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Cluster Properties of Lattice and Continuous Systems
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Abstract. Various strong decay properties are proved for lattice systems with
general rc-body interactions, and for continuous systems with two-body and
π-body interactions. The range of the potentials is finite or infinite.

I. Introduction

1. Definitions [1,2]:

We say that the truncated correlation functions QT

Λ satisfy a strong cluster property
(S.C.P.) if there exists a real integrable function U of the configuration space IRV

or Έv such that for any configuration X (except perhaps a set of zero measure):

\ρτ

Λ(X)\ύΛ Σ Π ϋ(x,x') (1)
TeX(X) {x,x')eT

where the sum Σ runs over all trees T on X (i.e. connected graphs without closed
loop), and the product runs over all lines (x, x') of the tree T; A and U are in-
dependent of the box Λ, of X and of the number of points \X\ of X, but depend
on the potential Φ (including here the reciprocal temperature β) and on the
activity z.

In the case of a lattice system, an equivalent formulation of S.C.P. can be
given (for equivalence see Appendix).

\ρτ

Λ{X)\ ^ACw<ίl{X)e-Lδ{X) (2)

where 9l(X) is a numerical factor equal to N1l...Npl when the points ofX occupy
only p different positions occuring respectively N1,...,Np times, C is a constant
and Lδ(X) is the shortest length with respect to some distance δ of all the trees
constructed on the points of X and arbitrary other points (for example δ(x9 x') =
χ\x — x'| or δ(x,x') = s\og(l+ot\x — x'|),s>v), with e~δ{x'xΊ integrable with respect
to x'\ A, C, and δ are again independent of A, X, and \X\ but depend on Φ and z.

Moreover the truncated correlations QT

Λ are said to satisfy a strong decrease
property (S.D.P.) if a bound of the type (1) holds, with a function U(x — xr) which
is not integrable, or (2) with s^v or with a further multiplicative factor worse
than C | x | (for instance \X\!).

In a large number of situations with two-body potentials, S.C.P. have been
proved [2, 3] to be equivalent to analyticity with respect to the activities (plus
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some bound). Although they also take into account the separation of all points
of X with respect to each other, the S.D.P. have not such a property.

2. Results of the Present Paper

a) Lattice Systems with rc-Body Interactions

For such general systems, only integrability is known [4] for finite-range inter-
actions a decrease like the diameter of X has been proved [5]. In Part II, we
prove S.C.P. for such systems with finite or infinite range interactions, if the
potential decreases faster than |x|~2 v (v is the space dimension), and S.D.P. if the
potential decreases slower than \x\~2v but faster than \x\~v. These results extend to
rc-body interactions the results of [2, 3] and we can also extend S.C.P. or S.D.P.
in the whole analyticity region in the same situations as in these papers. Moreover,
we can extend the equivalence between S.C.P. and analyticity (w.r. to the activities)
to systems with finite-range or exponentially decreasing n-boάy potentials.

b) Continuous Systems with 2-Body Interactions

In that case, a decrease is known only for the 2-point function ρτ{xίi x2) [6] and a
S.C.P. is proved for the truncated correlations smeared with appropriate test
functions [2, 3], yielding equivalence with analyticity w.r. to z. Here, in Part III,
we prove S.C.P. for unsmeared correlations ρτ

Λ at low activity, as soon as the
potential decreases faster than |x|~2v. Moreover S.D.P. can be obtained in the
domain of analyticity when some bound on the ρτ

Λ{X) is known.

c) Continuous Systems with rc-Body Interactions

For such systems, only existence of a unique state at low activity is known [7].
In Part IV, we prove S.D.P. of the ρτ

A at low activity under some technical assump-
tions of regularity and decrease of the potential. This property extends again in
the analyticity region. For truncated correlations smeared with appropriate test
functions, S.C.P. can be derived at low activity and in the analyticity region, and
they are again equivalent to analyticity for finite-range or exponentially decreasing
interactions.

