On the \boldsymbol{b}-Boundary of the Closed Friedman-Model

B. Bosshard
Institut für theoretische Physik, Universität Bern, CH-3012 Bern, Switzerland

Abstract

Some points of the past Big Bang in the closed fourdimensional Friedman-model are found to be identical with points of the future collapse according to the bundle-boundary definition.

1. Introduction

Consider the closed Friedman-model (M, g) with metric

$$
\begin{aligned}
& d s_{g}^{2}=R^{2}(\psi)\left\{d \psi^{2}-d \sigma^{2}-\sin ^{2} \sigma\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right)\right\} \\
& \text { with } R(\psi)=1-\cos \psi,
\end{aligned}
$$

with singularities at $\psi=0$ and $\psi=2 \pi$. We shall investigate the structure of the b-boundary for this space-time by working with, rather than the ten-dimensional orthonormal bundle $O(M)$ (see [1, 2]), a certain three-dimensional subbundle. The construction is as follows. Consider the timelike and totally geodesic twodimensional submanifolds $N c M$ with induced metric γ, given by

$$
\vartheta=\text { const } \text { and } \varphi=\text { const } .
$$

Moreover, there exists an orthonormal dyad field

$$
W_{\alpha}, \quad \alpha=2,3
$$

which is parallel along and orthogonal to N. Therefore we can construct a threedimensional submanifold $\tilde{N} c O(M)$, consisting of every orthonormal tetrad Y_{i}, $i=0, \ldots 3$ with

$$
\begin{array}{ll}
Y_{A} \in T(N) & A=0,1 \\
Y_{\alpha}=W_{\alpha} & \alpha=2,3
\end{array}
$$

at every point of $N . \tilde{N}$ is isomorphic to $O(N)$. Furthermore the induced metric in \tilde{N} is equal to the bundle metric $\tilde{\gamma}$ in $O(N)$, because any curve in N, which is horizontal with respect to γ is horizontal with respect to g as well. The metric $\tilde{\gamma}$ can be easily computed. This reduction method can be applied also to other space-times, e.g. the Schwarzschild and Reissner-Nordström space-times. If we now find curves, which connect two points in the fibres of the two singularities with arbitrarily small length in $\overline{O(N)^{\prime}}$, the Cauchy completion of $O(N)^{\prime 1}$ [1],

[^0]we have the two projected points identified. The construction of these curves is based on the two following facts:

1) For the two-dimensional submanifolds N with induced metric γ any fibre of the orthonormal bundle at $\psi=0$ and $\psi=2 \pi$ is degenerated to a point, i.e. all positively oriented orthonormal dyads at a point of such a singularity are identified. This surprising and interesting fact is crucial for the identification.
2) The bundle length of a horizontal lift of a curve $C \in N$ is the "Euclidean length", measured with the aid of the components $\vartheta^{i}(\dot{C})$ of the tangent vector \dot{C} with respect to the choosen parallely propagated dyad [1]:

$$
L=\int d \lambda \sqrt{\sum_{i} \vartheta^{i}(\dot{C}(\lambda)) \vartheta^{i}(\dot{C}(\lambda))}
$$

L depends on the dyad chosen and is called generalised affine length of C. It follows clearly, that the generalised affine length of a null geodesic can be made arbitrarily small by chosing appropriately the dyad.

Now, our curve connects an orthonormal dyad $X_{A p}$ at a point p of the first with an orthonormal dyad $X_{A q}$ at a point q of the second singularity. We first boost the dyad $X_{A p}$, so that its vectors approach a null direction. Then we parallely propagate this dyad along the null geodesic defined by this null direction and obtain some dyad at q. We then boost it to get the dyad $X_{A q}$. The bundle length of this curve can be made as small as we want. Hence, the points p and q are identified.

