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Abstract. In 1964 Zeeman published a paper showing [independently of
Alexandrov (1953)] that the causal structure of the light cones on Minkowski
space M determines the linear structure of M. This initiated the question
whether a topology (more physically than the ordinary one) on M, related to
the light cones also implies the linear structure of M. In 1967 Zeeman defined
such a new topology - here called Zeeman-topology 3o ~ o n Minkowski space
and solved this question for M. In that paper he asked whether it is possible to
generalize this program to general relativity. Two of his main questions were:

(a) What is the structure of the group G(S) of all homeomorphisms of a space-
time S with respect to the general relativistic analogue of 3o (defined in § 3)?
(b) What are the world lines (defined in § 1) with respect to 3o? Without any
restrictions on the space-time S we will give the answers: (a) G(S) is the group
of all homothetic transformations on S (for an explicite discussion of this
result we refer to § 5). (b) World lines are broken geodesies. Including external
fields (like Maxwell fields and deviations of30)the answer (b) can be generalized
in different physical directions; cf. § 3.

Ein Fernrohr wird gezeigt, womit man seinen eίgenen Rϋcken sieht.

Es fύhrt durchs Weltall deinen Blick im Kreis zurύck auf dein Genick.

Zwar braucht es so geraume Frist, daβ du schon lάngsί verstorben bist,

dock wird ein Standbild dir geweiht, empfάngt es ihn zu seiner Zeit.

Christian Morgenstern, 9iBόhmischer Jahrmarkt"
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§ 1. Introduction and Discussion

The aim of this paper is to answer two questions of Zeeman [38, p. 162, first
paragraph and problem (1)]. Zeeman [38] introduced a new topology1 3o
[3o = 3(^o>2) cf. §3 (*), and §4(1) and (II0)] on Minkowski space. This topology
3o has many physically attractive properties. In particular 3o *s defined in a
much more intuitive and physical way than the ordinary Euclidean topology X
which is artificial from both the mathematical as well as the physical point of view.
The topology X (on a Minkowski space) can be understood primarily from its
history: People were mostly concerned with Riemannian spaces (with a positive
metric) for which 2 is a very natural topology, and not with spaces provided with
a pseudo-Euclidean metric or in particular with a Lorentz metric. The latter have
been ignored in mathematics for a long time; cf. Freudenthal [11, p. 18]. As
suggested by Zeeman [38, p. 162, (1)] we will extend his topology to arbitrary
space-times of general relativity theory. At the same time it is possible to generalize
his results on special relativity to general relativity theory without any restrictions
(Corollary 3.6 and Corollary 5.11).

The characterizing property of the (ordinary Euclidean) manifold topology X
on a space-time "to be locally Euclidean" is not plausible and can hardly be
justified. In particular there are no experiments known to justify a Euclidean
topology along light like geodesic lines, which are the world lines of photons.
On the other hand the (induced) topology along the track of a photon is Euclidean
in consequence of the manifold topology X. Because of the light cone at a point
and the local future and past at a point, the space-time is locally not "spherically
symmetric". The topology X does not reflect this very important feature of space-
times, on the contrary, X is invariant under arbitrary 4-dimensional "rotations".
These objections to X and the fact that local time distances of an observer and local
particle distances in space like hypersurfaces are physically plausible lead to the
definition of the new topology 3o o n a space-time: Generalizing Zeeman [38]
we define the Zeeman topology 3o a s t n e finest topology on a space-time such that
its induced topology on world lines of freely falling test particles with positive
rest mass, and on space like hypersurfaces is locally Euclidean (cf. §§ 3 and 4).

Zeeman topology is (by definition) not as "nice" as the manifold topology,
e.g. it is not "normal" in the sense of topology; cf. Zeeman [38, p. 164, Remark]
but it has many physically interesting properties:

The fact that we do not have any geometric information along a light ray,
can be observed of the Zeeman topology: (Corollary 4.2) The topology induced by
the Zeeman topology on a light cone is discrete (which means there is no topological
"information" on light rays). A world line is the continuous image (/:[0,1]->M)
of the unit interval in the space-time M such that the defining map / preserves'
the natural order on [0,1] and the locally causal order of future-past ("<^'\
cf. §2) in the space-time. There are many unphysical world lines, e.g. "bad trips"
in the sense of Penrose [25, p. 3]. Only under further restrictions we obtain a
physically realistic notation of "world line of a test particle". If however we
interpret continuity of / with respect to Zeeman topology, world lines are auto-

1 Further topologies on Minkowski space may be found in Cel'nik [7, p. 1151] and Zeeman [38,
pp. 169, 170].
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matically physically realistic, namely piecewise geodesies which are future directed
and time like with finitely many edges (Remark of Corollary 3.6). This was
conjectured by Zeeman. Therefore a world line is the orbit of a freely falling test
particle within the gravitational field with a finite number of collisions. This
result is the well known basic assumption for a kinetic theory in general relativity
theory; cf. Ehlers [9, p. 29]. It is only natural to ask whether it is possible to
incorporate the electro-magnetic fields into this result. If we allow the Zeeman
topology to depend on a gravitational field as well as on the Maxwell field it is in
fact possible to derive the corresponding result for charged particles (cf. Corol-
lary 3.6).

The group of all homeomorphisms of a space-time with its manifold topology
% is neither of interest for physics nor for mathematics since it is vast and seems
to reflect no information of the space-time. The situation is completely different
if we understand homeomorphisms to be defined with respect to the Zeeman
topology (Corollary 5.11): The group Hom(M, 3o) °f a^ homeomorphisms of a
space-time M with respect to its Zeeman topology 3o coincides with its group
Hot(M) of all homothetic transformations (cf. § 2), i.e. homeomorphisms are iso-
metries or isometries up to a constant positive factor. Therefore homeomorphisms
are proper symmetry transformations of the space-time. If M is the Minkowski
space, the homothetic transformations are just the Lorentz transformations or
dilatations of Minkowski space. Therefore the homeomorphism group Hom(M, 3o)
of Minkowski space is its Weyl group, which is generated by Lorentz transforma-
tions and (linear) dilatations. (It might be interesting to recall that there are many
topological groups which can never be represented as full homeomorphism groups
with the compact-open topology of some topological space; cf. Brechner [6].)
Our result (Corollary 5.11), that the symmetry group and in particular the Lorentz
group can be derived from continuity of the maps only, belongs to a quite popular
problem which has been investigated very often from many points of view: Is it
possible to derive a particular group of (differentiable/linear) isometries from
appearently much weaker conditions without any further assumptions (like
differentiability, linearity,...) on the maps? Typical (weaker symmetry) conditions
are: inertial frame preserving, metric preserving, causality preserving, order
preserving, cone preserving, geodesic preserving or topology preserving. Corre-
sponding investigations may be found in Vock [32, pp. 15-22], Nevanlinna
[24, pp. 159-177], SύBmann [29], Loewner [21], Weyl [35], Ratz [26], Knichal
[39], Pimenov [40], Vogt [33], Hawking [15], Michel [22], Gόbel [13], Benz [4],
Barucchi [3], Alfonso and Yndurain [2], Borchers and Hegerfeldt [5,17], Gheorghe
and Mihul [12], Guts [14], Teppati [30], Zeeman [37], Alexandrow [1,41], Rot-
haus [27], Vroegindewey [34], Vilms [31] and Zeeman [38] see also Domiaty [8].