II. Lattice Systems with n-Body Interactions

Let us consider a lattice system with an rc-body interaction Φ defined for con-
figurations X, |X |^2 . Moreover we put Φ(x, x)=+co and let Φ(x,x,y1...yp),
p^: 1 be finite but arbitrary, and we suppose that:

Sup X \Φ(X)\ = D<oo. (3)
xeZv X:xeXcΊv

It follows from [4, 5] that the correlation functions have the following series
expansion for A finite or infinite and ξ = Sup \zx\ < [2eDeeD~1~\ ~γ:

xelv

ρΛ(X;Φ,z) = zx Σ(rcl)- 1 Σ zγφ(X;Y) (4)
n^O Y<=Λn
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where zx [resp. z y] means the product of the activities at the points of X, [resp. Y],
and:

φ(X;Y)= Σ Π ( e ~ Φ ( B ) - l ) (5)
Ge<gc(X;Y) B<=G

where the sum runs over all generalized graphs G = (B1,...,Bk), BtC(X, Y), | 5 f | ^ 2
and Bi + Bj for ί+j, connected with respect to the cluster X and the points Y
(i.e. such that there exists a graph connected with respect to the cluster X and the
points of Y, for which each line links two points of some B{).

The truncated correlations have then an analogous expansion in the same
domain:

ρτ

A(X;Φ,z) = zx X ( n ! ) " 1 £ zγφ(X, Y) (6)

with

φ(X,Y)= Σ Γ K ^ ^ - 1 ) (7)
Ge<gc{X,Y) BeG

where the sum Σ runs over all generalized graphs connected with respect to all
the points of X and Y.

The Ursell functions φ(X; Y) satisfy the following induction relation:

φ(X; Y) = e-W<x) Σ K(X; Y')φ(XiY'l ΛY') (8)
Y'CY

where Xγ is the set obtained by substracting from X for example the first point,
xu in the lexicographic order, and

W(X)= Σ φ(β) (9)
B.xieBcX

K(X;Y)= Σ Σ Ylie-w^-l). (10)
fc^l {Yι...Yk)

γ i = ί

In this last expression, the sum Σ r u n s o v e r a ^ coverings of Y by k non-empty,
different (i.e. Yt+ YJ ) subsets, and

W(X;Y)= Σ φ(β) (11)
B.XlYcBcXY

Moreover the K(X; Y) satisfy the following integrability property [4]

Σ llφΓ Y ) ! ^ ^ - 1 . (12)

Systems with Infinite Range Potentials

Let us introduce for a given potential Φ all the distances δ on the configuration
space, such that:

) (13)
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(for instance δ(x,x') = χ\x — xf\ or <5(x, x') = slog(l + α|x —x'|)), Lδ(B) is the minimal
length with respect to the distance δ of the trees constructed on the points of B
and possibly arbitrary other vertices, and where:

Sup £ Φδ(B) = Dδ<ao. (14)
xeΈv B:xeBcΈv

Then the following theorem holds:

Theorem 1. If ξ= S\xp\zx\<Cδ\ with Cδ = 2eDόeeDδ~\ then for Λ finite or

xeΈv

infinite:

\ρτ

Λ(X; Φ, z)\ g Cδ\ξCδ/(ί - ξCδ))^9l(X)e~L^ . (15)

(15) is a S.C.P. if δ(x, xf) increases faster than (v + ε) log(l + α|x — x'\) with ε>0 and
α>0, and is a S.D.P. otherwise.

Remark. When the distance δ goes to zero (χ->0 or α->0), then the radius
Cδ

 1 tends to the radius of convergence of the series expansion (4) and (6).

Proof. Introducing some obvious notations, the following inequalities follow
from the definition (10), (11), and from (13): if Yc ZV\X:

• 7)1 < V e~Lδ

B:
XiYcBcXY

Then, using eax- 1 ̂ x(ea- 1)

Hence

\K(X;

and since

with

Kg(X;

for y c Z v

Then

Σ

YM Σ Σ
^e~Lδ{xuY)Kδ(X

Y)=-K(X;x1Y)

Y)=Kδ(X;xίY) =
}

\X, and

Y) = 0 for YζZZv

iC 3 (X;7)^2e ί > D ^ 1

' Y).

for xe

ί = ί

Y)

Σ

\x:.

0

[0,1], α>0:

-Lδ(xi,Yι)ίeWό<

k

Σγk)r Π <

(16)

(160

(17)
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Now, we can define by induction the functions φδ(X; Y):

φδ(X; Y) = eD Σ Kδ(X; Y')φδ(XiY'; Y\Y') (18)
Y'CY

v/ithφδ({x})=ί;
Now, using the induction relations (8), (18), and the bounds (16) and (16') we

obtain:

where Lδ(X; Y) is the minimal length with respect to the distance δ of the trees
constructed on the points of X, Y and possibly arbitrary other vertices, which
are connected w.r.t the cluster X and the points of Y Moreover, using (17), (18):

Σ φsiX Y)^*"-1^ (19)

and consequently, expansion (6) gives

Σ <Ps(X>Y)
YeAn

£ φδ(Xl,Y)

