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Abstract. A proof is given for the representations of invariant and covariant
(Schwartz) distributions on Rn, which are often used in theoretical physics.
We express invariant distributions as distributions of standard polynomial
invariants and decompose covariant distributions in standard polynomial
covariants. Our consideration is restricted to compact groups acting linearly
on Rn. The representation for invariant distributions is obtained provided the
standard invariants form an algebraically independent generating set in the
ring of invariant polynomials. As for the standard covariants we assume that
in the class of covariant polynomials they provide a unique decomposition
into a sum of the standard covariants multiplied with invariant polynomials.

Introduction

It is part of the folklore of mathematical physics that distributions on the
Euclidean space Rn, invariant with respect to a classical group (acting linearly on
Rn\ can be represented as "distributions" of a fixed (finite) family of standard
polynomial invariants (provided that the invariants separate orbits, at least
those of some kind of "regularity"). Similarly, it is often believed that covariant
distributions can be decomposed into a sum of a fixed (finite) family of standard
polynomial covariants multiplied with invariant distributions.

Special results in this direction are provided by the descriptions of rotation
invariant distributions of one [1] or two [2] vectors and Lorentz invariant dis-
tributions of one vector [3]. (Concerning Lorentz covariant distributions of one
vector see e.g. [4], Section 3.) Prior to such a description, one needs a choice
of standard polynomial invariants (or covariants) which yield resolution of the
corresponding algebraic problem on invariant (or covariant) polynomials. Of
interest are more general situations which exhibit a close relationship between
the distribution theoretic and the algebraic problem.

The purpose of this paper is to show that in the case of a compact linear group
the desired representation for invariant (resp. covariant) distributions on Rn

exists and is unique (in a certain sense), provided that the corresponding repre-
sentation in the class of polynomials exists and is unique with respect to a given
family of standard polynomial invariants (resp. covariants). By this means our
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consideration starts from certain algebraic assumptions (see Conditions I and II
in Sections 1 and 2, respectively).

Needless to say, the compactness hypothesis is crucial for our consideration.
However it should be mentioned that in specific cases the results can be
applied also to the description of distributions (on subdomains of Rn) invariant
or covariant with respect to a non-compact Lie group, which may appear suf-
ficient for practical purposes. (Such a possibility occurs e.g. in the case of Lorentz
invariant [2] or Lorentz covariant [5] distributions of several vectors in a domain
where at least one of the vectors is time-like; here the compactness of isotropy
groups plays an important part.)

As for the role of the uniqueness assumption in the algebraic problem (on
invariant or covariant polynomials), it is essentially the same as in the problem
on invariant or covariant analytic functions [6]. In the problem on invariant
distributions one should introduce a suitable space of distributions on the mani-
fold of values of standard invariants, and this manifold appears to be the closure
of an open set in Euclidean space. Further generalizations which dispose of this
restriction would be of interest. On the other hand, in the problem on covariant
distributions the uniqueness assumption seems to be indispensable for an effective
treatment (otherwise the decomposition into standard covariants would be
highly non-unique).

1. Invariant Functions and Distributions

In both Sections 1 and 2, G is a compact Lie group acting linearly on n-dimen-
sional Euclidean space Rn = Rx ...xR (n factors, R being the field of reals), μ is
the normalized Haar measure on G:

The value of an element geG at xeR" is denoted by gx. Since a G-invariant
(positive definite) inner product always exists in Rn, we assume without essential
loss of generality that the norm ||χ|| =((x1)

2 + ...+(xn)2)1 / 2 is G-invariant.
We look for representations of G-invariant functions and distributions on Rn.

We consider the commonly used spaces of complex testing functions of three
types, 8, <3, and 5^ ([7] see also Appendix A). In order to treat them in parallel,
the letter si is introduced which stands for either of the symbols S, 3), ̂  [thus
e.g. si{Rn) denotes either of the spaces δ(R% ®(Rn\ £f{Rn)~\. srf'(Rn) is the strong
topological dual of the space si(Rn\ i.e. the space of distributions on Rn of type
sί\ = δ\2' or ^'\ The value of Test\Rn) at festf{Rn) is denoted by (T,/) or

(T(4/(4
The (right) action of G on si{Rn) and si\Rn) is defined in the standard way.

Namely, the value of geG at festf(Rn) is the function f°ges/(Rn) such that
(f°g)(x) = f(gx), VXGJR". Also the value of geG at TeA\Rn) is the distribution
TogeΆ(Rn) defined by {TogJ) = (Tjog~1\ \jfesi{Rn). A function (or a distri-
bution) / is called G-inυaήant if f°g = f for all geG. The totality of G-invariant
functions of si(Rn) [resp. G-invariant distributions of si\Rn)~] is denoted by
^{Rnf [resp. s/f(Rnfl It is as a (closed) subspace of si{Rn) [resp. si\Rn)~\\ it
is endowed with the induced topology.
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Our description of G-invariant functions and distributions is based on an
assumption concerning the algebraic problem on G-invariant polynomials. By
^P{Rn) [resp. &(Rn)G~\ we denote the totality of complex polynomial functions on
Rn [resp. of G-invariant elements of 0>(Rn)~]. We assume that there exist real
G-invariant polynomials / 1 ; . . . ,/ m on Rn such that each polynomial PE^{Rn)G can
be represented uniquely in the form P(x) = p(I1(x),...,Im(x)) = (p°I)(x) with
peg?(RmY here / is the polynomial mapping

/:«"3XH>(/1(x),...,/M(x))6Jίw. (1.1)

Therefore the basic hypothesis which is assumed throughout Section 1 is the
validity of the following

Condition I. The mapping pκ>poj i s a bijection of 0>(Rm) onto ^{Rnf.
There are a few important properties of the mapping / and the image of Rn

under /, denoted by SCR:
9H = /(«"). (1.2)

First of all, the uniqueness property of the representation P = p°I for all Pe&(Rn)G

can be reformulated in several equivalent forms according to the lemma.

1.1. Lemma. For a polynomial mapping J :Rn-*Rm, the following properties are
equivalent:

a) the mapping ^{Rm)3p^>p°Je^{Rn) is injectiυe;
b) there exists at least one point xeRn such that rank of the Jacobian matrix

DJ(x) = (dlκ(x)/dxλ\λ = 1,...,n κ = 1,...,m) equals m
c) the set J(Rn) possesses a non-void interior (in Rm).

Proof. The implications b) => c) and c) => a) are trivial. There remains the im-
plication a)=>b) to be proved. Suppose that rank of DJ(x) is <m for all x. Then,
by the Sard theorem, the set 93 = J(Rn) is of the Lebesgue measure zero. Further-
more, by the Seidenberg-Tarski theorem ([8]), 93 is a semi-algebraical set, i.e.
93 is the union of finitely many non-void sets 93σ in Rm of the form

where sσ, tσeZ+, Z+ being the totality of non-negative integers; αJ/} and b^] are
real polynomials. We set

Then α σ φ0. (Otherwise 93σ would be defined only by strict inequalities and hence
it would be a non-void open set in Rm; this would contradict to the statement
that 93 is of measure zero.) Define a(y) = Y\σ ajy). Then © = [jσ 93σ is contained
in the set of zeros of the polynomial αφO. Hence α°J = 0, and the mapping
p\->p°J is not injective. Q.E.D.

