
Communications in
Commun. math. Phys. 47, 167—170 (1976) Mathematical

Physics
© by Springer-Verlag 1976

On Uniqueness of KMS States of One-dimensional
Quantum Lattice Systems
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Abstract. We present a proof of the theorem on the uniqueness of KMS
states of one-dimensional quantum lattice systems, which is based on some
equicontinuity.

1. Introduction

Araki [1] has proved, in full generality, the uniqueness of KMS states of one-
dimensional quantum lattice systems under the condition that for some increasing
family of finite volumes the corresponding surface energies are bounded. (See
also [8, 3, 5,9].) We present another proof of this fact in the same setting as in
[1,9]. The reader is referred to [1] for the connection with one-dimensional
lattice systems.

2. Theorem

Let A be a UHF algebra and δ a normal *-derivation on A, i.e., the domain D(δ)
of δ is the union of an increasing family {An} of finite type / factors (which is dense
in A). There exists hn = h*eA for each n satisfying δ(a) = δihn(a)=[ihn,ά] for all
aeAn. Let τ be the unique tracial state on A and Pn the canonical conditional
expectation of A onto An, i.e., kn = PnhneAn satisfies τ(hna) = τ(kna) for all aeAn.
If {IIK — kn ||} is bounded, the closure of δ generates a one parameter automorphism
group qt satisfying

ρt(X)=\imeίk»txe-ίk»\ xeA.

(For the proof, see [6].) Since ρt is approximately inner, there exists at least one
KMS state for any temperature [7]. On the uniqueness of KMS states we have

Theorem. If {\\hn — kn\\} is uniformly bounded, then A has only one ρt-KMS
state for each inverse temperature β.

3. Proof

Let ψ be an extremal KMS state at β and (£>, π, Ψ) the GNS representation of A
associated with ψ. Then Ψ is a cyclic and separating vector relative to 9Jl = π(A)".
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Let A be the modular operator (for ψ relative to 9JΪ). Now we define the following
function of z in the strip region Iβ/2 = {z lmze[0, β/2]} for each xeA:

where Wn = π(hn~kn) and H=-β'1\ogA. Then Fn(z) = Fn(z x) is a bounded
continuous function of z in Iβ/2 and holomorphic in the interior of Iβ/2 [2]. For
real t,

Fn(t) = (φt(iWn)Ψ\π(z)φ_t(iWn)Ψ).

Here

= Σ \dh]dt2JXdtmσtJ}WJ...σtί(iWJ,
m = 0 0 0 0

σt(Q) = e-itHQeitH, QeW.

On the other boundary,

Fn[t+ | j =(φt(iWn)Ψ(σt(βWn))\π(z)φ.t(iWn)Ψ(σ.t(βWn)))

where

Ψ(σt(βWn))= exp[i(logzl +σ1{βWn))]Ψ.

It is shown as follows:

eit(-H+Wn)e

z ψ

= eit(-H + Wn)eitHe-ίtHe

2 ' eitHψ

l(-H + σt(Wn))

= φt(iWn)e Ψ.

Now we can prove:
( I 'ft

Lemma. / / { | | F F J } is bounded, the families of functions {F n(t)} and <F n ί ί + -^
are uniformly bounded and equicontinuous. ^ ^

Proof

11̂ (̂ )11 = 1,
d — =119,(1^ (̂1^11

-e ψ
dt

= \\(-H+Wn)Ψ(βWn)\\

= \\j(Wn)Ψ(βWn)\\S\\Wn\\cxp^\\Wn
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where we have used the fact that log A +βWn—j(βWn) is the modular operator for
Ψ(βWn)(j(βWn) = JβWnJ, J is the modular conjugation operator, [cf. 2]). Q.E.D.

We are now ready to start the proof of Theorem. Let ωn be the state such that
ωn(x) = τ(e~βknx)/τ(e~pkn). Then ωn is a KMS state at β relative to etδίkn(x) =

eitknχe-ιtkn (xeJιy First of all we choose a subsequence {nk} such that ωnk-^ω in
the vague topology. Then ω is a KMS state at β relative to ρt(x)=limetδίkn(x)
(xeA)[_7l

We notice

Fn {f, xj =Ψ

{βW")(x)
where ψ{βWn)/ψ{βWn)(l) is a KMS state at β relative to

Since ρ\Wn)/An = etδikn/An, we have

(These facts are all due to the equivalence of the KMS condition and the Gibbs
condition [4,2,1]). By choosing a suitable subsequence {m} of {nk} we have
convergences

Fm{z\y)-+FJz\y)

Fm(z; l H F J z ; 1)

for arbitrarily chosen yeuAn, where the convergence is uniform in z on every
compact set in Iβj2 (by Lemma and the theory of normal families). Since \\δiW \\ S
2 HWJand

limδiWn(π(a)) = lim {π(δikn(a)) - π{δikn(a))}

= Hmπ°(l-Pn)δ(a)=O(aeD(δ) = uAn)9

we obtain lim(5lW/n(π(z)) = 0 for all xeA. We can conclude

lim Kφt(iWn)*Mxn 11=0.

This implies that φt(iWm)*φ_t(iWm) converges weakly to F.Jt, 1)1? because SUϊnSW'
is trivial by the extremality of ψ. Hence

which implies

by the analytic continuation. On the other hand

Λ
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Since ψ«w^(l)=\\Ψ(βWJ\\2^expψ(βWJ [2], F ^ lj+O. Therefore ψ(y) =

ω(y), i.e., ψ = ω. Since an arbitrary extremal KMS state is equal to the fixed KMS
state ω, the set of KMS states consists of only one state.
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