Another way of looking at our main result (Theorem 5.9) is as follows (Corol-
lary 5.10): Two space-times are homeomorphic with respect to its Zeeman topologies
if and only if they are isometric. Therefore it is possible to determine the metric
of a space-time from its Zeeman topology 3o A result like this might be useful for
reconstructing a space-time of general relativity on an axiomatic way; cf. Ehlers
and Schild [10].

Furthermore I would like to remark that there are some other physically
plausible topologies suggested by Zeeman [38, pp. 169, 170] and by Hawking
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(oral communication, cf. § 3) which can be transfered to general relativity. It is to
be expected that the results for these topologies are very similar to that for 3o 2

In our proofs we will follow the ideas of Zeeman's [38] and apply results of
Hawking, Penrose, and Gobel [13]. We will start off with a very general definition
of "Zeeman topologies" [which includes all other suggested topologies on space-
times; cf. § 3 (*)] so that it will be possible to derive results for arbitrary manifolds
as well; cf. Corollary 3.5. The general setting of "Zeeman topologies" will be
restricted more and more, and at the end (§ 5) we will specialize it for 3o only.

I would like to express my gratitude in particular to Rudolf Z. Domiaty, Jϋrgen Ehlers, Steven
W. Hawking, Christopher Zeeman and my former colleagues Werner Dietz and Roland Rϋdiger for
stimulating discussions on this subject.

§ 2. Definition and Notations

Let XQ F, i.e. X is a subset of F, then Y\X={xe Y such that xφX} is the complement
oϊX in Y. Let M = (M, X) be a topological space with topology ΐ = %(M) consisting
of all (with respect to X) open subsets of M. If UQM, then Zv={XnU;XeZ(M)}
defines the induced topology on U, and (17, Zv) is a topological space of its own.

A space-time in general relativity theory is a 4-dimensional, time oriented,
connected ^-manifold (d = degree of differentiability > 2) with a ^ " ^ L o r e n t z
metric g = g(,); cf. Ehlers [9, p. 3] and Hawking and Ellis [16, p. 56].

If M is a space-time, U Q M and P, Qe M, then we have P<VQ (say: the event P
is in the past of the event Q within U\ if there is a differentiable, time like map
/:[0,1]->L7 connecting P = / ( 0 ) with Q = f(ί) such that all tangents along /
are future directed. This means physically that there is a possibility to send a test
particle of positive rest mass from the event P to the event Q within the region ί/.
If PeUQM, we denote by 3£(P) the set of all Qe U such that P<VQ, and similar
by 2V(P) the set of all Qe U such that Q<VP. Then 3^(P)[3^(P)] is called the
chronological future [past] of P relative to U; cf. Hawking and Ellis [16, p. 182].
Furthermore we denote by S>#(P) the set of all QeU such that there is a
differentiable map /:[0,1]—>t/ whose tangents are space like and with /(0) = P
and /(l) = ζλ We call <Zυ(P) the space like part of P relative to U. Similarly, let
Ktf (P) [£# (P)] be the future [past] light cone of P relative to U where the tangents
in consideration are null vectors and future [past] directed; let be

the light cone at P relative to U. We assume Pφ^(P) but Pe(ί^(P) and Pe S ^ P ) !
It is conventional to drop the index U if U = M.

A subset S of a space-time M is called simple region, if 5 has the following
properties:

(a) 5 is an open subset of M (with respect to the manifold topology).
(b) If P, QeS therejs one and only one P with Q connecting geodesic curve

which we denote by PQ. The geodesic PQ lies entirely in S.
(c) Each geodesic curve PQ defined by (b) which belongs to S depends con-

tinuously on P and Q.
(d) The boundary dS of 5 and all closed subsets of S are compact.

2 Note Added in Proof. These topologies will be considered in two forthcoming papers by Hawking,
King, McCarthy [42] and Gobel [43]. In [43] the results of [23] will be corrected.
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It was shown by Penrose [25, p. 6, Proposition 1.13] that any space-time can
be covered by a locally finite system of simple regions. We will make extensive use
of this fact. In particular a space-time M is locally causal; cf. Penrose [25, Propo-
sition 4.12]. If PQ is a geodesic line - defined as above by (b) - we write (PQ) =
PQ\{P,Q] t° indicate that the end points are taken away.

A map / from a space-time M into a space-time L is called locally causal,
if for each point PeM there is a simple region U of M containing P, and a simple
region V of L containing f(P) with the following properties:

(1) Wehave/(t/)£K
(2) For each pair X, YeU we have X<VY or Y<VX if and only if

f(X)<vf(Y) or f(YXvf(X).
If / is a 1 - 1-map of M onto L such that / and / ι are locally causal, the

spaces L and M are locally causally equal. A homeomorphism of (M, X(M)) onto
(L, Σ(L)) is a 1 — 1-map of M onto L, which maps X(M) onto Ϊ(L). To indicate the
underlying topologies we sometimes call this map a X-homeomorphism. The
spaces L and M are homeomorphic. If / is a diffeomorphism from M onto L, and
/^ is the induced map within the corresponding tangent spaces of M and L, the
map / is called conformal map of M onto L with conformal "factor" Ω if Ω is a
nowhere vanishing, differentiable map from M into the real numbers with the
following property:

for all tangents tx, sx at all points XeM. \_gx{,) is the metric of M at X and
9f(x)(') i s the metric attached at /(X) of L.] The spaces L and M are called coπ-
formally equal. If Ω is a constant, / is called a homothetic transformation of M
onto L; cf. e.g. Kobayashi and Nomίzu [20, p. 309]. If Ω= 1, /is called an ίsometry,
and L and M are isometric.

§ 3. Zeeman Topology on a General Relativistic Space-Time

At the moment we reserve M = (M, ϊ ) to denote a differentiable manifold with
an underlying manifold topology X = Z(M). Later on it will be a space-time for
general relativity theory. If / : [0,1]^M, we denote by/=/[0,1] the image point
set with the induced topology Xf. We say/is a ct/π e if / is a continuous 1 — 1-map,
and / is a differentiable curve if / is in addition differentiable.

The most general setting for Zeeman topologies3 is the following: Let Σ be a
set of subsets of M.

(*) Then a subset XQM belongs to ̂  = ̂ {Σ,%) if and only if Xr\Y is open
within the topological space Y = (Y, Zγ) with its induced topology Zγ for all YeΣ.

Then (M, 3) is the space M provided with the Zeeman topology 3 = 3(^ ? %>)
generated by (Σ, X).