We denote by 9ΐ the totality of points xeRn, called regular for /, such that
rank of the Jacobian matrix DI(x) equals m:

K = {xeRn\vankDI(x) = m}. (1.3)

It is an open set in Rn, which is non-void (according to Lemma 1.1) and dense
in Rn [due to the polynomial dependence of I(x) on x]. By the rank theorem, the
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restriction of / to 9ΐ is an open mapping, hence /(5R) is an open subset in Rm,
which is dense in 9JΪ. It is useful to note that the set 9ΐ is representable in the form
β^ORUO}) with some non-negative polynomial QφO in Rn, e.g. β ^ Σ lβ/l2,
where {g,} is the totality oΐmxm minors of DL (We shall utilize this in order to
apply Construction A.8 of Appendix A.) Note that 9ΐ is /-saturated:

SR = /-1(/(SR)). (1.4)

Indeed, the standard argument (based on the Weierstrass approximation theorem)
shows that the totality of G-invariant polynomials separates G-orbits, hence
GS = Γ1(I(S)) for all sets ScRn.

Further, I~\B) is compact for each compact B in Rm, since (by Condition I)

| |x||2 = (πo/)(χ) (1.5)

for some πe^(Rm). [Hence I(V) is closed in Rm for any closed Fin /?".] Moreover,
/([/) is (relatively) open in 9JΪ for each open UcRn [since Wl\I(U) = I(Rn\GU) is
closed in SOI]. Now Lemma A.7 of Appendix A implies:

1.2. Lemma. 9DΪ is the closure of the open set I(9ϊ) in Rm. Moreover, SOΪ possesses
the regularity property (R)' (see Definition A.4).

We now turn to the representation of functions fe stf(Rn)G in the form f = φ°I.
For this purpose we must introduce an appropriate space of testing functions φ
on the set 9JΪ. The discussion in Appendix A (especially Construction A.8 and
Proposition A.9) puts forward the following definition.

13. Definition. s/(Wl) stands for either of the spaces <ί(9K), 0(2R), ̂ (9Jl), defined
as follows. $(9Ji) is the totality of complex functions φ on SOI such that their restric-
tions to J(9ΐ) are Ή™ and all derivatives Dβφ h /(9ΐ) admit (unique) continuous
extensions (denoted by Dβφ) into 9JI. S^ΰϊ) is endowed with the topology of a
Frechet space with the seminormsx

|φ|f=sup sup|dVϋ>)l,
\ β \ i K

where /eZ+, and K is an arbitrary compact in 9JΪ. ^(9Jί) is the inductive limit of
subspaces of <?(30ΐ) indexed by compacts Xc9Jl and formed by the totality of
functions φe$ϋβl) with support in K. ^(Sffl) is the totality of functions φeS^ΰΐ)
for which all the seminorms

\φ\rtS= sup sup(l + \\y\\Y\dβφ(y)\(r,SEZ+)
\β\ίr yeWl

are finite. It is a Frechet space with these seminorms. By stf'(W) we denote the
strong topological dual of J/(9JΪ) (i.e. the space of distributions on SOΐ of type jtf').
According to Appendix A (Propositions A.2 and A.9), J^'(9K) can be identified
with the subspace of stf\Rm,W) of distributions of srf'{Rm) with support in 9Jί.
1 We use the abbreviations

ΣF = (d/dxίr
ί...(d/dxa)*» for aeZ\ and dβ = {d/dyι)

β> ...{d/dyj™ for βeZm

+ ,

where Z + = Z + x . . . x Z + ( / c factors).
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It is very important that (by virtue of Proposition A.9) each φes^^ΰl) is the
restriction to 9JΪ of a complex ^°° function on Rm. Consequently φ°I is ^°° and
G-invariant for any φe<szf(W). Moreover, it is easily seen that a linear con-
tinuous operator J> is defined by

J:^(m)3φ^φoIe^(Rn)G. (1.6)

We claim (Theorem 1.6 below) that J is a topological isomorphism (onto).
It is clear that J is injective, consequently there exists the inverse operator

J~γ :im^->j/(9PΪ), where \mJ denotes the image of J3/(SDΪ) under J. We are now
concerned with proof of the continuity2 of J~γ. We note that, for φej/Qΰl),
φ°I = 0 implies φ = 0 and hence (dβφ)°I = 0 for all βeZ+. Thus linear operators
φoh-*(dβφ)°I are well defined on im./. We have the following lemma.

1.4. Lemma. For any βeZ+, the operator φ°I\-+(dβφ)°I in i m / is continuous.

Proof. We proceed by induction on \β\. For |/?| = 0, the statement is trivial.
Assuming the validity of the statement for \β\^k— 1, we will show it for |/J| = fc.
We apply the differential operators Dμr..Dμk to φ°I (where μ1,...,μfce{l,...,n}).
Due to the induction hypothesis, all the expressions

V κ m}(Π*=l D t*

are obtained by applying certain continuous operators [from im./ into s&
to φ°L Let us consider Y[jDμ I (x) here as elements of the complex knxkm
matrix (DI(x))®k with a polynomial dependence on x. By Lemma 1.1, its rank
equals km at least for one x. Now Theorem in Appendix B implies that the func-
tions (dκr..dκkφ)°I depend continuously on φ°I. Q.E.D.

Now it is straightforward to prove the claimed statement on the mapping J
[see below Theorem 1.6, part (i)] and thus to obtain a description of jtf(Rn)G.
Also we will present an alternative description of stf(Rn)G which will be necessary
for studying G-invariant distributions. In fact, an analogue of the representation
f = φol for fe£?(Rn)G would be the representation of Tesrf'(Rn)G as the com-
posite τ°/ of the mapping I with certain "distribution" τ on 901. It is natural to
interpret τ°J according to the formula (with δ the Dirac m-dimensional distri-
bution)

(τ°J,/) = (τ()0, (δ(y-I(x))J{x))x)y9 fes/(Rn). (1.7)

To give a precise meaning to this formula, one should introduce the totality of
functions ψ on 9ΪΪ of the form

ψ(y) = (δ(y-I{x)),f(x))x with fesrf{Rn) (1.8)

and then consider the "distribution" τ in (1.7) as a functional defined on the i/ 's.
We shall not try to define ψ as a function on the whole 9JΪ. Instead we show

that ψ can be defined as a complex ^°° function on J(9ΐ) [/(5R) being dense in
9Jί]. Indeed, for yeI(R), ||y||2<fo, the heuristic formula (1.8) can be rewritten (with

2 Throughout, any subspace of a (Hausdorfί) locally convex space X is endowed with the relative
topology (unless otherwise indicated). X' stands for the strong topological dual of X.
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the use of formal manipulations) in the following well defined form:

ψ(y) = (U7=i W f ( Π ^ i Θ(yj-Ij(x)))θ(b- \\I(x)\\2)f(x)d"x, (1.9)

where θ{λ)=l for A^O and θ(λ) = O for λ<0. [For \\y\\2<b, the right hand side
of (1.9) does not depend on the cut-off θ(b — ||/(x)||2) which may be necessary for
feS(Rn)^\ Since / is regular in the /-saturated open set 9?, it is easily seen that
a #°° function ψ on 1(91) is defined according to (1.9). In this way the precise
meaning is given to formula (1.8).

