
Communications in
Commun. math. Phys. 47, 215—219 (1976) Mathematical

Physics
© by Springer-Verlag 1976

The Thomas-Fermi-Theory as Result
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Abstract. The energy of non-relativistic neutral atoms is shown to approach
asymptotically the Thomas-Fermi-energy, when the charge of the nucleus
tends to infinity.

I. Introduction

As is well known, the Thomas-Fermi- (T.F.-) theory for atoms results by treating
the electrons as a locally ideal Fermi-gas in the mean field created by the nucleus
and the other electrons. We show that this scheme becomes correct if we take the
limit of infinitely large atoms in nonrelativistic quantummechanics. (This result
has also been announced by Lieb and Simon [1].) First we show that the ground-
state-energy in a mean-field-theory, which supplies us with lower bounds to the
energy of atoms, tends to the T.F.-energy. In the second step the density in ground
states of related Hamiltonians is shown to converge in a certain sense to the T.F.-
density. Finally we take the expectation value of the nonrelativistic Hamiltonian
for atoms in the above mentioned ground state and show that it also gives
asymptotically the T.F.-energy.

II. The Limit of a Lower Bound

We use a Hamiltonian, which gives lower bounds to the energies of atoms, recently
found by P. Hertel et al. [2]:

h — V (P2Πm Λ7ΊY Γ

(2)
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nN(x) is an arbitrary density in L2(R3)

hN^HN= Σ (Pf/2m-iV|x £r 1)+ Σ \xt-xj\~1 • (3)
ί = l i<j

We mimic T.F.-theory by setting

nN(x) = N2n(N1/3x) (4)

which implies

φN(x) = N4/3φ(N1/3x) with φ{x) = l\x-y\~1n{y)d3y (5)

and make the unitary scale-transformation

N1/3xι->x,iV"1/3pι->p, (6)

such that [with V(x) = φ(x)- |x|~ *]

= 1 ι = 1 (7)

M 2 ^) 1 / 3

According to the degeneracy caused by the spins we have to evaluate twice the

sum of the N/2 lowest eigenvalues of N2l3?—-N*l3{\x\~1-φ{x)). The limit

JV->oo may be regarded either as the strong-coupling- or as the classical limit.
The result is given by a theorem which is proven in [3]:

S(n, V):= lim AT 7 ' 3 inf <v>|Ajvlv>>
iV->oo φ , | | V | | = l

= (3/10m)(3π2)2/3 Jρ(x, μ)5/3d3x + $V(x)ρ{x, μ)d3x-^φ{x)n{x)d3x.

The density is

ρ(x,μ) = (μ-V(x)^2θ(μ-V(x)) (9)

where μ has to be chosen either such that Jρ(x,μ)d3x = l, or equal to zero if
Jρ(x,0)d 3 x=| |ρ(x,0) | | 1 <l. If we use for n(x) the normalized (||ρτ.F.IIi = 1 ) T.F.-
density for atoms, ρτ<F.(λ;), then also ρ(x, μ) = ρ τ F (x\ and E(ρΎFi φ(x) — I^Γ1)
equals the T.F.-energy [1,4]. Unfortunately, ρ T F is not square-integrable (it
has a singularity as |x|~3/2 at x-*0), but it may be approximated by square-
integrable nv(x) both in the L5/3 and in the L1-topology:

3{π v (x)}CL 2 (R 3 ) :Um| |n v -ρ τ . F . | | 1 =0

l i m | | n v - ρ τ . F . | | 5 / 3 = 0. (10)
V->oo

The energy functional (8) is then continuous as v—KX):

= (3/10m)(3π2)2/3 J ρτ.F.(x)5/3ί/3x - f |x| -^^(x^x

$ d 3 y , (11)
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and we have the desired asymptotic lower bound:

lim inf (ψ\HN\xp)^ lim inf (ψ\hN\ψ) = EΎF . (12)
N-+oo ψ,\\ψ\\ = ί ΛT-oo φ, | |φ | | = l

III. Convergence of Densities

The asymptotic behavior of the ground-state energies EN(oc) of

hN(u) = N-2'3 f Pf/2m+ Σ (V(xd + «Φd) (13)
i=ί i=ί

for spin-l-particles is as in (8), if w is a test-function in SfΊR3)1, namely:

= (3/10m)(3π2)2/3 Jρ(α, x)5/3d3x + f F(x)ρ(α, x)d3x + αf w(x)ρ(α, x)d3x . (14)