7"!) Σ
YeAn

from which follows the theorem.
We indicate now a bound on the Ursell functions φ(X\ Y) which generalises

the one given in [6, 8] for two-body potentials, and which yields an alternative
method to prove Theorem 1:

Theorem 2. The Ursell functions φ(X; Y) satisfy the following bound:

\φ{X-Y)\^e{\χ\ + m-1)D Σ Π \K(S;T)\. (20)
Γet(X Y) {S,T)ef

The sum Σ runs over the generalized trees f={(Sl9T1),...9(SkTώ} ofZ(X;Y),

which is defined by

±(X;Y)= U U PJ')J} (21)
Y'CY feX(XιY';Y\Y')

Proof The bound (20) follows the induction relation (8) and from the defini-
tion (21).

Systems with Finite Range Potentials

In the case of finite range potentials (i.e. Φ(B) = 0 if sup |x{ — Xj\>λ), cluster
xt, XjβB

properties follow easily from the fact that the Ursell functions φ(X, Y) vanish if
there are not enough points 7to insure connexity between the points of X. With
this method, weak decrease is obtained in [5] for lattice systems with rc-body
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interactions. Of course S.C.P can be proved at the same time. We do not repeat
here the proofs, see [2].

However we wish to indicate that one can get in some situations a stronger
decrease by combining the method of Theorem 1 with the remark that

φ{X,Y) = 0 if \Y\<L(X)/λ-\X\ + l (22)

where L(X) is obtained with the euclidean distance. So let us consider the set of
equalities for χ>0:

\Φ(B)\ = e~χLiB)Φχ{B)

and let

Sup £ Φχ(B) = Dχ

xeΈv B:χeBcΈv

Then we have the following theorem:

Theorem 3. Let ξ= Sup \zx\. Then, for Λ finite or infinite we have the following
xeΈv

S.C.P. with all χ such that ξ<C~1\

| ^ ( X ; Φ , z ) | < ( Ή ( X ) ^

where a is any real number such that 1 < α < ( ^ C χ ) ~ 1 .

Remark. Depending on the potential, the better decrease may be obtained
for χ = 0 (and the result is the same as using only (22)) or for some χo>0.

Decay Properties in Larger Domains

For systems with finite-range or exponentially decreasing potentials, S.C.P can
be proved also in the domain X) of analyticity with respect to z, if a bound of the
type

\ρτ

Λ(X)\^AOχ\9l(X) (23)

holds in D (for instance if the correlations are analytic in £> with respect to all
zx, xeΈv, and if the one-point function ρΛ(x) is bounded in X); or if the partition
function ZΛ(zx,xeA) does not vanish for A large enough and all zx in D). The
situations in which these hypothesis can be proved are the same as in [2,3].

Then for systems with finite-range or exponentially decreasing potentials,
we obtain as in [2, 3] the theorem of equivalence between S.C.P. and analyticity
with respect to z. In these papers equivalence was proved between S.C.P. at real
points z, and analyticity with respect to z plus the bound (23). We only note here
that as a matter of fact, equivalence holds between S.C.P. at real points, and
analyticity with respect to the field of activities zx,xeΈv, plus a bound on the
one-point function.

For systems with potentials decreasing like a power, only S.D.P. can be
obtained outside the low activity region by the method of [3].
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III. Continuous Systems with 2-Body Potentials

This part is concerned by a special proof of S.C.P. for continuous systems with
2-body stable potentials Φ(xί,x2) such that:

^ ^ ^ ^ K s (24)

where Kδ is a constant and δ is a distance (assumed here for simplicity, to be
translation invariant) such that:

oo. (25)

For instance, once again, δ(0,x) = χ\x\ or £(0, x) = s log(l + OL\X\), s>2v, α>0.
Then we have the following

Theorem 4 The following S.C.P. holds for \z\<rδ(β) = e~2βB-1 xK^C{δ)-\
where B is the constant of stability:

iρKX frz^ACW-1 Σ Π U(x,x';z) (26)
CE^(X) (x,x')eC

where ^(X) is the set of all chains constructed on X, and

and

υ{x,x'-z)= Σ C" j

If the potential Φ decreases exponentially, U(x, x' z) is an exponentially decreasing
function of\x — x'\.

If the potential Φ decreases like a power \x\~s,U(x,xf z) decreases at least
like\x\~sl2.

To prove this result, we first prove the following lemma:

Lemma 5. Let X(X), (resp. ̂ (X)) be the set of all trees (resp. chains) constructed
on the points ofX, and let Lό(T) (resp. Lδ(C)) be the length with respect to the distance
δ of the tree Tfresp. the chain C).