In particular, if we put f = φ°I with φe J</(9JI) into (1.8), then the resulting ψ is

ψ = h φfl{R)9 (1.10)

where h is a picked positive #°° function on

h(y) = (δ(y~I(x)), l(x))x=$δ(y-I(x))d"x (1.11)

[corresponding to the function 1 ( X ) Ξ 1 of S(Rn)~]. Further, for a general element
festf(Rn), the right hand side of (1.8) is unchanged after the replacement of/ by
the G-invariant function f' = Ef, where E\s$(Rn)^s$(Rn)G is the averaging over G:

(Ef)(x)=\f(gx)dμ(g). (1.12)

Thus assuming the validity of the claimed statement about J motivates intro-
ducing the following candidate for the totality of ψ's.

1.5. Definition. For stf = £,9, or ̂ , we define stfh(W) as the space of all ^°°
functions ψ on 1(91) of the form (1.10) with h the picked function (1.11) and φ an
arbitrary function of s>/(W). The topology of J>/(9JI) induces a topology on .$/h(9Jl)
via the isomorphism s/(W}3φ^h-φ {1(91). Since the multiplication operator
ψ\-*(l/h) ψ is a topological isomorphism of £#h(9Jl) onto J/($R), its dual operator,
called also the multiplication by (1/h), maps isomorphically s#'(9Jl) onto (stf h(9Jl))',
the strong dual of s?/h(9Jl). Therefore it is natural to denote (J/Λ(SDΪ))' also by
s#[/h(9Jl). Thus we have the identity:

{ρ,φ) = {(l/h)ρ,hφ) for all ρeja^ϊR), φej^(OR). (1.13)

After these preliminaries we are in a position to describe stf(Rn)G in two
equivalent forms. (Remind that Condition I is assumed throughout this Section.)

1.6. Theorem, (i) The operator Jf\φ\->φ°l is a topological isomorphism of
jaf(9W) onto stf{Rnf.

(ii) The operator f,

(ff)(y) = (δ(y-I(x)lf(x))x for all fes/iR"), ye 1(91) 9 (1.14)

is a topological homomorphism of s/(Rn) onto jtfh(9Jl), whose restriction to <srf(Rn)G

is a topological isomorphism of s/(Rn)G onto stfh(W). Its kernel, ker Jf = β~ι{0},
coincides with the kernel, ker£, of the averaging operator E (1.12).

Proof, (i) First, J maps isomorphically stf(W) onto im JCstf(Rn)G. It suffices
to consider only stf = $ or Sf\ in these cases J~ι is continuous since any defining
seminorm [of J/(SDΪ)] at φes/(W) is obviously majorized by seminorms
[of s$(Rn)~\ of finitely many functions (dβφ)°I, which in turn are majorized
(according to Lemma 1.4) by a seminorm [of st(Rn)~\ of the function φ°l. Now
the completeness of J/(SDΪ) implies the completeness of im,/ [in the topology
induced from jtf(R")G'], consequently i m ^ is a closed subspace of s
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There remains to show that imJ^ contains certain dense subset of stf(Rn)G. For
this purpose we introduce the totality if of functions fe stf{Rn)G of the form f(x) =
P(x) u(\\x\\2\ where Pe^(Rnf, ue9{R). It is clear that if is dense in stf{Rnf.
[Indeed, by the Weierstrass approximation theorem, each function fes$(Rn)G can
be approximated with an arbitrary accuracy in the topology of s/(Rn) by func-
tions of the form Q(x) u(\\x\\2) with Qe2P(Rn\ ue@(R); replacing here Q with
P=EQ, we approximate / by functions of if.] Now Condition I and formula (1.5)
imply i^CimJ^, hence i m / is dense in j^(Rn)G. This proves (i).

(ii) It is clear that E maps continuously jtf(Rn) onto its subspace s$(Rn)G and
is the identity on this subspace, therefore it is a topological homomorphism. We
have seen [Eq. (1.10)] that, for / = φ°J with φej/(9JΪ), / / = ft-φl7(5R). Con-
sequently,

By the definition of J/Λ(SDΪ), the operator h (of multiplication by h) is a topological
isomorphism of jtf($Jl) onto sfh$ΰl). Hence the formula f = (h-)°J~1°E com-
pletes the proof. Q.E.D.

We now turn to G-invariant distributions. By analogy with G-invariant func-
tions, we will represent any Testf'(Rn)G in the form τ°/. Here τ°/ is the composite
of / with τe£/'1/h(yjl); it is defined according to formula (1.7):

(τ°/,/) = ( τ , / / ) for all fe^(Rn). (1.15)

That is, τ°/ = / τ 5 where ^ ' ^ ^ Ϊ J Ϊ ) - ^ ' ^ ' 1 ) is the dual of ./. In this way we
will obtain an analogue of part (i) of Theorem 1.6. To have an analogue of part (ii),
we assign to each distribution Tesί'(Rn) a distribution ρ of J/'(SR) defined by

(ρ9φ) = (T,φ°I) for all φes^^ΰl) (1.16)

or, symbolically,

Q(y) = (T{x)9δ(y-I(x)))x. (1.17)

Equivalently,

ρ = (ωJ)'T, (1.18)

where ω:s/(Rn)G->s/(Rn) is the embedding operator.
As in the case of G-invariant functions, we claim that f [resp. (ω,/)'] yields

a topological isomorphism between ^[/h{W) and stf'(Rn)G [resp. between s$'(Rn)G

and ^'(art)].
We need the following general fact (which makes use only of the compactness

of G but not Condition I): There exists a canonical isomorphism between jtf'(Rn)G

and {^(Rn)G)' given by restricting distributions of stf'(Rn)G to sί(Rn)G (cf. [1]). In
other words, the operator ώ \s$'(Rn)^(s$(Rn)G)\ the dual of ω, maps isomor-
phically stf\Rn)G onto (srf(Rn)G)' [and thus defines a canonical duality between
j/'(i?n)G and <srf(Rn)G~\. This follows3 from the two next properties of the averaging

3 We are using the following general fact. Let X and Y be (Hausdorfί) locally convex spaces with
the strong topological duals X' and Y'. Let A X^Y be a linear continuous operator and B:Y-^X
a continuous cross-section (i.e. a linear continuous right inverse) of A. Then A is a topological homo-
morphism (onto); its dual operator A': Y'-+X' is a topological isomorphism of Y' onto the subspace
(ker^)° of X' orthogonal to the kernel of A, ker,4 = ,4~1{0}, and B'\X'-+Y' is a topological homo-
morphism of X' onto Y' which maps isomorphically (ker^4)° onto Y'.



276 A. I. Oksak

operator E. First, Eω is the identity operator in srf(Rn)G. Consequently, E maps
isomorphically (s/(Rn)G)' onto (ker£)°. Second, (ker£)° coincides with srf\Rn)G.
Indeed, if Te (ker£)° then T = E'ξ for some ξe(sί(Rn)G)'\ this implies G-invariance
of T. Conversely, if Te^'{Rnf then (TJ) = (T9ΣβeGλg f°g\ where g\->λg is an
arbitrary function on G which is 0 at all geG but a finite number and ΣgΛg=l.
Approximating Ef [in the topology of st{Rn)~\ by the functions Σgλg f°g, we
obtain (TJ) = (T, Ef) which implies Te(ker£)°.