The topology 3 is the finest topology g o n M such that 5 F = ^ F for all YeΣ.
Zeeman [38] introduced this type of topology on Minkowski space for two
specially chosen systems Σ which are significant for special relativity. Since a
ϊ-open subset of M satisfies (*), the Zeeman topology is always finer than X.

Cf. CeΓnik [7, p. 1151].
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There are two exceptional cases of Zeeman topologies if Σ = 0 and if Σ={M}.
In the first case the Zeeman topology is the discrete topology on M and in the
second case it is the manifold topology X. In general we have ϊ < 3 a n d there are
sequences 9 = {Pn; ne]N} in M such that Pn-^>P but Pn-f-^P, i.e. 9 converges
to P with respect to X but not with respect to 3 Such sequences are called Zeno
sequences; cf. Zeeman [38, p. 164]. They may be constructed as follows:

Lemma 3.1. Let Σ be a set of closed subsets of M. For a sequence 9 of points
ΦP of M which converges to P with respect to X are equivalent:

(a) U* = U\9 is open in the Zeeman topology 3 = 3(Σ, X) for all UeX.
(b) If PeXeΣ then \Xn9\ < oo.
In particular 9 is a Zeno sequence.

Proof. (a)->(b): Let y ' - X n ^ be infinite for some PeXeΣ. Then P is an
accumulation point of 9' in (X, Xx), but Pφ9'. Therefore 9' is not £x-closed, and
[/*πX = ( l/\^)πX = (l/nX)\(Xn^) = ( l / n X ) \ y is not open in Xx for all UeX
with Pe U. In particular (7* is not 3~open. (b)-+(a): We assume 9' = Xn9 to be
infinite for some XeΣ. Then 9' is a partial sequence of 9 contained in X which
converges to P with respect to X. Therefore PeX, since X is X-closed, which
contradicts (b). Therefore we have

(c) | X n ^ | < o o for all XeΣ.

The topology X is Hausdorff, and therefore a finite point set, and in particular
9nX, is closed for all XeΣ by (c). If UeX we have UnX open in (X, Xx), hence
U*nX = (U\9)nX = (UnX)\(9nX) is open in (X, Xx) for all XeΣ. Therefore U*
is open with respect to the Zeeman topology. If we choose PeUeX, the set
U* = U\9 is a 3-neighbourhood of P, and P ^ - f ^ P follows.

Since we are not interested in the general situation of this topology 3? we are
going to make restrictions on Σ. The restrictions are chosen in such a way, that
it is possible to consider (certain classes of) Zeeman topologies on Riemannian
manifolds as well as on arbitrary space-times. Under these restrictions we can
construct Zeno sequences according to Lemma 3.1.

(**) We call Σ = (Γ, Δ) a special system of M, if there is a locally finite covering
U of M by neighbourhoods (7, such that Γ= {JUen Γv and A = {JυeUΔυ where
Γυ = {XeΓ,XQU} and Δυ={XeΔiXQU} have the following properties:

(i) \iXeΣ = Γ\jΔ, then X is a closed subset of M.
(ii) IfXeΓU9 YeΓv and | X n F | = oo, then XnV= YnU for all U,VeVL.

(iii) If P,QeUeU and Γu{P,Q)={XeΓu, P,QeX} is infinite, then P = β.
(iv) We have |Xn Y\ ̂ 1 for all XeΓ and Ye A.

Lemma 3.2. Let Σ be a special system and 9 = {Pn;nelN} be a sequence of
points of M with the following properties:

(a) Pn-^P, but Pή=PneUeU (defined by (**)) for all neN.
(b) ΓV(P, Pn)nΓv(P, Pm) = 0for all n, meN, n + m and Fel l .
(c) Γv(P,Pn)*0forallneN.
Then 9 is a Zeno sequence and W* = W\9 is a 3(Σ,X)-neίghb our hood for

all WeX.
Proof. We assume \9nX\ = oo for some PeXeΣ. If XeΓF, we get P, PneX

for infinitely many Pne9, and we obtain XeΓv(P, Pn)nΓv(P, P m )φ0 for infinitely
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many different points Pn9 Pme£f, which contradicts (b). If XeΔv, then Pn, PeXnY,
i.e. \XnY\>l for each YeΓv(P,Pn) and PneS?nX. Therefore Γv(P,Pn) = 0
by (**) (iv), which contradicts (c). We have | ^ n X | < o o for all PeXeΣ, and
W*=W\ό? is a 3-open set for all WeZ by Lemma 3.1. In particular $f is a Zeno
sequence of M.

A curve / is Γ-directed at Pef if there is a neighbourhood U of P defined by
(**) such that from PφQeUnf follows Γv(P,Q)^0. Furthermore /:[0, l]-*M
is a piecewίse Γ-curve at P= f(a), if there a r e θ ^ f o < α < c ^ l such that / [b, a]QX
and / [ Λ , c] Q Y for some X, YeΓv. [If α = 0 put fr = 0 and if a= 1 put c = 1.]

Lemma 3.3. Lei Σ be a special system of M and f: [0,1]->M fee α 1 — 1-raαp
w/w'c/i is T-directed at Pef. Then f is a piecewise Γ-curve at P if f is continuous at P
with respect to the Zeeman topology 3 = 3

Proof. We put w.l.g. P= /(0) and assume/not to be a piecewise Γ-curve at P.
Since / : [0,1]->M is continuous with respect to 3 at P and Σ : g 3 , / is continuous
with respect to X at P. Therefore there is an αe(0,1) such that /[0, α] is contained
in a neighbourhood [/ of the covering U defined by (**). Next we construct a
sequence 0t of reals αMe(0, a) such that

(a) flweίθ,-J for all neN.

(b) If Pk = f(ak) then P ^ X for all XeΓyi^P^ all numbers i < n and all
F e l l with P , P f e K

We use complete induction and assume the first n—\ points to be defined.
Γ 11 Γ 1

If there is no such point Pn = f(an), this would mean that / 0, - \Q (J ©„ w.l.g. - < α
where © π = {X; XeΓF(P, Pf), P, P,e FeU, i<^}.

Since U is locally finite and \ΓV(P, Pf)| < oo by (**) (iii), the set ©n consists of
finitely many closed subsets of M. If we now assume that there is no meN and

1
Xe(5n such that / 0 , - QX, there are at least two different X, Feffin with

m
\Xn Y\ = oo, since ©„ is finite, the elements of ©n are closed in M, and / is a homeo-
morphic image of [0,1]. This is however, excluded by (**) (ii). Therefore

/ 0, — \QX for some Xe(SnQΓ, meN, which is again excluded by our assumption

on/. Therefore 01 can be constructed. Since/is Γ-directed at P we derive from (a)
and (b) the existence of a sequence 9> satisfying the suppositions of Lemma 3.2
such that Pn = f(an) and απ->0. Therefore £f is a Zeno sequence by Lemma 3.2,
and in particular we have f(an) = Pn-/-j+P=f(0). This contradicts the 3 " c o n -
tinuity of / at P and therefore Lemma 3.3 is proved.

