6, 241-316 (1972)
4. Penrose, R.: Structure of Space-Time. In: Battelle Rencontres, p. 121-241. New York: Benjamin 1968
5. Penrose, R.: J. Math. Phys. 8, 345-366 (1967)
6. Wheeler, J. A.: Superspace and Quantum Geometrodynamics. In: Battelle Rencontres, p. 242-307. New York: Benjamin 1968
7. Geroch, R.: J. Math. Phys. 9, 1739—1744 (1970)

Communicated by J. Ehlers

Received July 19, 1975

[^0]: For typographical reasons concrete twistor indices are represented by α, β etc., instead of the Hebrew of [3].

