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Abstract. A general scheme of constructing a canonical structure (i.e. Poisson
bracket, canonical fields) in classical field theories is proposed. The theory is
manifestly independent of the particular choice of an initial space-like surface
in space-time. The connection between dynamics and canonical structure is
established. Applications to theories with a gauge and constraints are of
special interest. Several physical examples are given.

0. Introduction

Recent development in the theory of geometrical quantization (cf. [7,11,13]) has
caused a growth of interest in the canonical structure of classical theories. There
does not exist however up to now a general canonical formulation of classical
field theory. Excepting few simple cases (e.g. the scalar theory (Π + m2)φ = G(φ\
cf. (1,14]) it is not clear which physical quantities are to be taken as canonical
variables and how to define Poisson brackets. Especially difficult are theories
with a gauge. It seems that the best way to achieve good results in more com-
plicated cases is "to make a lucky hit" of Poisson brackets. For theories in flat
Minkowski space-time the Lorentz invariance is an important guide (cf. [3]).
We think, however, that the existence of such fundamental structure as Poisson
bracket in a given field theory can not depend on the question if 10 pc away the
space-time is curved or not.

In the present paper we are going to formulate a general scheme of the
canonical formalism which is consistent with all particular theories known to
us. The starting point of our considerations is the finite-dimensional canonical
formalism (theory of multisymplectic manifolds) given by one of us [9]1. It appears
that after a deep reformulation one can apply this approach to a large class of
observables (physical quantities, dynamical variables) which contains all physi-
cally interesting examples.

1 Similar results concerning a finite-dimensional approach to canonical formalism was recently
presented by Goldschmidt and Sternberg [17].
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The scheme we present here is very general and can be used for very wide class
of (non-linear) theories. The price of this generality is that we have had to ignore
certain deep mathematical questions connected with non-linear theories (e.g.
the geometrical structure of the set of solutions for a given non-linear theory).
Most of these problems can only be dealt with in concrete examples. It appears,
however, that most of these difficult problems do not interfere with our con-
siderations. We need only some properties of finite-dimensional families of solu-
tions. These properties can be formulated as a set of axioms which are satisfied
in theories which have been studied deeply (cf. [8,12]).

In this way we have been led to the very natural notion of an inductive dif-
ferential manifold (IDM) which is a generalization of a differential manifold. It
seems to us that this notion is much more adequate to study the structure of the
set of solutions of field equations than the notion of an infinite dimensional dif-
ferential manifold. The problem of constructing a differentiable structure in the
set of solutions of field equations seems to be extremely difficult in general.

One of the advantages of our theory is the connection established between
the canonical structure and the dynamics. Both are defined by the same multi-
symplectic structure. The Poisson bracket is not a supplement to the field equa-
tions but is one of its fundamental structures. The problems (very difficult in
general) of covariance of the canonical formalism are automatically solved in
our approach. Physical quantities are not functional in the set of Cauchy data
over some space-like surface σ (and testing if the Poisson brackets do not depend
on σ is a rather difficult procedure) but are functionals on the set of complete
solutions of the field equations. Our approach gives a considerably simplified
treatment of theories with gauge. It appears that physical quantities (for which
the Poisson bracket is defined in a natural way) are gauge-invariant functionals.
Thus in electrodynamics we do not need to worry about the Poisson brackets
for potentials.

In Section 5 we give several examples, but many important observables (e.g.
generators of the Poincare group) have been omitted since they have been
examined in [9].

The notation of the present paper is the same as in [9]. In particular, if Ω is
a submanifold of ̂  embedded by a mapping i\Q-+& and α is a differential form
on 0> we denote α|Ω: = i*α.

Recently one of us W. Szczyrba, using the general theory elaborated in the present paper has
obtained a natural symplectic structure for a set on Einstein metrics in General Relativity. These
results will be submitted for publication in Commun. math. Phys.

The authors would like to thank Proffessors K. Maurin and I. Birula-Biaϊynicki for lively interest
in their work and fruitful discussions.

We thank also very much Professor D. Simms for his deep comments which were very valuable
for us during the preparation of the manuscript.