Thus we proved the following lemma.

1.7. Lemma. The dual E':(s/(Rn)G)f^^'(Rn) of the averaging operator E estab-
lishes a topological isomorphism of {s$(Rn)G)! onto s$'(Rn)G.

The central result of Section 1 is the following theorem.

1.8. Theorem, (i) The operator f':s/f

1/h(Wl)3x\->T°Ies/'(Rn) establishes a to-
pological isomorphism between s/[/h(W) and s/'(Rn)G.

(ii) The operator (ωS)':s/'(Rn)->sί'(W) [defined by (1.16)—(1.18)] is a topo-
logical homomorphism which maps isomorphically stf'(Rn)Q onto J

Proof, (i) By Theorem 1.6, part (ii), f maps isomorphically s$'lj}ffR) onto the
subspace (ker J)° = (ker E)° in stf\R"\ There remains the coincidence of (ker E)°
with stf\Rn)G to be shown. But (ker£)° is the image of (stf(Rn)G)' under E' (cf.
Footnote 3) which coincides with srf'(Rn)G (by Lemma 1.7).

(ii) It suffices to show that there exists a continuous right inverse operator
for (ωJ)' which maps s/f(W) onto srf'{Rn)G. We claim that E'{J~ι) is such an
operator. In fact, Eω=l implies {ωJ)Έ'(tf~

1)' = tf'{Eωy{J')~1 = l. Moreover,
Theorem 1.6, part (i) implies that {J'γ) \^\W)^{si{Rn)G)' is a topological iso-
morphism. Hence, by virtue of Lemma 1.7, E'(J>~1)' maps isomorphically s
onto stf\Rn)G. Q.E.D.

2. Covariant Functions and Distributions

We go on denoting by G a compact Lie group acting linearly on Rn. Now we
need to fix a linear representation r:g\->rg of G in a finite dimensional complex
vector space X, d = dimX. Let X' be the dual of X and (ξ',ξ} the value of ξ'eX'
at ξeX. Then G acts on X' according to r\ the representation adjoint of r (i.e.

By s/(Rn;X) we denote the space of X-valued function on Rn of type si
( = £,@9oτ Sf).lΐ {bl9...9 bd} is a basis in X then each fe s/(Rn X) is representable
uniquely in the form

f = ΣUibδ'fδ with fδεs/(Rn).

In particular, if X = Cd, the d-dimensional complex Euclidean space, then s/(Rn; X)
is nothing but Q)dstf(Rn). The correspondence (fi,...,fd)ι->Σδbδ'fδ ^s a linear
isomorphism of the direct sum 0 d s/(Rn) onto «β/(β"; X). The direct sum topology
of @ d stf(Rn) induces (via this isomorphism) a topology on stf(Rn\ X) (independent
of a choice of the basis in X).

Similarly, jrf'(Rn; X') is the space of X'-valued distributions on Rn of type sί\
so that, for a basis {b'u ..., b'd] in X\ the assignment to each (T 1 ?..., Γd)e
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of the element T= Σδ by Tδ is a linear isomorphism of ®dstf\Rn) onto sί\Rn\ X').
The direct sum topology of Q)d stf'(Rn) induces a topology on stf'(Rn\ X'). Since
0 d sf'(Rn) is canonically isomorphic with (@d sί{Rn))\ we may consider sf\Rn\ Xr)
as a strong topological dual of jrf(Rn;X). The (basis independent) duality of
stf\Rn\ X') and J / ( / Γ ; X) is defined by the bilinear form

for Tes/'(Rn; X'\ fesrf{Rn\ X).
For a linear non-degenerate transformation L in JR", a linear operator A in

X (resp. in X') and each element / of s/(Rn; X) [resp. of s/'{Rn; X')~\, the com-
position A°f°Lestf{Rn; X) [resp. s$'(Rn\ X')~] is defined naturally. In particular,
the (right) actions of G on X-valued functions and X'-valued distributions are
defined:

(gJ)^r;1ofog 9(g9T)\->r'-1oTog for geG,fes/(Rn; X),Jes/'(Rn;X')

[so that the form (7^/) is invariant]. By $$(Rn\ Xf [resp. stf\Rn\ X')G] we denote
the subspace of all festf(Rn; X) [resp. Tes/'(Rn; X')~\, called G-covarίant, which
satisfy r~1°f°g = f [resp. r'g~

1°T°g=T^\ for all geG. Similarly the totality
0>(Rn;Xf [resp. 0>(Rn;X')G~] of X-valued (resp. X'-valued) G-covariant poly-
nomials on Rn is defined.

Our treatment of G-covariant functions and distributions is based on the
following condition which is assumed throughout Section 2.

Condition II. There exists a family {QW>QN} °f G-covariant polynomials of
^(Rn; X) such that an arbitrary element PeέP(Rn; X)G can be represented uniquely
in the form

where (Pi,...,pN) is a n N-tuple of polynomials of
In other words, the mapping

®N0>(R")GHPu...,PN)^ΣvQv'PvεnRnlX)G (2.2)

is a linear isomorphism (onto).
Condition II has its counterpart in terms of 3P(Rn X')G. Indeed, there exists

a G-in variant (positive definite) inner product X xX3(ξ,η)^><ζξ,η^> (anti-linear
with respect to η) on X. It defines a (canonical) G-invariant antilinear isomorphism
Θ.X^X' by (Θη, ξ} = <ζξ, ??» for ξ9 ηeX. Therefore Q'v defined by

(2.3)

are G-covariant polynomials of 0>(Rn; X')G. Now, if we replace X by X' and Qv

by β'v, Condition II remains to hold. This remark gains a symmetry between X
and X' in Condition II.

The uniqueness aspect of the representation (2.1) admits several equivalent
formulations. We have

2.1. Lemma. For an arbitrary N-tuple (Pl9...9PN) of elements of 0>(Rn\X)G,
the following properties are equivalent :

a) the mapping φN 0>(Rnf 3 (pί,..., pN) h> ]Γv P v pv e 0>{Rn Xf is injective
b) the mapping @N0>(Rn)3(pι,...,pN)h*Σv Pv-pve^(Rn; X) is injective;
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c) Pi(x), ...,PN(x) are linearly independent (as vectors of X) at least at one
point xeRn.

Proof. Assuming a), let us prove b). We must show that Σv Pv-pv = 0 with
pu...,pNe0){Rn) implies pλ = 0 for all λ. For this purpose we multiply the equation
ΣvPv (pv°g) = 0 (which holds since Pv are G-covariant) with pλ°g and integrate
over G. Then [by a)] the coefficient at Pλ is 0, that is,

which implies pλ = 0. This proves a)=>b). Further, assuming b), let us prove c).
We consider the totality 0l{Rn\X) of X-valued rational functions on Rn as a
JV-dimensional vector space over the field 0t(Rn) of complex rational functions on
Rn. Then condition b) means that Pl9...9PN[a,s elements oϊ&(Rn; X)] are linearly
independent over the field $(Rn). Introducing the polynomials Pvδ by Pv =
Σj = \bδ- Pvδ with {bi, ,bd} a basis in X, we obtain that at least one of the N x N
minors of the matrix (Pvδ) as a non-zero element of M{Rn\ hence it is a polynomial
on JR" which does not equal identically 0. This proves b) => c). At last, if c) holds
then Pι(x),...,PN(x) are linearly independent for all x in an open dense subset of
Rn. Therefore c) implies a). Q.E.D.