Then:

X ^-L^T)^2(|X|lzl-2/|X|!) X e-*L«c). (27)
TGX(X) CeV(X)

Proof of Lemma 5. Let us consider the set ^τ of all chains which can be as-
sociated to the three TeX(X) by "turning around" T and keeping each point
xteX once and only once as soon as we meet it: (see for instance Fig. 1).

Fig. 1 Tree
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Then VCe # Γ , 2Lδ(T) SLδ{C).
Let now v(T) be the number of distinct chains associated with the tree T; then:

The last factor will be computed using this equation with <5 = 0, and using the
symmetry with respect to permutations of points:

Σ i = i x i m " 2 = Σ Σ v(τ)-1

TeX(X) Ce<g(X) T:CeVτ

and then

T:Ce^τ

which ends the proof of Lemma 5.

Proof of Theorem 4. The Ursell functions satisfy the following bound, proved
in [6, 8] for positive and hard-core potentials and in [3] for general stable po-
tentials :

\φ(X)\Se2βBIXI-2 Σ Π \K(x,x')\- (28)
TeS(X) (ϊ,x')eT

In view of Lemma 5 and using (24), we obtain:

\φ(X, y ) | ^

•((\x\+\γ\f\+w~2/(\x\+\γ\y.) Σ e~iLδ{C)- (29)

We can always associate a chain on X to each chain on X, Fand then we can
obtain a bound on the coefficients of the series expansion oϊ ρτ{X):

\χ\

nΓ1 f dY Σ e~-L^c)= Σ Σ Π ί dYe--L^Ci) (30)
]R"V Ce^{X,Y) CeV(X) {n0,... ,n\Xl}: i = 0 R " ί v

Σ

where Q ( 1 ^ Ϊ < | X | ) is the chain joining the i th point of C to its (i + l) t h point
with rii intermediate points y; Co [resp C^j] is a chain constructed on the first
[resp. the last] point of C with n0 [resp. n\x^\ points y.

The bound (26) then follows from (29), (30), from the series expression of the
ρτ(X% and from the inequality:

The announced behaviour of U(x, x' z) can be obtained for example by
considering its Fourier transform in the case of an exponentially decaying po-
tential, and may be checked from direct computation for potentials decaying
like a power.
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Extensions in the Domain of Analyticity

We mention here that using methods of [3], S.D.P. can be obtained in the region
of analyticity with respect to z if moreover some bound of the type

is known. In such cases however (i.e. continuous systems), only S.D.P. and not
S.C.P. can be obtained, up to now, outside the low activity region.

On the other hand we recall [2, 3] that the truncated correlations smeared
with some test functions satisfy S.C.P. outside the low activity region and such
property is then equivalent to analyticity with respect to z plus bounds.

IV. Continuous Systems with n-Body Interactions

Under conditions of ultra-stability and regularity of the potential, the existence
of a unique thermodynamic state has been proved [7] at low activity for con-
tinuous systems with rc-body interactions. In this section we shall give results
on the decay of correlations under reasonable conditions on the potential.

Let us introduce:

Kμ(X; γ) = e-^-»W(X)-»w{xuγ)K(χ. γ )

and remark that

The potential is said to be regular [7], if for some μ, 0<μ< 1 and β sufficiently
small:

a) \Kμ(X; 7)| is integrable with respect to 7 in every Λ, except for X in a set
of Lebesgue-measure zero.

b) Except for X in a set of Lebesgue-measure zero, if W(X) = oo, then
W(X, Y) > — oo almost everywhere (with respect to Y)

c)
00

lira esssup £ JdYnn\-'\Kμ{X; Y)\ = Dμ<cc . (31)
yl^oo XCΛ Π=ί

Series Expansion and Ursell Functions

By same methods as usual, one can show that the truncated correlations are
again given by the series expansion:

ρτ

Λ(X;Φ,z) = zW Σ z^nΓ1 J φ(X, Y)dY (32)

and that the Ursell functions φμ{X\ Y) satisfy the following induction relation:

φμ(X; Y)= £ Kμ(X; Yt)φlι{X1 Γ Y\Y'). (33)
Y'CY
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Then we have

Theorem 6. IfΦ is a regular potential, the following S.C.P. holds

\Ψμ(X;Y)\S Σ Π \Kμ(S;T)\ (34)
feZ{X;Y) (S.T)ef

where the sum Σ runs over the generalized trees T defined in Theorem 2.