) = {μΛ - V(x) - αw(x))θ(μα - V(x) - αw(x)). (15)

Since the EN(oc) are concave functions of α, there exist the right and left derivatives
EN'+(a) and EN'_(oc), which determine the bounds

f ί O ) (16)
for

^ N W = Σ $\ψN(x>x2'-'XNm>si-~sN)\2d3X2'~d3xN9 (17)
Sl...Sjv

where φ^ is the ground-state-wavefunction of hN(0). We use Griffith's Lemma
[6,7]:

lim N-1EN'+{0)= lim JV-1£ίy'-(0)=dAα)/'ίαlα=o . (18)
iV iV

which implies

lim §w(x)ρN(x)d3x = f w(x)ρ(O, x)d3x . (19)
N-+00

ρ(0, x) is the T.F.-density if we specify V(x) in (13) to be J|x — y\~1Qτγ{y)d3y —
\x\-\

IV. Asymptotic Behavior of an Upper Bound

The ground state energy of HN is lower than the expectation value of HN in the
ground state of hN(0\ if we define HN to be the unitary equivalent of HN by the
transformation 6):

N N

H*T = N2/3 V n2/2m~N4/3 V IY Γ 1 - ! - ^ 1 / 3 V Ix — Y " 1 C2(T)
i=l i = l t < 7

H_m N " 7 / 3 ^ i n f ^ ^ l / ί j φ ) ^ H_m N" 7 / 3 <φ N | JΪ N |φ N >

= (3/10m)(3π2)2/3 jρτ.F.(x)2/3rf3x - J |x|" ίρΎ.F{x)d3x (21)
2 lim (ψN

N^oo

1 We could even take any weL 5 / 2(R 3), as has been shown by W. Thirring [5].
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[That the kinetic energy converges to the corresponding T.F.-term follows by
using the concavity of the ground state energy in \jm and the same arguments
which lead to (19).]

ψN(Xi...xN',sί...sN), the ground state of hN(0\ is a determinant of one-particle-
wavefunctions φNΛ(xp s). In the evaluation of an upper bound to the electron
repulsion we may omit the exchange-terms (which are negative), and add the
positive "self energies" of the φNJs\

i Σ J |«^ix, s)|^ - xΓ W*', s')|2ΛΛ'.
s,s'

We obtain

I ^ - ^ Γ 1 ΨN) S^QN(x)\x-yr1QN(y)d3xd3y. (22)

We decompose |x — y\-1 into three parts:

\x-y\~1 = VJίx-y) + VJx, y) + 7,(x, y), (23)

where

_ ,_j\x-y\~1-ε~ί for {x,y)eAε={(x,y):\x-y\<ε}
s{X y)~\0 (χ,y)φAε

R = {(x9y):\x\>R,\y\>R}

(χ,y)ΦAR.

The interaction due to the singular part is bounded because of Young's inequality
[8]:

ra5/4ll&vll5/3, (24)

|^ N | | 5 / 3 is bounded by the kinetic energy [9]:

| |ρN | | 5 / 3^(5/3) 3 / 5(4/3π) 2 / 5N~ 5 / 3 £ (φN,i\p2\ψN,ί} > (25)

which converges and is therefore bounded.

Vr(x, y) is uniformly approximable by finite sums of terms χa(x)χβ(y) and there
the integrals converge [following (19)]:

Km $ρN(x)Vr(x, y)ρN{y)d3xd3y = \ρΊ¥{x)Vr{x, y)ρΎ F (y)d3xd3y. (26)
N-*oo

Vt(x, y) is the mutual interaction of electrons which are far away from the nucleus:

^ρN(x)Vι(x,y)ρN(y)d3xd3y^sup\Vι(x,y)\( j ρN(x)d3x)2. (27)
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From lim J ρN(x)d3x = j ρΎF(x)d3x and | | ί ? Λ r l l ι = l> it follows that
N^oo \x\<R \x\ <R

j ρN(x)d x converges to j ρτ F (x)d3x and is therefore bounded by any
\x\>R \x\>R

constant close to zero, if R is large enough.
By taking the limits ε-»0 and R^oo after N-+OO, we conclude:

lim j ρN(x)\x - y\ ~ ̂ N(y)d3xd3y = Jρτ.F.(x)|x - y\ ~ lQΊ.Έ.(y)d*y, (28)
N->oo

and that establishes the convergence of the upper bound, which equals the lower
bound:

lim]V- 7 / 3 inf (ιp\HN\ψy = EΎF . (29)
N-+OO ψ , | | ψ | | = l
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