First of all, we will extend the representation of type (2.1) for covariant func-
tions and thus obtain a description oϊjtf(Rn; X)G [see below Theorem 2.2, part (i)].
In order to develop an analogous decomposition for covariant distributions, we
need an alternative description of jtf(Rn;X)G. Let us assign to each function
fes/(Rn X) the JV-tuple u = (uί9...9uN)oϊfunctions uvesf{Rn\ uv{x) = (Q'v{x),/(x)>.

Thus, a linear continuous operator

2:sί(Rn;X)3f^(<Q'1,f>,...,<Q'NJ>)εA (2.4)

from s/(Rn; X) onto a certain subspace A ( = E9 D or S) of 0 N stf{Rn) is defined.
Assuming that G acts on A by {u°g)v = uv°g, we denote by AG the subspace of
G-invariant elements of A. Now we have

2.2. Theorem, (i) The mapping

© * ' G Σ X ) G (2.5)

is a topological isomorphism (onto).
(ii) The operator J (2.4) maps isomorphically jtf(Rn; X)G onto the closed swb-

spaceAGof@N^(Rn)G.

Proof (i) Denote the operator (2.5) by Jf. First, we will show that im Jf\ the
image of @N j/(Rnf under Jf, is dense in s/(Rn; X)G. Consider the totality J^
of functions of sί(Rn\ X)G of the form P{x)v{\\x\\2) with Pe^iR"; X)G and υe9(R).
By Condition II, yΓcimJf, therefore it suffices to show that Jί is dense in
^{Rn;X)G. By the Weierstrass approximation theorem, each fejzf(Rn; X)G can
be approximated with an arbitrary accuracy [in the topology of s/(Rn;Xy] by
functions of the form Q(.φ(||;c||2) with Qe0>(Rn,X\ ve3)(R). Replacing here Q
by P=\r'g

1oQogdμ{g\ we obtain that / belongs to the closure of Jf.
Second, we will prove that im Jf is closed in srf(W\ X)G. We introduce the

Nxd p o l y n o m i a l m a t r i x (Qvδ) b y Qv{x)=Σδbδ'QVδ(χ)> w h e r e {bl9...9bd} is a b a s i s
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in X. Its rank equals N at least at one point of Rn (by virtue of Lemma 2.1).
Applying Theorem of Appendix B, we obtain that the operator

maps isomorphically Q)N jtf(Rn)G onto a closed subspace of (+)d ^{Rn\ This
proves (i).

(ii) We introduce the projection operator Er:s/(Rn; X)^stf(Rn; X)G:

Erf =ίr;ιofog dμ(g), fe ^(Rn X) (2.6)

(which generalizes the averaging operator E of Section 1). It is easily seen that Ά
satisfies the relation ΆEr = ((£)N E)Ά, which implies J jaφT; Xf = (@N E)A. Since
the operator (£)N E (the direct sum of N copies of the operator E) maps A into AG

and equals the identity on AG<zA, it follows that ( 0 N E)A =AG. Consequently Ά
maps jzf(Rn; X)G onto AG. Recalling part (i) of the theorem, it suffices to show that
the operator J J Γ is a topological isomorphism of @ N J / ( / Γ ) G onto a closed
subspace of (J)^ jtf(Rn)G (in fact, onto AG). This operator is expressed by

with ^VAW = <6V(X)» QA( X ) ) which form a JV x JV matrix of polynomial functions.
By virtue of (2.3), qvλ(x)=<Qλ(x),Qv(x)>. Since the vectors Q1(x)9...9QN(x)
are linearly independent at least at one point x, the matrix (qvλ(x)) is non-degenerate
at such x. Now theorem of Appendix B yields the desired result. Q.E.D.

In order to apply duals of the isomorphisms in Theorem 2.2 to G-covariant
distributions, we need to identify (s/(Rn; X)G) and (AG)' with certain subspaces
of £/'(Rn; X') and A\ respectively. Along the line of Section 1, we introduce the
embedding ωr:s/(Rn; X)G-+jtf(Rn; X) (which is a continuous cross-section of Er).
Then we have the following analogue of Lemma 1.7 (the proof being essentially
the same).

2.3. Lemma. Ef

r:(jtf(Rn; X)G)'-*s0\Rn\ X') establishes a topological isomorphism
of (s/(Rn;X)G)' onto s/'(Rn',X')G, and ω'/.s4\Rn\X')->(sί{Rn\X)G)1 maps iso-
morphically sί\Rn\ X'f onto (si?(Rn; X)G).

Similarly, let

e:A-+AG (2.7)

be the operator obtained by restricting ®N E:®N stf(Rn)-+@N stf(Rn)G [£ being
defined by (1.12)]. There exists a continuous cross-section of e, e.g. the embedding
c:AG-+A. Consequently, e maps isomorphically (AG)' onto (kere)° (cf. Footnote 3).
As in the proof of Lemma 1.7, one deduces easily that (kere)° = ,4/G. Thus, we
obtain

2.4. Lemma. e':(AG)'->A' maps isomorphically (AG)' onto A'G, and ε':A'-*(AG)'
maps isomorphically A'G onto (AG)'.

We now turn to G-covariant distributions. It is obvious that Ά\ the dual of
Ά (2.4), assigns to each teA'G a G-covariant distribution Ά't = t°Άe£f'{Rn\ X')G

(the composite of the operator Ά with the linear form t). We will show that this



280 A. I. Oksak

correspondence is an isomorphism. The representation of an arbitrary Te<stf'(Rn;

x'f,
T = Ά't with teA'G, (2.8)

so obtained, is an analogue of the above decomposition of G-covariant functions
in standard covariants.

In an alternative description analogous of Theorem 2.2, part (ii), we assign
to each Tesf'{Rn\X')Q an JV-tuple s = {sl9...,sN) of distributions s v = < 7 ; g v > e
*t\Rn)G defined by

(sv,v) = (T,Qv-υ) for all υes/(R").

By this means we obtain the following characterizations of G-covariant
distributions.

2.5. Theorem, (i) The assignment (2.8) (to each teA'G of a distribution T) is a
topological isomorphism of Λ'G onto jtff(Rn; X')G.

(ii) The correspondence

..,(T,QNy) (2.9)

is a topological isomorphism of stf'(Rn; X')G onto @ N stf'{Rn)G.

Proof, (i) According to Theorem 2.2, part (ii), the restriction Ά\sί(Rn\ X)G^AG

of Ά is an isomorphism. Recalling Lemmas 2.3 and 2.4, E'rl's' maps isomorphically
A'G onto jtf'(Rn; X')G. Let Tbe the image of some teA'G under this isomorphism.
It suffices to show that T= Ά't. In fact, it is obvious that the two distributions T
and M't of sί\Rn\X')G coincide on stf{Rn\X)G. Since ω'r maps isomorphically
s/'(Rn; X')G onto (sf(Rn\ X)G)' (according to Lemma 2.3), this implies that T and
Ά't are equal.

