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On the Four-Valuedness of Twistors
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Abstract. The spinors on compactifϊed Minkowski space, in terms of which
twistor theory is formulated, are really £/-sρinors. In this light zero-mass
fields have no Grgin discontinuity.

I shall examine the spinors which are induced on compactifϊed Minkowsky space,
Mc, by twistors. The notation will follow [3], to which the reader is referred for
the basic facts of twistor theory. Note in particular that I shall mainly be using
concrete indices1, since the abstract index notation of [4] presupposes the existence
of some particular spin structure; and it is precisely this that I wish to explore.

If Z and W are two twistors with components (Zα) = (^, ιx.)9 (Wa) = (ξm

9σx.)9

then they determine the point x(Z, W) in Minkowski space M whose components
are

xa=- ί (1)

provided that iwa°' φθ. Then an element g of the twistor transformation group
SU (2, 2) [5] determines a local conformal transformation g on M by

) = x(g(Z),g(W)),

in a domain where both sides are defined.
The two pairs of numbers which make up the components of a twistor are

interpreted on M as the components of spinors with respect to a fixed coordinate
basis. Not only are they related to vectors by (1), but for any Poincare transformation
g on M one can find a g which acts on these twistor components in the way ap-
propriate to the spinor interpretation. Moreover, this action extends to conformal
transformations, under which the ιx> and ηm transform as the components of
spinors on M of conformal weight 1 (i.e. under dilatation by a factor θ they acquire
a factor θ'1). Hence they are describable in terms of the conformal metric alone,
and so can be defined on the image of M in Mc. However, it is well known ([3],

1 For typographical reasons concrete twistor indices are represented by a, β etc., instead of the
Hebrew of [3].
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p. 258) that the extensions of these spinors to Mc, with the extension of the g to
globally defined transformations, leads to a four-valuedness.

Consider [5] the one-parameter family of transformations g(θ)eSU(2,2)
given by
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Then g(π/2) = ix identity, g(π/2)= identity and the action of g(θ) carries the
origin of coordinates in M down to Jf~=tf

+ and back down to the origin.
If we choose a pseudo-orthonormal frame at the origin it will be dragged round
this path by g(θ), giving for each θ a conformally pseudoorthonormal frame eθ

onM c .
On any reasonable interpretation, we should expect g(θ) to transform spinors

on Mc continuously, so that, considering, say, the last two twistor components,

lim tffθW93'^©' a n d 1™ 9{Q)<Ά*'riw represent the same spinor. But we cannot
θ^π/2 θ^π/2

compare their components in the coordinate basis of M because this leads to a
spinor basis in Mc which is discontinuous on J\ instead we transform to the
basis eθ.

A calculation shows that the components of the #(β)-dragged spinor g(θ)m^'η^
in the #(0)-frame are constant as θ varies from 0 to π/4, or from π/4 to π/2. Thus
on return to the origin at θ = π/2, the eθ components are unchanged, while the
coordinate-basis components (i.e. the e0-components) have become multiplied
by -h i. If we are to extend spinors to Mc, the frame eπj2 is not, as far as spinors
are concerned, the same frame as e0. Just as a frame acquires a spin-entanglement
[6] on rotation through 2π, so eθ on passing from e0 to eπ/2 acquires a half-en-
tanglement - let us call it a spin-rotation of π (as pointed out in [3], loc. cit.).
While not allowed for spinors in the usual sense, this is permissible for [/-spinors.

We recall [1] that [/-spinors are defined on a space-time X by extending
the bundle L(X) of all pseudo-orthonormal frames to a U Spin + (1, 3)-bundle U(X),
where [/Spin+ (1, 3)^(Spin+ (1, 3) x t/(l))/Z2 (with the non-trivial factorisation);
just as spinors are defined by extending L(X) to a Spin + (1, 3)-bundle S(X),
Spin+ (1, 3)~SX(2, Q being the covering group of the Lorentz group. If a loop
in L(X) is lifted to U(X) it defines a transformation in U(l) which, in the case of
spinors on Mc belongs to the subgroup G= {1, U — 1, —ί}> In this case the group
of U(X) reduces to (Spin + (1,3) x G)/Z2 and we have generalised spinors, as
described in [2]. [Note that any generalised spinor bundle E with group

(Spin + ( l ,3)xi ί)/Z 2

can be extended to a [/Spin-bundle by forming (E x U(l))/H. On the other hand,
the two-plane bundles over S2 with no spin structure [7] do not admit a generalised
spin structure but do admit U- spinors, since their dimension-three cohomology
is obviously trivial. Thus U- spinors are more general than generalised spinors.]

Finally, consider zero-mass fields on Mc. These are specified by

^ , . , D M = § WAWB... WDf(Wa)IβWβdWγ (2)
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where Wa is a lower-index twistor (an element of the space dual to upper-index
twistors), restricted by (Wa) = (Wm, ίx®® W&). As usual, / is of homogeneity degree
— n — 2, where n is the valence of φ. As before, transform to the eθ basis by the
conformal spinor transformation SOfB

m. Since Sθ^gθ^ = identity (the bar denoting
complex conjugation, needed for passing from i r to Wm), on applying g(θ) to W
we have the ^-components given by

(χa)) = §w^w!B... β y

the contour being homologous to that in (2). Here the tilde and superscript θ
on φ simply indicate that the components are expressed in the eθ basis.

The discontinuity across J is obtained by comparing values at θ= — π/4 + 0
and θ = π/4 — 0 (J>+ and «/", respectively). Recalling that g(π/2) = ίg(0), and
hence g(π/4) = ίg( — π/4), and using the homogeneity of/, we find

Γπ/4 / a\ jYil — nlA- (Λ.a\ /γ\

where ya= lim g(θ)xaeMc. But we already have, from considering the spin-
es π/4

rotation of eθ, that

Thus the spin-rotation expressed in (3) is precisely that which is expected for a
continuous spinor field of the indicated type, found by conjugating (4) and taking
an 77-fold tensor product.

In short, there is no Grgin discontinuity.
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