A curve/ is a piecewise Γ-curve if there are 0 = ai <... <an— 1 and Xj e Γ such
that f\_ab ai+{]QXι for i— 1,..., n— 1. Since/is compact, we derive from Lemma 3.3
the

Corollary 3.4. Let Σ be a special system of M and f be a ^-continuous curve
which is Γ-directed at each point Pef. Thenf is a piecewise Γ-curve.
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Applications of Corollary 3.4

(A) Let U and 25 be two locally finite coverings of a manifold with connection
by simple neighbourhoods such that we get: If Fe33 there is one and only one
U(V)eU which contains the closure V of F, cf. (Kobayashi and Nomizu [20,
pp. 166, 167, Theorem 3.6, 3.7]).

If Γ/etί, let Γv be the set of all (closed) geodesies in V connecting points of
the boundary dV if U=U(V) and put Av = 0. Then Σo = (\JϋenΓv,0) is a special
system of the manifold and we derive from Corollary 3.4 our

Corollary 3.5. For a manifold (M, X) with an affine connection are equivalent:
(1) The curve f is piecewise geodesic, i.e. f is a broken geodesic line with a

finite number of edges.
(2) The 1 — 1-map / : [ 0 , 1 ] ^ M is continuous with respect to the Zeeman

topology 3° = 3(Σ°,X).

(B) Let M be a space-time for general relativity theory and F a given electro-
magnetic field on M. Particles fι have to have an electric charge q^ such that its
absolute value is bounded by a (sufficiently large) number depending on F and a
mass m^>0, which is bounded by a (sufficiently large) number depending on the
gravitational field in order to be test particles. If we take into account the dis-
creteness of charge and mass spectrum, there are finitely many possible values
q^eq ( = charge spectrum) and m^em ( = mass spectrum) for test particles ft only.
We assume Oeq, i.e. charge free test particles are always present. If #={0}, we
allow the mass spectrum m to be arbitrary >0. Under these conditions there are
coverings U and $$ like in (A) so that there are only finitely many world lines of
freely falling test particles in Ue U from P e U to Q e U if P φ Q. (This is a consequence
of the Lipshitz condition for the differential equations for the particle orbits.)
If UeU let Γ%v be the set of all world lines of freely falling test particles (/ with
m^em and q^eq) from P to β φ P if P, QedVznd U= U(V); let Δυ be all closed
space like (^1-hypersurfaces of V. The corresponding system Σ™ is a special
system of M.

World lines are generally defined as curves/ such that /:[0,1]->M is a con-
tinuous 1-1-map which preserves the natural order on [0,1] and the locally
causal order on M; cf. § 2. Then world lines are automatically Γ^-directed curves,
and we obtain from Corollary 3.4 our

Corollary 3.6. For a space-time M with a given external electro-magnetic field
and a world line f are equivalent:

(1) f is continuous with respect to the Zeeman topology 3(Σ™, 2)
(2) / is a chain of finitely many connected world lines of freely falling charged

test particles.

Remark. If no external electro-magnetic field is present [i.e. if F = 0 and/or
# = 0], we derive from Corollary 3.6 for Σ™ = ΣQ: The 3{Σ0,

<X)-continuous world
lines are future directed, time like piecewise geodesic lines. This answers a conjecture
by Zeeman [38, p. 162, first paragraph].

We can say that the gravitational field and the electro-magnetic field determine
the topology 3(Σ™, 3Γ) (like the metric) of space-time. The topology 3 depends
very much on both fields, and there is only a little freedom left (which will become
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even clearer in §5; cf. Corollary 5.10). World lines — defined by 3~ c o n t i n u i ty
instead of ^-continuity - are in fact physically realistic world lines, namely the
orbits of charged test particles of positive rest mass under the action of the
gravitational and the electro-magnetic field with a finite number of collisions with
possible exchanges of mass and charge. There is an order preserving homeo-
morphism h of [0,1] such that / * = f°h is differentiable almost everywhere. We
would like to point out that there are many unphysical "world lines" if one defines
them by ^-continuity.

(C) There are many more Zeeman topologies besides the Zeeman topologies
(B) defined by special systems Σ, which are interesting for general relativity:

Σ = all time like continuous curves [suggested by Hawking, oral communica-
tion] or

Σ = all d-times differentiable (time like) curves.
These topologies will be considered in a future paper.4

§ 4. Further Properties of the Zeeman Topologies on Space-Times

In the following we restrict ourselves to Zeeman topologies 3==3C^™'3T) on
space-times (M, X) of general relativity as defined by (B) (§ 3) or explicitly:

A subset Y of M is open with respect to 3(Σ™> 3Γ) if a n d o n^y if Y^U is open
in (U, ZJJ) for the following subsets U of M:

(I) U is an arbitrary closed space like hypersurface5 contained in a simple
region of M.

(II) U is the world line of an arbitrary charged test particle / (with m^em,
q^eq) freely falling in the gravitational and the electro-magnetic field within a
simple region of M. The spectra m and q are finite or q = {0}.

If ^ = {0}, condition (II) is equivalent to
(Πo) U is an arbitrary time like geodesic in a simple region of M. If we replace

(I) by the more symmetric form,
(I*) U is an arbitrary space like geodesic in a simple region of M. The topology

3 * defined by (I*) and (II0) is strictly finer than 30 = 3(Σ0, V defined by (I) and
(Πo), as can be seen from Minkowski space M: Let H be a 2-dimensional space

like plane in M, and consider the subset £f= {Pn= -, sin - n e N [ of H with

respect to a cartesian coordinate system. Then Y = M\ίf is 3*-0Pen, since any
straight line of Minkowski space contains at most two points of £f. But Y is not
open with respect to 3o> s i n c e (0,0)eH is clearly an accumulation point of Sf
with respect to 3o

Lemma 3.2 gives the possibility of constructing 3(Σ™, ̂ -neighbourhoods
which are not ϊ-open. Since we will need two further types of (similar) neigh-
bourhoods we proceed as follows:

If U is a simple neighbourhood of P, we denote by 3 ι / (P)-3^(P)u3 ι ; (P) the
(X-open) causal domain of P within U. Then let be [cf. § 2]

(D) U*(P)

Cf. footnote 2 (p. 292).
The embedding should at least be a ^ -
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The sets QV(P) and U*(P) are neither open nor closed in (M, X), since
P e S ^ P ) , PeU*(P). &u{P)=(Zlj(P)\{P} is, however, ϊ-closed.

Lemma 4.1. The set U*(P) defined by (D) is a 3(Σ™, X)-neighbourhood of P.

[This shows again that 3(̂ ™» ̂ ) *s strictly finer than £.]
Proof. (I) If W7 is a space like closed hypersurface of M (contained in a simple

region), then

(a) WnU* = WnlUn(tSΌ{P)u(Sυ{P)] =[H / nΓ/n3 ι / (P)]u[H / nί/nS t / (P)] .