(ii) Let Ji:ttf'(Rn;X')G^>®N j/'(Rnf denote the operator (2.9). It suffices to
show that {@Nω')JiE'r maps isomorphically {st{Rn\Xf)' onto ®N {srf(Rn)G)
[since ω', the dual of the embedding ω\srf{Rn)G^stf{R% maps isomorphically
stf'{Rn)G onto (sί{Rnf)\ and E'r maps isomorphically (sf(Rn X)G)' onto st\Rn X')G]
But {®N ω')JlE'rΦ = tf'Φ for all Φe(jrf(Rn; X)G)\ where tf':(si(Rn\X)Q)'-*
(@N j^(Rnfy = @N (^(Rn)Gy is the dual of the isomorphism X (2.5). This
completes the proof. Q.E.D.

2.6. Corollary. Each TeA'(Rn; X')G is representable in the form

T=Σv=iQ','Tv (2.10)

with G-invarίant distributions Tί9..., TNejtf'(Rn)G.

Proof. We represent T in the form (2.8). The functional ε't (see Lemma 2.4)
can be extended (by the Hahn-Banach theorem) to a functional (7\,..., fN) of
{®Nsf(RH)G)' = ®N(rf(Rn)GY. Applying © " F to (^, . . . ,7^), we obtain (by
virtue of Lemma 1.7) an JV-tuple (Tl9..., TN)e@N rf'(Rnf. With such Tu ..., TN

both sides of (2.10) are G-covariant distributions of s/'(Rn;X')G, which coincide
on stf(Rn\X)G (by construction of Tl9..., T^). By Lemma 2.3, they coincide on
the whole stf(Rn X). Q.E.D.
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It should be noted however that in general the decomposition (2.10) is non-
unique (i.e. T l 9 . . . , TN are not defined by T and Q\, ...,βίv) Hence, in contra-
distinction with the representation (2.8), it does not provide an adequate de-
scription of G-covariant distributions. Only formula (2.8) may serve as an adequate
version for decomposition of covariant distributions in standard covariants.

The last problem we discuss here is to express the G-invariant functionals,
entering into covariant decompositions of distributions, in terms of invariants.
Assuming the validity of Condition I (Section 1), any Tes/\Rn; X')G admits the
representation (which follows by combining Corollary 2.6 with Theorem 1.8):

T=Σv=iQv(τ^I) with τl9...9τNes/'1/hW). (2.Π)

Just as (2.10), in general such a representation is non-unique. For an adequate
version, we will find a representation of each teΛίG in the form

ί = to/, (2.12)

or, equivalently, a representation of Tesrf'(Rn\ X')G of the type

(T,/) = (t°J,J/) for all fes/(Rn;X). (2.13)

A precise meaning to formula (2.13) can be given along the line of formulas
(1.7), (1.8). Namely, we rewrite (2.13) in the form

(Γ,/) = ( t , ( 0 V ) ^ / ) for all fεs/(Rn;X) (2.14)

with /:stf{Rn)-+stfh{W) defined by (1.14). Let 21 ( = <£, X) or 6) denote the totality
of JV-tuples (χ1 ?..., χN) of functions χv = f<Q'v,/>e^(9Jt) with fes/{Rn; X); in
other terms, 21 is the image of A (or, equivalently, of AG) under the operator
®N/'®N ^(Rn)^@N eδ/Λ(9W). Then formulas (2.13) and (2.14) [and also (2.12)]
are meaningful provided that t is assumed to be a linear continuous functional
on 21. Let J : s/(Rn X)G->AG and β \ ΛG->2I denote the restrictions of the operators
Ά and (f)N β, respectively. They are isomorphisms (according to Theorems 2.2
and 1.6). In view of the formula ( 0 N / ) J = / j £ r , we can rewrite (2.14) as

. (2.15)

Recalling Lemma 2.3, this implies the desired result:

2.7. Theorem. Let both Conditions I and II be fulfilled. Then the assignment
(2.13) (to each te2Γ of a distribution T) is a topological isomorphism of 2Γ onto
s4'(Rn\X')G.

Acknowledgement. I am indebted to Professor I. Todorov for stimulating discussions.

Appendix A. Testing Functions and Distributions on Closed Regular Sets in Rk

Normally the Schwartz spaces of functions and distributions ([7]) are defined on
open sets in Rk. Here we present an exposition on testing functions and distri-
butions on closed sets in Rk. We obtain several characterizations of spaces of
testing functions on the sets satisfying certain regularity conditions. This result
provides a deeper insight into the construction of the spaces appearing in Section 1.
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In what follows Ω stands for a closed set in Rk. We make use of the standard
notations

Da = (d/dx i)α i . . . (d/dxkf
k, xα = x\ 1 . . . xa

k

k,

for any αeZ+, Z+ being the totality of fc-tuples α = (α 1 ? . . . , α j of non-negative
integers. By ^~(Ω) we denote the totality of oo-jets on Ω, i.e. the totality of families
/ΞΞ(/α)αeZk of complex continuous functions fa on Ω. &~(Ω) is a Frechet space in
the topology of seminorms

I / | f = sup sup|/α(x)|,

where leZ+, and K is an arbitrary compact subset in Ω. For SEZ+ , αeZ+ ,/e^(Ω),
we define the functions Rs

af on Ω x Ω by setting (2^/)(x, x) = 0 and

Now we define spaces of the type S, 3J, and £f on Ω.

A.I. Definition (cf. [9], Chapter I). A jet fe£Γ(Ω) is said to be a ^°° function
on Ω in the sense of Whitney if all the functions Rs

af are continuous4. The totality
of such "functions", denoted by ${Ω\ forms a Frechet space with the seminorms

ll/llf = l/lf+sup sup sup \(RsJ)(x,y)\;
\a\^l s^l x,yeK

here leZ+, and K is an arbitrary compact in Ω. 3)(Ω) is defined to be the inductive
limit of the (closed) subspaces in S(Ω) indexed by compact sets K C Ω and formed
by all elements feS{Ω) with support in K. Further, Sfiβ) is the totality oϊfeδ(Ω)
for which all the seminorms (with l9meZ+)

= sup sup(l + | |x | |Γ |/ α (x) |+sup sup (l + \\x\\r\(Kf)(x,y)\
\a\£l xeΩ \a\£l x,yeΩ

sZl \\x-y\\£l

are finite. 5 (̂Ω) is a Frechet space in the topology of these seminorms.
In what follows we use the notation stf(β) for denoting either of the spaces

£{Ω\ 9{Ω\ £f(Ω). It is clear that £{Rk) can be naturally identified with the space
of all complex ^ functions on Rk. In this sense srf{Ω) generalizes the Schwartz
space s/(Rk). By analogy, we define the space s$'{Ω) (of distributions on Ω of type
sί' = S\ Q)' or S?') as the strong topological dual of sί(Ω).

Relations from the spaces so defined and the Schwartz spaces on Rk are
evident from the following implication of the Whitney continuation theorem [9].