2. The Submanifolds $\boldsymbol{N} \boldsymbol{c} \boldsymbol{M}$

The timelike two-dimensional submanifolds $N c(M, g)$, defined by $\vartheta=\mathrm{const}$ and $\varphi=$ const have an induced metric

$$
d s_{\gamma}^{2}=R^{2}(\psi)\left(d \psi^{2}-d \sigma^{2}\right)
$$

with $0 \leqq \sigma<2 \pi, \psi \neq 2 n \pi$ for $n \in \mathbb{N}, N=\mathbb{R}^{1} \times S^{1}$.
The orthonormal dyad field $W_{\alpha}, \alpha=2,3$

$$
W_{2}=(R \sin \sigma)^{-1} \partial / \partial \vartheta, \quad W_{3}=(R \sin \vartheta \sin \sigma)^{-1} \partial / \partial \varphi
$$

is parallel along and orthogonal to N. The existence of such vectorfields implies that N is totally geodesic. We get the following maps and bundles:

i_{1} is the embedding of N in $M . \tilde{N}$ is the submanifold of $O(M)$ consisting of every orthonormal tetrad $Y_{i}, i=0, \ldots, 3$ with

$$
\begin{array}{rlrl}
Y_{A} & =i_{1 *} X_{A} & A & =0,1 \\
Y_{\alpha} & =W_{\alpha} & \alpha & =2,3 \tag{1}
\end{array}
$$

at every point of $i_{1} N$, where X_{A} is an arbitrary orthonormal dyad at the corresponding point in N.
i_{2} is the embedding of N in $O(M)$,
π_{1}, π_{2} are the bundle projections.
\tilde{i} maps an orthonormal dyad X_{A} at the point $p \in N$ (i.e. $\tilde{p} \in O(N)$) to the tetrad Y_{t} at the point $i_{1} p$ with (1), $\tilde{i} O(N)=\tilde{N}$.

Lemma 1. If $\tilde{p}(s)$ is a horizontal curve in $O(N)$, then $\tilde{x}(s)=h \tilde{p}(s)$ is also horizontal in $O(M)$.

Lemma 2. $\pi_{2} \circ h=i_{1} \circ \pi_{1}$.

3. The Metric in $O(N)^{\prime}$

One can easily calculate the metric $\tilde{\gamma}$ in $O(N)^{\prime}$. If χ is a canonical parameter of the one-parameter subgroup L of the Lorentzgroup Λ which acts as structure group in $O(N)^{\prime}$ and if the section $\chi=0$ is chosen to consist of the dyads $\left(R^{-1} \partial / \partial \psi\right.$, $\left.R^{-1} \partial / \partial \vartheta\right)$ one gets

$$
d s_{\hat{\gamma}}^{2}=\frac{e^{2 \chi}}{2} R^{2}(\psi)(d \psi-d \sigma)^{2}+\frac{e^{-2 \chi}}{2} R^{2}(d \psi-d \sigma)^{2}+\left(\frac{\dot{R}(\psi)}{R(\psi)} d \sigma+d_{\chi}\right)^{2}
$$

Proposition. $\tilde{\gamma}=h^{*} \tilde{g}$ or for $U, V \in T\left(O(N)^{\prime}\right)$

$$
\tilde{\gamma}(U, V)=\tilde{g}\left(h_{*} U, h_{*} V\right) .
$$

Proof. The standard horizontal and vertical vector fields

$$
\begin{aligned}
C_{A},{ }^{2}{ }^{2} E_{1}^{0} \in T\left(O(N)^{\prime}\right) & A & =0,1 \quad \text { resp. } \\
B_{i},{ }^{4} E_{k}^{*} \in T\left(O(M)^{\prime}\right) & i, k & =0, \ldots, 3
\end{aligned}
$$

are orthonormal with respect to $\tilde{\gamma}$ resp. \tilde{g}. But the horizontal subspace $H_{\tilde{p}}(N) \subset$ $T\left(O(N)^{\prime}\right)$ at the point $\tilde{p} \in O(N)^{\prime}$ is maped into the horizontal subspace $H_{h \tilde{p}}(M) \subset$ $T\left(O(M)^{\prime}\right)$ by h_{*} (Lemma 1). Furthermore by Lemma 2

$$
\pi_{2 *} \circ h_{*} C_{A \widetilde{p}}=i_{1_{*}} \circ \pi_{1_{*}} C_{A \widetilde{p}}=i_{1 *} X_{A p}=Y_{A i, p}=\pi_{2 *} B_{A n \widetilde{p}}
$$