If P G ^ then Wo £ 7 0 3 ^ = 0 and W o l / o S ^ P H Wol/, since W is space
like. Therefore WnU* = WnU because of (a), and (I) is satisfied since UeX. If
PφW, then WnUn(Bυ{P)=WnUn(£υ{P) is 2^-open, and WnUn3v(P) is
3^-open since Un3v(P)eX. Therefore WnU* is 3^-open because of (a), and (I)
is satisfied.

(II) Let G be a compact time like line in a simple region defined by (II). Then

(b) Gol/* = [Gol/o3 ϋ (P)]u[GoI7oS I / (P)] .

If PeG then [ G o l / o S ^ P ^ P and [Gol/o3 ϋ (P)] = Gol/\{P}. Therefore
GnU* = GnU by (b) satisfies (II). If PφG, then G o t / o S ^ P ) and GnUn<Sυ{P) =
GnUn(&v(P) are ϊG-open. Therefore (II) is satisfied by (b).

Corollary 4.2. The topology induced by 3(^™? 2) on α Zfgf/zί cone 15 discrete.

Proof. Let be PeL, and L is a light cone. Then U*(P) defined by (D) is a
3(Σ™, ^-neighbourhood of P and we have [by (D)] U*(P)nL = P. Therefore P
is open in L with the topology induced by 3 and L is discrete.

Lemma 4.3. Let &?={Pn;nelN} be a sequence of points of a simple neigh-
bourhood U = U(P) of M with the following properties:

(a) PφS?, but Pn-^P.
(b) PPn is a space like geodesic for all Pne^.
(c) We have \Wc\SP\ < 00 for all closed space like hypersurfaces W in U.
Then U'=U'(P)=U\y is a 3(Σ™, X)-neighbourhood of P.

Proof Let G be a (w.l.g.) compact world line as defined by (Π), and assume
| G o ^ | = oo. Then PEG by (a). Therefore P<vPn or Pn<vP for all (infinitely
many) PneGn^, since G is time like, which contradicts (b). Therefore \Sfr\G\ < 00,
and Lemma 4.3 follows from Lemma 3.1.

Examples of sets £f satisfying (a)-(c) of Lemma 4.3: Take an arbitrary (€ι-
curve in U which is light like at P and space like everywhere else. Take Sf to be a
countable point set along this curve approaching P with respect to X.

§ 5. The Group of All Homeomorphisms of a Space-Time

Since we are interested in symmetries of the space-time in this section, we will
restrict ourselves to the Zeeman topology 3o defined by (I) and (II0) of § 4. A map/
of the topological space A into the topological space B is an embedding of A
onto f A if / is a homeomorphism of A onto f A with respect to the topology
induced by A on f A.



Zeeman Topologies in General Relativity 299

Lemma 5.1. Let f be an embedding of the Riemannian manifold R of dimension
^ 2 into the space-time (M, So) with respect to the Zeeman topology 3o U δ G ^
and P = f{Q), there are a neighbourhood U of Q and a simple neighbourhood V
of P such that fUQ<5v{P).

Remark. If R is a 3-dimensional ball with its Euclidean topology and M =
Minkowski space, Lemma 5.1 strengthens a result of Zeeman [38, p. 166,
Lemma 3]. Lemma 5.1 is still valid if we replace 3o by the topologies 3(^™' %)
defined in (B) § 3.

Proof. The map / is 3>continuous, since it is 3 c r c o n t m u o u s a n d 2 ^ 3 o
There is a simple neighbourhood V of P (cf. § 2), and we can find a neighbourhood
W of Q such that fWQV.We choose a set U= {Un\ neN} of neighbourhoods Un

of Q such that Un+1cUncW for all neN, and f] {l/π;neN} = Q. We will now
show

(a) There is an UneU such that fUnQ ®F(P)u(£y(P), and assume (a) to be
false. Then we can construct a sequence <f of points Pt with the following prop-
erties :

(b) P + P^fUi for all ieN.
(c) PPjjs time_like for all zeN.
(d) If TPiQPPk for some i, keN then i = k.
We assume Pt to be constructed for all i<n. Since (a) is assumed to be false,

there is a point P'efUn such that Fφ&v(P)u(ίv(P). The set V is simple and PF
must be time like, i.e. PΈ3v(P)nfUn. Therefore the set 3v(P)nfUn is not empty
and open in (fR, (3o)/κ) The map / is 3/irContinuous, hence there is an open
subset G of Un such that FefGQ3v(P)nfUn. The set R= (J {PP^ieNjKn}
consists of finitely many 1-dimensional submanifolds of V. Since / is an embedding
of the at least 2-dimensional manifold G {QR), the set fG cannot be contained
in R. Therefore there is a point Pne fG such that Pnφ [J R and (d) is satisfied for
all i^n. Since PnefGg3v(P)rΛfUn, conditions (b) and (c) hold. Therefore Sf
exists. The set t/* = V\5f is now a 3o"n eight )ourhood of P by Lemma 3.2. Therefore

(e) Pn-f-^>P (with respect to the Zeeman topology 3o)
From (b) we obtain f'1(Pi)eUi for all zeN, and have f\eN Un = Q by choice

of U. Therefore we have f~1(Pί)-*Q with respect to the manifold topology on R.
Since / is 3 o " c o n t m u o u s by assumption, we get Pi-^>f(Q) = P which contradicts
(e). Therefore (a) is shown.

With the same notation we will show next
(ί) There is an UneU such that fUnQ(Sv(P), and again we assume (f) to be

false. Because of (a) we may assume w.l.g. that fUnQ(5v(P)u(ίv(P). Therefore we
get f Unn&v(P) ή= P for all neN. In particular there is a sequence 6f of points
P + PnGfUnn<εv(P). Then U*(P) - defined by (D) §4 - is a 30-neighbourhood
of P by Lemma 4.1 which contains none of the points Pne5f, since PφPne(ίv(P).
Therefore we get again (e). Since f~\Pn)eUn, PJn 6 N Un = Q and / is 3o-con-
tinuous, we derive Pn-^P with respect to 3o> which contradicts (e). Therefore (f)
and Lemma 5.1 are proved.