A.2. Proposition. The restriction operator j'.stf(Rk)^stf(Ω) is a (surjective)
topological homomorphism; its dual,/, is a topological isomorphism of s/'(Ω) onto
the subspace s$'(Rk, Ω) of distributions of srf'(Rk) with support in Ω.

We identify sί'iβ) and jtf'(Rk, Ω) via the isomorphism/.

4 This is equivalent to the condition that each Rs

Λf is locally bounded in Ω x Ω. (This can be seen
by expressing Rs

af in terms of Rs

a

+1f and the fa+β with \β\ = s + 1.)
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Proof. According to the ^°° version of the Whitney extension theorem ([9],
Theorem 4.1 of Chapter I5) j is a continuous surjection and hence (by virtue of the
open mapping theorem) is a topological homomorphism. Hence/:s^'(Ω)^s^'(Rk)
is a continuous bijection of srf'(Ω) onto the closed subspace (ker/)° of s/'(Rk)
orthogonal to kerj=j~1{O}Csrf(Rk). The open mapping theorem is applicable to
continuous operators from s$'(Ω) onto (ker/)° (see [11]), which implies t h a t /
maps isomorphically srf'(β) onto (kerj)°. There remains the equality (ker)) 0 ^
stf'(Rk, Ω) to be proved. The inclusion (ker/)° c <stf'{Rk, Ω) is trivial. Conversely, by
definition of support, stf'(Rk, Ω) is orthogonal to functions of s$(Rk) which equal
zero in a neighborhood of Ω. The totality of such functions is dense in kerj (see
e.g. [9], proof of Lemma 4.3 of Chapter I), which implies .^'(Λ*, Ω)C(ker/)°. Q.E.D.

By definition, S(Ω) is a linear subspace in 3Γ{Ω), and its topology is in general
finer than that induced from £Γ(Ω). Of interest are the sets Ω for which the two
topologies coincide. Certain regularity property of Ω is sufficient for this purpose.
Below we present two forms, (R) and (R)\ of the regularity condition (cf. [12], § 3.5
and 3.8); the strengthened form, (R)\ is adapted also to formulating an analogue
for Sf(Ω).

A3. Definition. A closed set Ω in Rk is said to possess the regularity property
(R) if 1) each compact subset of Ω intersects only finitely many connected com-
ponents of Ω, and 2) for each compact subset K C Ω contained in a connected
component of Ω there exist numbers a, λ>0 such that any two points x, yeK can
be connected in Ω by a continuous rectifiable curve of length ^a\\x — y\\λ.

A.4. Definition. A closed subset Ω in Rk is said to possess the regularity property
(R)' if there exist numbers a,p,d,λ,ε>0 such that 1) for all ρ>0, the set KQ =
{xeRk\\\x\\ :gρ} intersects only finitely many connected components of Ω, and
distances between the parts of KQ contained in different components of Ω are
^id(l +ρ)~ε, 2) any two points x, y in the same component of Ω can be connected
in Ω by a continuous rectifiable curve of length ^ α ( l + ||x|| + ||y||)p||x — y\\λ.

It is obvious that (R)' implies (R).

A.5. Proposition, (i) Let Ω possess the regularity property (R), then the topology
of $(Ω) coincides with that induced from ^~(Ω), that is, then the systems {|| ||f}
and {| |f} of seminorms on i(Ω) are equivalent.

(ii) Let Ω possess the regularity property (R)', then the topology of £f(Ω) coincides
with the topology of the seminorms (with l,meZ+)

= sup p
|α |^ί xeΩ

Proof. We restrict ourselves with the proof of (i) [(ii) being similar]. It suffices
to show that, for all seZ+, aeZ\ and a compact KcΩ, there exist c^O, reZ+

and a compact K'cΩ such that, for all fe S(Ω), x,yeK,

Since distances between the parts Kί9...,Kn of K contained in different com-
ponents of Ω are non-zero, it suffices to assume that x and y belong to the same

5 The case si — £f needs a slight modification of the argument on the basis of the extension theorem
in the form of Hόrmander [10].
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part (say KJoΐK. Given feδ(Ω), we choose Fe<${Rk) such that DβF=fβ for all
βeZ\. For a rectifiable curve in R\ y:[0, l]->fl\ and GeS{Rk\ we have:

= Σ μ 4 M, + J o ^ W ί ^ ί Ό 1 d y M 2 ( ί 2 ) . . . Jfd d y / £ I + 1 ( i I + 1 X D M l ... D M l

[This formula is evident for sufficiently smooth y and for functions G satisfying
at least one of the conditions: 1) {DβG)(γ(G)) = 0ϊoτ all β with \β\^l9 2) G is a poly-
nomial of degree ^/. The general case follows easily.] Setting G = DaF and y a
curve in Ω of length ^a\\x — y\\λ such that y{0) = y and y(ΐ) = x, we obtain

\\χ-y\\ι\(RιJ)(x,y)\^c'\f\ϊ'\\x-y\\λ'1,

where K is the totality of points of Ω with distance from K :gα (diamK)λ,
and r= |α| + / + 1 . Consequently,

^c\\x-y\\s\f\f\

provided that l^s and λ fes. Q.E.D.

A.6. Corollary, (i) Let ΩcRk possess the regularity property (R) and coincide
with the closure of its interior (intΩ) in Rk. Let S(Ω) (resp. 2{Ω)) be the space of
restrictions φ =jf to Ω of all complex ^°° functions f (resp. with compact support)
on Rk, the topology of δ(Ω) being defined by the seminorms

|φ|f=sup sup |D>(x)|
\a\^l xeKnintΩ

with arbitrary leZ+ and a compact KcΩ. (The topology of@(Ω) is defined through
the subspaces of $(Ω) in line with Definition A.ί.) Then the mapping
jf\->(Daf \Ω\eZu is a topological isomorphism of δ(Ω) (resp. 9{Ω)) onto δ(Ω)
(resp.Q){Ω)).

(ii) Let ΩcRk possess the regularity property (R)' and coincide with the closure
of its interior in Rk. Let £f(Ω) be the space of restrictions φ =jf to Ω of all complex
functions fe 6f(Rk), the topology of 6f(Ω) being defined by the seminorms (with
/, meZ+)

| φ | ί 5 m = s u p sup ( l+ | |x | | ) m |β α φ(x) | .
\a\^l x e i n t Ω

Then the mapping jf^(Daf[Ω)aeZ% is a topological isomorphism of £f(Ω) onto

We close this exposition with a special class of regular sets Ω used in Section 1.
Remind that a continuous mapping J:Rn-+Rk is proper if the inverse image of
any compact in Rk is a compact.

A.7. Lemma. Let J:Rn-^Rk be a polynomial proper mapping such that the
interior (in Rk) of the set Ω = J(Rn) is non-void. Moreover, assume that, for each
xeΩ, there exists ξeJ~1(x) such that J(U) is a (relative) neighborhood of x in Ω
for any neighborhood U of ξ in Rn. Then the set Ω is the closure (in Rk) of its interior
and posses the regularity property (R)'.