Moreover using also (33), one easily checks that:

\\φμ{X Yn)\dYn^DW+»-'n\ (35)

which insures the absolute convergence of (32) for \z\<D~ι.

Systems with Finite-Range Potentials

If the potential has a finite-range λ, and is regular, one can prove a S.C.P. on the
smeared truncated correlations, and using the strong regularity condition (see
below), a S.D.P of the unsmeared truncated correlations.

Let us say that a potential Φ is strongly regular if, besides its regularity, it
satisfies:

lim esssup £ \dYnnΓι\Kμ{XQ\X9 YJ\£Kμ<co . (35)

Λ->oo XoCΛ n = 0
XcΛ

Let us moreover define the smeared truncated correlation by using for example
a discretisation ofIRv by hypercubes of side a and centered at a-x, xeΈv:

ρτ

Λ(aX;Φ,z)= J dX'Q*(X';Φ9z)Y\ χ^WW
IR-m x,eX

where χa- is the characteristic function of the hypercube centered at a x.
Then, the following theorem holds:

Theorem 7. If the potential Φ is regular and if \Z\KD~1, then the S.C.P holds,
for any a such that l < α < ( | z | D μ ) ~ 1 :

|ρl(αX;Φ,z)|^(X)^

- 1 * 1
where L{aX) = lni{L{X'YX'eWC^ and \[ ^ ( $ = 1 } .

If the potential Φ is strongly regular and if\z\ <(eKμ)~ 1, a S.D.P. holds:

L(X)

\oZ(X;Φ,z)\S\X\K\z\eKμ)
 λ /(l-\z\eKμ).

Proof of Theorem 7. The proof is derived from the induction relation (33) using
(35) for the first part and for the second part:

esssup f
Xo IR*"V

X
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Systems with Infinite-Range Potentials, and Extensions

Assume, as an extension of the discret case, that there exist distances δ on IRV

such that

where Kμδ satisfies c) of the regularity condition.
Then using the same methods as in the previous parts, one obtains S.C.P at

small activity for smeared correlations ρ^(aX; Φ, z).
If furthermore Kμδ satisfies a condition of the type (36), one obtains S.D.P on

(unsmeared) truncated correlations ρτ

A(X\ Φ, z).
Moreover, as previously, one can derive S.C.P or S.D.P in the domain of

analyticity with respect to z.

Appendix

In the appendix, we want to prove that the bound (2) given for the lattice systems
is a S.C.P as soon as e~δ^x'x) is integrable. As a matter of fact the inequality
?Lδ(X)^Lδ(X)^Lδ(X), where Lδ(X) is the length of the minimal tree constructed
on points X (without additional vertices), insures [1,2] the result if the distance
δ is euclidean:

(5(x, x') = χ\χ — χ'\ or if δ(x, x') = s log(1 + α|x - x'|),

with s>2v. But the bound (2) is not obviously integrable for

δ(χ, x') = s log(l +α|x — x'l),

We solve here this problem by proving the following theorem for any logarith-
mic distance:

Theorem1. Let δ(x, x') = s\og(l+<x\x — x'|) and δ\x, x') = s log( l+α|x —x'|/2).
Then Lδ(X)^Lό,(X).

Proof. We shall show that for any tree Tconstructed on points X and additional
points Y, one can construct a tree Ton X, whose length with respect to δ' is less
that the length of Twith respect to δ.

It is clearly sufficient to prove that:

leT let

Let us consider a star consisting of a point y linked to N points x1...xN ordered
in a way such that:

then

This result was obtained with C. de Calan.
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So that

Π ( l + αb-^ il)^TΠ[1(l+Φ ί--x ί + il/2) (l + α|3;-xJV|).
Ϊ = 1 ί = l

Now consider the tree T on X and additional points Y. We first suppress all
points of Y which are extremities, and the corresponding factors larger than 1.
Now on the new tree thus obtained, we consider any point y which is linked at
most to one other point / of 7 and certainly to one or more points x1...xn of X.
Then using the previous remark we minimize the contribution of the star
(y,x,),...,(y,xn) by the contribution of a chain with factors l + α ^ — xi+ί\/2; the
remaining line (y, xn) is to be associated with a further line (y9 y') or (y, x), and is
replaced by a line (xπ, / ) or (xn, x), using:

or

So that we have suppressed one point y and by induction, we can construct a
tree Ton X. Notice that the induction is possible since Tbeing a tree there exists
at each step at least one point y linked to at most one other point / . This induction
procedure ends the proof.
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