In the following we denote by M' = (M',%') a second space-time with its
Zeeman topology 3Ό defined by (I) and (II0) of § 4. There are two types of homeo-
morphisms namely from (M, 3o) o n t o (M\ 3ό) a n <3 from (M, ϊ) onto (M7, %')
which we will call 3~homeomorphism and Σ-homeomorphism respectively.
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Lemma 5.2. Let h be a Q-horneornorphisrn from M onto M'. If G is a time like
geodesic of M and PeG, there is a simple neighbourhood V of P and a point
Qe3y(P)nG such that h{PQ) is part of a time like geodesic of M'.,

Proof. Let i be the identical map from (M', 3ό) o n t o (^', %'). Then i is con-
tinuous, but Γ1 is certainly not. Therefore h* = i°h is a continuous map from
(M,3o) o n t o (M\ %'). Since (3O)G = ^ G f° r time n ke geodesies G in simple neigh-
bourhoods, there are (cf. § 2) a simple neighbourhood V of h(P)eM' and a simple
neighbourhood V of PeM such that h(VnG)QV'. We assume

(a) There is a point Qe3y(P)nG such that h(PQ) is a part of a geodesic of Λί'.
To be false and construct a sequence 9 of points Pne3y(P)nG with the following
properties:

(b) h(Pn)eV (which is simple).
(c) If h(P)h(Pn)Qh(P)h(Pm) for some n, meN, then m = n.
(d) P,-^>P with respect to 3 0 .
We choose a set U={Un;neN} of Σ-neighbourhoods of P such that

Un+ίcUnC Ffor a l lneNand f]neN Un = P. We assumeP l v . . ,P n to be constructed
such that Pj-el/i. If there is no such P n + 1 e !/„+!, this would mean h{PPnnUn+1)
is part of one of the geodesies through h{P) and h{P^ for i<n. But this contradicts
our assumption that (a) is false. Therefore 9* exists and satisfies (b), (c) and (d)
since PfG l/f and f]neN Όn = P. We can choose an infinite subset of 9 so that we
may assume w.l.g. all geodesies h{P)h(Pn) for Pne9 are light like or time like or
space like. If 9' = {h{Pn) πeN}, then U* = U*(h(P)) - defined by (D), § 4, if U = V -
is a 3ό"n e ignbourhood of h(P) with U*n&" = 0 in the first case by Lemma 4.1.
The set U* = V'ψ" is a 3o-neighbourhood of h{P) with ϊf'nU* =0 in the second
case by Lemma 3.2. Therefore h(P„)-/-$+h(P) for light like and time like geodesies,
which contradicts (d) since h is an 3 ~ n o m e o m o r p h i s m Therefore we can assume

(e) All geodesies h(P)h(Pn) are space like for PneSf. Next we want to show
(f) We have \£f'n W\ < oo for all closed space like hypersurfaces W contained

in simple regions of M'.
We assume \£f 'r\W\ = oo for such a space like hypersurface W. Then h{P)e W,

since W is closed and we have
(g) \Un&"\ = oo for all neighbourhoods U of h(P) in W = (W, Xw).
By Lemma 5.1 there is a neighbourhood U' of h(P) in W = (W,%W) such that

Λ-^l/OSS^P). Since G is time like and Pφ^cG, it follows that P = h~1(Uf)nG
and 0 = h~ί(U')n£f. Therefore we get 0=Ό'r\9?\ which contradicts (g), and (f)
is shown.

Hence V'\£f' is a 3Ό"n eighbourhood of h(P) as follows by Lemma 4.3 together
with (b), (d), (e), and (ί). Therefore h(P^-^>h{P) also in this final case, which
contradicts (d), hence (a) is shown. The set h(PQ) cannot be contained in a light
like geodesic, since its induced topology 3h(pQ) would be discrete by Corollary 4.2,
but (PQ, 3PQ) i s connected, which is impossible for homeomorphisms h. We
assume h(PQ) to be space like. The space like geodesic h(PQ) is contained in a
closed space like hypersurface W which is contained in a simple region of M'. It
follows that

(h) \Unh(PQ)\ = oo for all neighbourhoods U of h(P) in W.
By Lemma 5.1 there is a neighbourhood V of h(P) in W such that

h~ι{U')QSv{P\ Since PQ is time like, we get Peh~\U')nPQQ&v{P)nPQ = P,
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i.e. P = h'\U')nPQ or h(P)=U'nh(PQ), which contradicts (h). Therefore h(PQ)
is time like, and Lemma 5.2 is proved.

Corollary 5.3. Let h be a 3-homeomorphism from M onto M'. IfG is a time like
geodesic of M and PeG, there is a point P φ g e G such that PQ and h(P)h(Q) are
contained in simple regions and we have h(PQ) = h(P)h(Q) a time like geodesic
of M.

Let / be a map from the space-time M into the space-time M'. If V is con-
tained in a simple region U of M and fV is contained in a simple region V of
M', then / will be called orthochronal on V if f(X)<v>f(Y) for all X, Ye V with
X<ΌY, and anti-orthochronal on V if f{Y)<υ>f{X) for all X, YeV with X<VY.
The 1 — 1-map / of M onto M' is then locally (and-) orthochronal if / and f~γ

are (anti-) orthochronal on any simple region of M or M'. The different ^-related
maps satisfy the following lemma, which will be applied to prove our main
theorem:

Lemma 5.4. (Gobel [13, p. 5.6 (h)]). A map is (locally) causal if and only if
it is (locally) orthochronal or (locally) anti-orthochronal.

Lemma 5.5. Let h be a 3-homeomorphism of the space-time M onto the space-
time M'. If G and H are two time like geodesies of M with a point P in common
(which is not end point of G or H), there are simple neighbourhoods V of P and V
of h{P) and points QeGn3y(P) and ReHn3y{P) [analogous ReHn^y(P)'] with
the following properties:

(1) We have h{PQ) = h{P)h{Q) C V and h{PR) = h(P)h{R) C Γ .
(2) The map h is either orthochronal or anti-orthochronal on PQuPR.

Proof. Let V be an arbitrary simple neighbourhood of h(P). Since Σ G = ( 3 0 ) G
and %H = (3O)H> a n d h is a 3-horneomorphism of M, there is a simple neighbour-
hood V of P such that

(a) h{Vn(GvH))CV.
We choose now QeGn3y(P) and w.l.g. ReHn^Sy(P) according to Corol-

lary 5.3. Therefore (1) is satisfied if we apply (a). The topology (3O)PQ a n d (3Ό)h(PMQ)
is the Euclidean topology, and therefore h is an ordinary homeomorphism
between intervals if restricted to PQ. Therefore h is orthochronal or anti-ortho-
chronal on PQ, and we assume w.l.g. that

(b) h is orthochronal on PQ,
and we also assume that

(A) h is anti-orthochronal on PR.
There is a space like hypersurface W in V which contains h(P) but not on its

boundary. By Lemma 5.1 there is a neighbourhood U of h(P) in W such that
(c) h~ι(U)Q<Zv(P), U is a neighbourhood of h(P) in W, if we take h ~x restricted

to W to be /. Since h(P) is not at the boundary of W9 it is contained in a Euclidean
'^"-neighbourhood E of W. Because E is open in a space like hypersurface we can
choose a 3-simplex A3 contained in E (Q V which is simple) with barycentre h(P).
Since h restricted to PQ is continuous in the ordinary (Euclidean) sense, we can
choose a point Q'ePQ sufficiently close to P such that the 4-simplex A4' generated
by A3 and h(Q') has faces, which are contained in space like hypersurfaces. There-
fore the topology, induced by 3Ό a t its boundary dA4 coincides with the topology
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induced by Zf. Therefore (δzl4, (3όW) = (δΛ4, (£ 'W) is homeomorphic to a
3-sphere and is compact. We now consider the map / = i°/ZQ \ where HQ * is h~1

restricted to <9zl4 and ί the identical map from (M, 3o) o n t o (M, ̂ ) The map /
is a 1 — 1-map of a compact space into the Hausdorff space (M,X) and is
continuous, since £ ^ 3 o Therefore / is a 2-homeomorphism; cf. Kelley [19,
p. 141, Theorem 8]. Let 23 be a ^-neighbourhood basis of P. Since / is an em-
bedding, the set / ~ % - { / " 1 ( 5 ) n δ z J 4 , 5 G © } is a neighbourhood basis of h(P)
in dA4. Therefore there is an £/'e» such that f~1(Uf)ndA4QU. We apply /Γ 1

to this inequality and obtain U'nh~1(dA4)Qh~ί(U), and with (c) we get
U'nh~1(dA4)n3v{P)Qh~1(U)n3v(P) = 09 i.e. Ufnh~1(dA4)n3v{P) = 0. Therefore
we have

(d) (U'n^{P))\h-\dA4)=U'n^{P).