Therefore

$$
B_{A}=h_{*} C_{A} \quad A=0,1 .
$$

For the vertical vector fields let E_{1}^{0} be the element of the Liealgebra of the Lorentzgroup Λ, which generates the one parameter structure group $L(\chi)$ of the bundle $O(N)^{\prime}$. If $R_{L(\chi)}$ resp. $R_{L(\chi)}^{\prime}$ denote the action of $L(\chi)$ at the points $\tilde{p} \in O(N)^{\prime}$ resp. $\tilde{\chi} \in O(M)^{\prime}$

$$
\begin{aligned}
{ }^{2} \stackrel{*}{E}_{1 \tilde{p}}^{0} & =d / d \chi\left(R_{L(x)} \tilde{p}\right)_{\chi=0}, \\
{ }^{4} E_{1 h \tilde{p}}^{0} & =d / d \chi\left(R_{L(\chi)}^{\prime} h \tilde{p}\right)_{\chi=0} .
\end{aligned}
$$

But $R_{L(x)}$ transforms the dyad X_{A} in the same way as the two vectors $Y_{A}=i_{1 *} X_{A}$ of the tetrad Y_{i} are transformed by $R_{L(x)}^{\prime}$. Therefore from the definition of h we have

$$
{ }^{4} \stackrel{*}{E}_{1}^{0}=h_{*}{ }^{2}{ }_{E}^{*}{ }_{1}^{0}
$$

which completes the proof.

Corollary. Let $\tilde{p}_{1}, \tilde{p}_{2} \in O(N)^{\prime}$. Then $d_{\tilde{p}}\left(\tilde{p}_{1}, \tilde{p}_{2}\right) \geqq d_{\tilde{g}}\left(h \tilde{p}_{1}, h \tilde{p}_{2}\right)$ if $d_{\tilde{\gamma}}$ is the distance function in $O(N)^{\prime}$ as given by $\tilde{\gamma}$ and $d_{\tilde{g}}$, similarly for $O(M)^{\prime}$.

In the following chapter we consider the sequences $\left\{\tilde{p}_{1 n}\right\}:\left\{\left(\psi_{n}, \sigma_{0}, 0\right)\right\}$ and

$$
\left\{\tilde{p}_{4 n}\right):\left\{\left(2 \pi-\psi_{n}, \sigma_{0}-2 \chi_{n} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)+2 \pi-2 \psi_{n}, 0\right)\right\}
$$

with $\lim _{n \rightarrow \infty} \psi_{n}=0$. $\left\{\tilde{p}_{1 n}\right\}$ and $\left\{\tilde{p}_{4 n}\right\}$ (we anticipate here a result of Chapter 4) are Cauchy sequences without limit in $O(N)^{\prime}$ and determine therefore points \tilde{p}_{1} and \tilde{p}_{4} of the boundary $\dot{O}(N)^{\prime}$.

4. The Identification Curves

We construct a curve λ_{n}, consisting of three horizontal parts:
Part 1 connects the points $\tilde{p}_{1 n}:\left(\psi_{n}, \sigma_{0}, 0\right)$ and $\tilde{p}_{2 n}:\left(\psi_{n}, \sigma_{0}-\chi_{n} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right), \chi_{n}\right)$ and is represented by the two functions

$$
\begin{aligned}
\psi & =\psi_{n}=\text { const }, \\
\sigma(\chi) & =\sigma_{0}-\chi_{n} R\left(\psi_{n}\right) / R\left(\psi_{n}\right),
\end{aligned}
$$

with $\sigma_{0}=$ const, $\chi_{n}=-\alpha \ln R\left(\psi_{n}\right) \alpha>1$.
The length of this part is

$$
\left.\left.L_{1 n}=\left|\frac{R^{2}\left(\psi_{n}\right)}{\dot{R}\left(\psi_{n}\right)} \int_{0}^{x_{n}} d \chi \sqrt{\operatorname{ch} 2 \chi}\right|<\frac{\sqrt{2}}{2} \right\rvert\, R\left(\psi_{n}\right)^{2-\alpha}+R\left(\psi_{n}\right)^{2+\alpha}\right) / \dot{R}\left(\psi_{n}\right) \mid .
$$