Proof. For any compact KcRk, the set KnΩ = J(J~1(K)) is compact and
hence closed. This implies that Ω is closed. The implication c)=>b) of Lemma 1.1
(Section 1) shows that the rank of the Jacobian matrix DJ of J equals k at least
at one point of Rn and hence on a dense open subset of Rn. The image of this
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subset under J is an open subset in Rk which is dense in Ω. This proves that Ω is
the closure of intΏ. There remains the property (R)' to be verified. Define the
function ρ on Ω x Ω by setting

g(x,y) = inί{\\ξ-η\\ -(1 + | |ξ | | 2 + \\η\\2Γι \ξ, ηeR", J(ξ) = x, J(η) = y} •

The last hypothesis of Lemma implies the continuity of ρ at each "diagonal"
point (x, x) (i.e. Xj-*x, y^x for sequences in Ω imply ρ(xp y7 )-»0). We claim the
bound ρ(x,y)^A> \\x — y\\λ for some A,λ>0. To prove that, it suffices, in line
with the proof of Lemma 1 of [10], to define two semi-algebraic sets (below R+ is
the totality of positive reals):

Q = {(x, y, δ)eΩ x Ω x R+ \ρ{x, y)2^δ2},

S={(τ,δ)eR+xR+\3(x,y,δ)eQ with \\χ-y\\2 = τ2}.

Then the piece-wise algebraic function T(δ) = inf {τ|(τ, δ)e S}, which is defined on an
interval 0<δ<δo and positive [due to the continuity of ρ at the points (x, x)],
possesses the required estimate T(δ)^A-δλ. Now the proven bound on ρ allows
to assign to any given pair x,yeΩ points ξeJ~1(x\ηeJ~1{y) such that

Let σ: [0, \~]->Rn be the segment connecting ξ and η in Rn, then y = J°σ is a curve
in Ω connecting y and x with length ^yl'(l + \\ξ\\ 4- | |^ | |)μΊl^ — y\\λ (with A\μ'>Q
independent of x, y). It remains to note that there exist B, v > 0 such that
| |^ | | 2 ^B(1 + || J(ξ)\\2Y for all ξeRn. This can be shown by considering the function
φ(δ)ι = inf{τ 13ξeRn such that τ | | ^ | | 2 ^ l and δ (l + | |J(^)| |2)^1} (defined and
positive on an interval 0<δ<δo, since J is proper). Then the argument used in
the proof of Lemma 1 of Ref. [10] gives an estimate of the type φ(δ)^B~1 δv

with some B, v > 0. Q.E.D.

A.8. Construction. In the situation considered in Lemma A.7, the spaces s$(Ω)
admit a particularly simple characterization. Assume that the hypothesis of
Lemma A.7 holds. Let, in addition, Q be a real polynomial φ θ on Rn such that
& = J(Q~1(R\{0})) i s an open set in Rk. Since Q~\R\{0}) is dense in R\ Ω is the
closure of O in Rk. For a minute, we denote by £(Ω) the totality of complex func-
tions φ on Ω such that their restrictions to Ό are ^ and all derivatives Da{φ \ Ό)
admit (unique) continuous extensions (denoted by Daφ) into Ω. Then S(Ω) is a
Frechet space with the seminorms

M f = s u p sup|£>V(x)|,
|α|^/ xeK

where leZ+, K is a compact in Ω. In line with Definition A.I, we define also the

spaces ${Ω) and £f(Ω) [formed by certain functions of £{Ω)~\. Now the topology

of ίf(β) is defined by the seminorms

h,m=sup sup(l+||x| |Γ|D>(x)
|α|^Z xeΩ

Then we have

A.9. Proposition. Under the hypotheses of Construction A.8, the mapping
φ^{Daφ)(xeZκ is a topological isomorphism of si(Ω) onto s$(Ω). (Hence
coincides with its sub space sd(Ω) defined in Corollary A.6.)
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We identify s$(Ω) with s/(Ω) via this mapping.

Proof. By virtue of Proposition A.5, it suffices to show that, for an arbitrary
φes/(Ω), the jet/=(Dαφ)αez 7ί belongs to S(Ω). In fact it suffices to prove that all
the functions Rs

af are locally bounded i n Ω x Ω (see Footnote 4 ). Since Ό is dense
in Ω and the functions fa = Daφ are continuous in Ω, the problem reduces to an
estimate of the type

\(RsJ)(x9y)\£c

for all x, yeΌ with ||x|| rgρ, \\y\\ rgρ. (Here c depends on φ, s, α, ρ.) As in the proof
of Lemma A.7, we choose a curve y: [0, 1] -+Rk with length ^ a(l + ||x|| + || y| |)p | |x- j ; | | λ

which depends polynomially on fe[0,1] and connects y and x in Ω. Since Q(y(ή)
is polynomial in t and β(y(O))φO, then <2(y(f)) = 0 is possible only for finite number
of points, say ί l9 . . . , ί v e[0,1]. Hence y(ί)eθ for all ί eL = [0, l]\{ί l5 ...,ίv},
consequently, for G = Daφ, t^->G{y{ή) is ^°° on L and all its derivatives have con-
tinuous extensions into [0,1]. This implies that G°y is ^^ on [0,1]. Now the
formula (used in the proof of Proposition A.5) expressing

is applicable, thus the estimates in the proof of Proposition A.5 hold. Q.E.D.

Appendix B. Auxiliary Theorem

We present here a (slightly generalized) version of the Hδrmander division
theorem [10]. It lies at the basis of the arguments both in Sections 1 and 2.

Throughout, jtf(Rn) stands for either of the Schwartz spaces S(Rn\ Sf(Rn\
5f(Rn). By 0 k s/(Rn) we denote the direct sum of k (= 1, 2, 3 ...) copies of the
space s$(Rn).

Theorem. For k^ljet U:®k stf{Rn)-+@ι stf(Rn) be a linear operator defined by

(UfUx) = £ } = i UijWffa) > * = 1, »•,/,

where u = (u^) is a I xk matrix of complex polynomial functions u^ on Rn such that
the rank of u(x) equals k at least for one xeRn. Then the image of 0 ^ s$(Rn), im (7,
is a closed linear subspace of 0 ' s/(Rn\ and U is a topological isomorphism of

\ onto im U.

Proof. For k = l= 1, the statement is just Hόrmander's division theorem6. We
will reduce the general case to the special one. It is clear that U is continuous. It
suffices to construct a continuous left inverse VΆmU-^ζ£)ksrf{Rn) of U. [Indeed,
then U is a topological isomorphism of 0 k stf(Rn) onto im U, hence im U is
complete in the topology induced from ^f^(Rn) and thus closed in 0 ' s/(Rn).']

Let us construct V. For definiteness, we assume that dett/φθ, where u' =
(uiJ)ij=ι k. Then the equality Uf=g can be rewritten in the form Af—Bg,
where A:@k j/(Rn)->Q)k sύ(Rn) and B:im U'-• @k stf{Rn) are the continuous

6 In Ref. [10] the division theorem was formulated for the space έf(Rn)\ its proof remains true
also for S(Rn) and 9{Rn).
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operators,

(AfUx) = det u\x) -fix), (BgUx) = £* = x fco(x) #/x),

and b = (bij) is the matrix of cofactors of u' (so that ί? M' = detw' l). A is the multi-
plication by a polynomial φθ, hence (by Hormander's division theorem) there
exists a continuous left inverse operator CΆmA = imB-+Q)k stf{Rn) of A. Now
V=C B is the desired operator. Q.E.D.
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