Let C be the set of all points XeV which can be connected by a 3 o - c o n n e c t e d
curve with (h(P)h(Qr)) within V'\dA4. Then C consists of the interior of A4, because
each inner point of A4 can be connected by a piecewise geodesic line which is
space or time like. But this curve is 3 o ~ c o n n e c t e d , since its 3o"mduced topology
coincides with the 2-induced topology. From assumption (A) we get

(e) (h(P)h(R))nC = 0.

Since V is a ίX-neighbourhood of P and (PR)κj(PQf)Q3v(P), there are points
on (PR) and (PQ') which can be connected by a (space like) curve lying entirely
in U'n3y(P) and in a space like hypersurface. This curve is 3 o " " c o n t m u o u s > a n d
its image under h is again_a__3o-connected curve, which connects points of
(h(P)h(R)) with points of (h(P)h(Q')) and is in V'\dA4 because of (d). Therefore
(h(P)h(R))QC by definition of C, which contradicts (e) and (A) is false. Therefore
Lemma 5.5 is proved.

Corollary 5.6. Let G be a compact [part of (a)] time like geodesic of a space-
time M and h be a 3-homeomorphίsm of M onto a space-time M'. Then h(G) is
time like and piecewise geodesic and h is (locally) orthochronal or anti-ortho-
chronal on G.

Proof. If PeG, there are a simple neighbourhood V of P and points
Qe^y{P)nG (if P is the future end point of G we put Q = P) and Re3y(P)nG
(if P is the past end point of G we put R = P) such that

h(RQ) = KRPKJPQ) = h(RP)vh(PQ) = h(R)h(P)uh(P)h(Q)

where h(R)h(P\ h(P)h(Q) are time like geodesies according to Lemma 5.5 (1).
Since G is compact, it can be covered by finitely many such segments RQ. Therefore
h(G) is a piecewise geodesic line and time like. If RQ is again such a segment of the
finite covering, h is (locally) orthochronal or anti-orthochronal on RQ by Lemma
5.5 (2). We assume w.l.g. h to be orthochronal on RQ. If we apply Lemma 5.5 (2)
to all other connected segments of the finite covering, we derive that h is (locally)
orthochronal on G.

Corollary 5.7. A 3-homeomorphίsm h of a space-time M onto a space-time M'
has the following properties:

(1) his a causal map.
(2) h is a %-homeomorphism.
(3) h is locally causal.



Zeeman Topologies in General Relativity 303

Proof. (1) It is sufficient to show
(a) We have h(X)<ζh(Y) or h(Y)<ξh(X) iϊX<Y for X, YeM.
Since X ^ Y, there is a differentiable, time like, future directed curve connecting

X with Y. Since this curve is compact, there are points P1,...,Pn (on this curve)
in M such that PjPi + i are future directed, time like geodesies in simple regions for
\<,i<n and P1 = X, Pn= Y; cf. Penrose [25, p. 15, Proposition2.23]. We denote
this piecewise geodesic line by G. Then h(PiPi+1) is time like and piecewise geodesic
by Corollary 5.6. Therefore h(G) is again piecewise geodesic and time like. By
application of Corollary 5.6 and Lemma 5.5 follows that h is orthochronal or
anti-orthochronal on G. A second application of Penrose [25, p. 15, Proposi-
tion 2.23] then shows that h(X) can be connected with h(Y) by a differentiable,
time like either future or past directed curve. Hence h(X)<ζh(Y) or h(Y)<ξh(X).

The topology on M generated by the (X-open) subsets 3~(ζ))n3+(P) for all
P, QeM is called Alexandrov topology. In general X is finer than the Alexandrov
topology as we know from "cyclinder worlds". A space-time M is then strongly
causal (in the sense of Hawking [15]) if its Alexandrov topology coincides with its
manifold topology X\ more physical (equivalent) definitions of strongly causal
may be found in Penrose [25, p. 34, Theorem 4.24].

(2) If M and M' are strongly causal, property (2) of Corollary 5.7 follows
from (1): Since h is a causal map by (1), it maps Alexandrov-neighbourhoods onto
Alexandrov-neighbourhoods as follows from Lemma 5.4 and the definition of
Alexandrov topology. Since M and M' are strongly causal h maps X onto Xf.
Hence h is a £-homeomorphism.

In general we use a method which has some similarity with the proof of
Lemma 5.5. First we show that it is sufficient to prove

(b) If PeUe% there is a set VQU such that PeV and h(V)eX'.
We denote V=V(P). Then we have U= \JPeϋV{P) and therefore h{U) =

h({JpeuV(P))= {JpeUh(V(P))eX' by a property of topology and (b). We get
h(X)QX'. Because of the symmetry (for h~ι) we obtain h~ι£t')QX and together
h(X) = X', which means h is a £-homeomorphism.

Let be PeUeX. Like in the proof of Lemma 5.5 we construct a 4-simplex
A^QU such that its boundary D = (D,(30)D) is homeomorphic to a 3-sphere S3

with respect to the topology induced by 3o a n d such that P is an interior point
Peint(D). We consider the restriction h* of h mapping (D,(3O)D) m t o (M\X').
The map h* is a continuous 1 — 1-map sending the compact space (D, (3O)D) — S3

into the Hausdorff space (M', X'). Therefore h* is an embedding by Kelley [19,
p. 141, Theorem 8], i.e.

(c) h(D) = D isa3-sphere: (D\(X')D,)~S3.

We consider now the homeomorphism h0 from (M\D, (3O)M\D) o n t o

(Mf\D\ (3O)M'\D) It maps the 3 o " c o n n e c t e d component C3o(P) of P onto the
3ά-connected component C3b(F) of P' = h(P):

Any two inner points of D can be connected by a piecewise geodesic line of
time like and space like geodesies, i.e. by a 3 o " c o n n e c t e d curve. Hence int(D) =
C3o(P\ and the same holds for D' because of (c). If F is an inner point of D' we
have C3b(P') = int(D')eX' (the argument is similar if F is an outer point of D).
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Together with (d) we derive U2int(D) = C3o(P)sP and h(C3o(P)) = C3b(F) =
int(D')eX'. We put V = C3o(P\ and (b) is proved.