Now, if $R(\psi)=R(2 \pi-\psi) \sim \psi^{\beta}$ for $\psi \rightarrow 0$ then

$$
L_{1 n} \sim \psi_{n}^{1+\beta-\alpha \beta}+\psi_{n}^{1+\beta+\alpha \beta},
$$

and for arbitrary $\beta>0$ there exists α with $1<\alpha<(\beta+1) / \beta$. Therefore

$$
\lim _{n \rightarrow \infty} L_{1 n}=0 \quad \text { for } \quad \psi_{n} \rightarrow 0
$$

With this part one can show the interesting fact, that the fibre of $\dot{O}(N)^{\prime}$ through the boundary point $\tilde{p}_{1} \in \dot{O}(N)^{\prime}$ is degenerated, i.e. that any two points in this fibre are identical. We shall give only the idea for the proof:

Consider the sequences $\left\{\tilde{p}_{1 n}\right\}$ and $\left\{v_{n}\right\}:\left\{\left(\psi_{n}, \sigma_{0}+\delta_{n}, 0\right)\right\}$. Both of them determine the same boundary point \tilde{p}_{1}. To see that we construct a curve which connects $\tilde{p}_{1 n}$ and v_{n} and consists of three parts $C_{1 n}, C_{2 n}, C_{3 n}$.
$C_{1 n}$ connects $\tilde{p}_{1 n}$ with $\tilde{q}_{1 n}:\left(\delta_{n}^{\gamma}, \sigma_{0}, 0\right)$ and is given by $d \sigma=d \chi=0$.
$C_{2 n}$ connects $\tilde{q}_{1 n}$ with $\tilde{q}_{1 n}^{\prime}:\left(\delta_{n}^{\gamma}, \sigma_{0}+\delta_{n}, 0\right)$ and is given by $d \psi=d \chi=0$.
$C_{3 n}$ connects $\tilde{q}_{1 n}^{\prime}$ with v_{n} and is given by $d \sigma=d \chi=0$. Let $0<\gamma<\frac{1}{2}$.
The length of this curve fulfills $\lim _{n \rightarrow \infty} L\left(C_{n}\right)=0$ if $\delta_{n} \rightarrow 0$. Now we construct a sequence $\left\{u_{n}\right\}:\left\{\psi_{n}, \sigma_{0}+\chi^{\prime} R\left(\psi_{n}\right) / R\left(\psi_{n}\right), 0\right\} .\left\{u_{n}\right\}$ is a Cauchy sequence which determines the boundary point \tilde{p}_{1}. The curve K_{n}, given by the two functions

$$
\begin{aligned}
\psi & =\psi_{n}=\mathrm{const}, \\
\sigma(\chi) & =\sigma_{0}+\chi^{\prime} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)-\chi R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)
\end{aligned}
$$

connects u_{n} with $\operatorname{Ra}(\chi)^{\prime} \tilde{p}_{1 n}:\left(\psi_{n}, \sigma_{0}, \chi^{\prime}\right)$. But we have shown that for arbitrary $\chi^{\prime}, \lim _{n \rightarrow \infty} L\left(K_{n}\right)=0$, which completes the proof.

Part 2 is a horizontal lift of a null geodesic and connects $\tilde{p}_{2 n}$ with the point $\tilde{p}_{3 n}:\left(2 \pi-\psi_{n}, \sigma_{0}-\chi_{n} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)+2 \pi-2 \psi_{n}, \chi_{n}\right)$
and is represented by the two functions

$$
\begin{aligned}
& \sigma(\psi)=\sigma_{0}-\chi_{n} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)+\psi-\psi_{n} \\
& \chi(\psi)=\chi_{n}-\ln \left(R\left(\psi_{n}\right) / R(\psi)\right)
\end{aligned}
$$

The length of this part is

$$
\begin{aligned}
& \quad L_{2 n}=\left|\sqrt{2} \frac{e^{-x_{n}}}{R\left(\psi_{n}\right)} \int_{\psi_{n}}^{2 \pi-\psi_{n}} d \psi R^{2}(\psi)\right|<3 \sqrt{2} \pi R\left(\psi_{n}\right)^{\alpha-1} \\
& \text { since } \int_{0}^{2 \pi} R^{2}(\psi) d \psi<3 \pi .
\end{aligned}
$$

Part 3 connects the points $\tilde{p}_{3 n}$ and

$$
\tilde{p}_{4 n}:\left(2 \pi-\psi_{n}, \sigma_{0}-2 \chi_{n} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)+2 \pi-2 \psi_{n}, 0\right)
$$

and is represented by the two functions

$$
\begin{aligned}
\psi & =2 \pi-\psi_{n}=\text { const }, \\
\sigma(\chi) & =\sigma_{0}-2 \chi_{n} R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)+2 \pi-2 \psi_{n}+\chi R\left(\psi_{n}\right) / \dot{R}\left(\psi_{n}\right)
\end{aligned}
$$

The length of this part is also $L_{1 n}$. Hence the length of the total curve fulfills

$$
\lim _{n \rightarrow \infty} L_{n}=0 .
$$

Therefore, for $\varepsilon>0$ there exist N with

$$
L\left(\lambda_{n}\right)<\varepsilon / 2 \text { and } R\left(\psi_{n}\right) \psi_{n}<\varepsilon / 2 \text { for } n>N .
$$

This means:

1. The sequences $\left\{\tilde{p}_{1 n}\right\},\left\{\tilde{p}_{4 n}\right\}$ have null distance, i.e. for $\varepsilon>0$ there exist N with

$$
d_{\tilde{\tilde{y}}}\left(\tilde{p}_{1 n}, \tilde{p}_{4 m}\right)<L\left(\lambda_{m}\right)+\left|R\left(\psi_{n}\right) \psi_{n}-R\left(\psi_{m}\right) \psi_{m}\right|<\varepsilon, \quad n, m>N,
$$

therefore
$d_{\tilde{g}}\left(h \tilde{p}_{1 n}, h \tilde{p}_{4 m}\right)<\varepsilon$.
2. The sequence $\left\{\tilde{p}_{1 n}\right\}$ is a Cauchy sequence without limit in $O(N)^{\prime}$. Therefore, and by 1 . the sequence $\left\{\tilde{p}_{4 n}\right\}$ is also a Cauchy sequence, also without limit in $O(N)^{\prime}$. Hence
$\left\{h \tilde{p}_{1 n}\right\}$ and $\left\{h \tilde{p}_{4 n}\right\}$
are Cauchy sequences in $O(M)^{\prime}$.
But the coordinates of the projections $p_{1 n}, p_{4 n}$ converge to
$p_{1 n} \xrightarrow{\text { coord. }}\left(0, \sigma_{0}\right)$,
$p_{4 n} \xrightarrow{\text { coord. }}\left(2 \pi, \sigma_{0}+2 \pi\right)$ wich is equivalent to $\left(2 \pi, \sigma_{0}\right)$.

Hence, $\left\{p_{1 n}\right\}$ and $\left\{p_{4 n}\right\}$, also $\left\{i_{1} p_{1 n}\right\}$ and $\left\{i_{1} p_{4 n}\right\}$ approach the two "different" singularities at $\psi=0$ resp. $\psi=2 \pi$. But they are identified according to Schmidt's definition (b-boundary) of a singularity.

Acknowledgement. I would like to thank Dr. Peter Hájíček for his helpful suggestions, and criticism during the course of this work.

References

1. Schmidt, B. G.: GRG 1, 269 (1971)
2. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. I. New York: Interscience 1963

Communicated by J. Ehlers

Received November 3, 1974; in revised form April 18, 1975

[^0]: 1 The prime denotes the connected component, i.e. here the manifolds consisting of every positively oriented orthonormal dyad resp. tetrad in every point of N res. M.