(3) There are simple neighbourhoods V of P and V oϊh{P) such that h(V)Q V\
which follows from Corollary 5.7 (2). We consider the restricted homeomorphism
between V and h(V) and apply (1) to obtain (3).

Proposition 5.8. For a map h of a space-time M onto a space-time Mr are

equivalent:

(1) his a homothetic transformation.

(a) h is a conformal transformation.
(b) h maps time like geodesies (as point sets) onto time like geodesies.

Proof. Let h be a conformal map with conformal factor Ω = Ω(X), XeM;
cf. § 2. If / : te [0, l]->/(ί)eM is a geodesic (with the differentiable not necessarily

affme parameter t) with tangent vectors K = —, then their coordinates Ka satisfy
the equation

(a) K[b~Ka] = 09dt

cf. Hawking and Ellis [16, p. 32, 33]. Let f* = h°f be the image curve of/ under
the conformal transformation h, ft* its tangents along / * and g* = Ω2g the
metric at the point h(X) of M if g is the metric at PeM. According to Hawking

D
and Ellis [16, p. 63] the derivative ^ f t * of ft* along / * can be expressed in

terms of ft: dt

^ - K * ° = j Ka + 2 (Vb\ogΩ)-Kb'-Ka -(Kb KC g*bc)- g*adVd\ogΩ.

Therefore we have
~K*a} = Kίb~Ka}-{Kb'Kc'g*bc)'K[b'g*a^'VdlogΩ.

dt dt
From (a) we obtain

(b) J dt

[if / is a geodesic where ||ft||2 = Ka Kb-gab.

(1)^(2): If h is a homothetic transformation, this map is by definition a con-
formal transformation and in particular we have Ω = const. Therefore we get

= 0, and from (b) it follows that K*[b~K*a] = 0, if / is a geodesic.
atat

Therefore / * is a geodesic, and (2)(a) and (2)(b) are derived from (1).
(2)-*(l): From assumption (2) and (b) follows that (Ω2 | |ft| |)2 K [ b Va] \ogΩ = 0

for time like geodesies. Since ||ft|| > 0 and Ωή=0 we obtain K[b Va]logΩ = 0. The
left hand side of this equation represents a skew vector of a singular surface
element; cf. Jordan, Ehlers and Kundt [18, p. 31]. Therefore the generating
vectors are parallel, i.e.
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(c) Ka~ValogΩ.

The right hand side of (c) represents a fixed direction at a point. At the same
time the left hand side of (c) can be chosen to be an arbitrary time like direction.
Therefore Va logΩ = 0 and logΩ as well as Ω are constant along time like geodesic
lines. A space-time M is connected (by definition) and therefore two arbitrary
points of M can be connected by a piecewise geodesic which is time like. Therefore
Ω is constant throughout the whole space-time M, and h is homothetic.

Main Theorem 5.9. For a map h of a space-time M onto a space-time M' are
equivalent:

(1) h is a homeomorphίsm with respect to the Zeeman topology 3o [defined
by (1) and (ll0) in § 41

(2) h is a homothetic transformation.

Remark. This is the full solution to a question raised by Zeeman [38, p. 162,
problem (1)].

Proof. (l)->(2). A 3-homeomorphism hoϊM onto M' is a ϊ-homeomorphism
(with respect to the manifold topology X) as follows from Corollary 5.7 (2).
Therefore for each point PeM there is a simple neighbourhood V of h(P)eM'
(cf. § 2), and we can find a simple neighbourhood V of P such that h(V)QV. The
restriction h* of h to V is a 3-homeomorphism of the space-time V onto the
space-time h(V) [which is a simple neighbourhood of M' by Corollary 5.7 (2)].
The map /z* is a causal map by Corollary 5.7 (1). Therefore h* is orthochronal or
anti-orthochronal by Lemma 5.4. Since V and h(V) are simple neighbourhoods
of M and M' respectively, the spaces V and h(V) are strongly causal. Therefore h*
is a diffeomorphism (degree of differentiability = min(d, d')—l^.2;iϊd and d' are
the degrees of differentiability of M and M' respectively) of V onto h(V\ which
follows from Hawking [15, p. 116, Lemma 3] 6 or Gobel [13, p. II.6.1, (a)]. Therefore
ft* is a conformal map of V onto h(V) (cf. Gobel [13, p. Π.6.9]), which follows by
application of an argument in Hawking and Ellis [16, p. 61]. Using a covering
of M by simple neighbourhoods of the type V we obtain that h is a conformal map
from M onto M'. Because of Corollary 5.6 and the differentiability of h we derive
that h maps time like geodesies onto time like geodesies (there are no more edges !).
The conformal map h is now homothetic by Proposition 5.8. Therefore (2) is proved.

(2)-»(l) follows by definition of 3o a n d Proposition 5.8.
Discussion. In the main Theorem 5.9 we derive from the continuity of the

(homeomorphism) h with respect to the underlying Zeeman topology 3o i t s

differentiability as well as its "linearity" since h is [by (2)] an isometric map "up
to scaling". This is a very unusual property of a topology, which we may put into
a different and even more characteristic form:

Corollary 5.10. The space-times M and M' are homeomorphic in its Zeeman
topologies [defined by (I) and (II0) in § 4] if and only if they are isometric (up to
a constant positive factor).

Corollary 5.11. The group Hom(M, 3o) °f α " homeomorphisms with respect
to the Zeeman topology coincides with the group Hot(M) of all homothetic trans-
formations of the space-time M onto itself i.e. Hom(M, 3o)

Note Added in Proof. Lemma 3 will now be published in Hawking, King, McCarthy [42, Theorem 5].
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Corollary 5.10 implies that Zeeman topology contains all informations about
the metric; therefore the metric can be derived from this topology. Such a type
of topology - or some of its properties - might be very useful for a reconstruction
of general relativity in an axiomatic way. In particular this topology might be
useful for approaches to this on a basis of projective geometry like in Ehlers and
Schild [10] or Woodhouse [36]. In this sense it would be interesting to tackle
the following problem: Consider a space-time M with a metric g and specify
certain subsets of M to be world lines of free falling particles (= "time like geo-
desies"). Then introduce a topology 3 ' on M which is Euclidean on the world lines
of freely falling particles. Under what conditions can the metric be derived from 3 '
(up to a constant factor)?

If M is the Minkowski space, Corollary 5.11 is the main result of Zeeman [38,
p. 168, Theorem 3], since Hot(M) is the Weyl group of M which is the semidirect
product of dilatations and the Poincare group (= inhomogeneous Lorentz
transformations) of Minkowski space. On the other hand there are space-times M
(even vacuum solutions of Einstein's field equations; cf. Robinson and Robinson
[28]) with a trivial conformal group. In particular we have Hot(M)=l, i.e. the
identity is the only homeomorphism of M onto itself with respect to the Zeeman
topology. The freedom of choice of continuous maps is gone !
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