Our special thanks are due to Professor J. Ehlers for many profound remarks and improvements
of the final version of this paper.

1. Multisymplectic Structure

The canonical formalism in field theory is usually defined by analogy with me-
chanics. It appears, that the natural tool is the notion of multi-phase space.
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Definition. By an π-phase space we mean a pair (̂ , y) where & is a r-dimen-
sional (r>n) differentiable manifold and y is a closed differential (Vι-l-l)-form on
0>:dy = 0.

The whole dynamics is contained, in this approach, in the form y because of
the following:

Definition. A submanifold Ω embedded in ̂  is called y-singular if for every
vector field X tangent to ,̂ defined on Ω the following is true:

(*J?)|Ω = 0. (1.1)

Definition. By a state in multi-phase space (̂ , y) we mean any maximal (i.e.
which is not contained in any other) y-singular submanifold of &.

In further considerations we shall always assume the regularity condition of
(&•> Y) (cf. [9]) which assures that each two states are submanifolds of the same
dimension.

In mechanics n=l, & is the (ί, q\ PJ)- phase space, of Cartan's homogeneous

formalism, y = d(^pjdqj — Hdt), and states are the usual Hamiltonian trajectories

(cf. [9]).
In a field theory Eq. (1.1) are simply field equations and every state is a graph

in multi-phase space & of a solution of the field equations.
As an example take the scalar field theory. We start from the bundle of

4-co vectors j\ T*(W) in the space J/F = lRx M where M is space-time. Take in W
4

a coordinate chart (φ, xμ). There is the canonical 4-form in the bundle /\ T*(W)

3

(o = ηdx° Λ dx1 Λ dx2 Λ dx3 + ^ημdx° Λ ... /\dφ Λ ... Λdx 3 , (1.2)
μ = 0 £

4

where (φ, xμ, 77, τ?μ) is a coordinate chart in /\ T*(W) given uniquely by the chart
(<p, xμ) in FT.

4

As the 4-ρhase space we take the 9 dimensional submanifold of /\ T*(FF)
given by equation

η + H(φ,x^ηv) = 0. (1.3)

The form y is given by: y = dω\0> = d(ω\£P).
It can be easily shown (cf. [9]) that if we parametrize a state by space-time

coordinates :

then Eq. (1.1) are equivalent to the field equations:

dφ/dxμ=dH/dημ

Σ dημ/dxμ=-dH/dφ.
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Taking e.g. H = ̂ (ημημ + m2φ2) — F(φ) we obtain equations:

(where G(φ) = F'(φ).
The above approach can be called the multiphase formulation of a field

theory. It follows from the geometrical theory of the calculus of variations (see
[5, 16]) that for a given Lagrangian theory there always exists a multiphase
formulation of it. A very interesting question is whether this formulation is more
general than a Lagrangian one. It is a problem of constructing a multi-phase
space for a given system of (partial) differential equations. This problem has
already been partially solved and the results will be published soon. In the present
paper our starting point is a multisymplectic manifold (@>, y) and we do not need
any assumption about its origin.

The set of all states of our theory will be denoted by Jjf(0>, y) or simply Jtif.
We shall assume in the sequel the "hyperbolic" character of (̂ , y). This means
that there exists in 0> a sufficiently large family # of (n—ΐ)- dimensional sub-
manifolds of ̂  playing the role of "initial data" for the field Eq. (1.2). This has
to be understood in the following way: for any cCΉ there exists a state ΩeJtf
(not necessarily unique) containing c (i.e. c is a submanifold of Ω). For the further
development of the theory we assume that ^ satisfies the set of natural axioms
formulated in [9]. In relativistic field theories over space-time M (where & is
a tensor bundle over space-time) the set of all Cauchy data over all space-like
surfaces of M satisfies those axioms and can be taken as #.

Elements of the family ^ will be called admissible initial surfaces (a.i.s.). Our
goal is to define a canonical structure (Poisson brackets) for functionals (of a
certain class) defined on the space of states ffl. Such functionals will be called
physical quantities (observables, dynamical variables).

Previously one of us has given a theory of local observables [9]. It appears,
however, that there are only very few such quantities (cf. also [17]). A more
general approach will be presented in Section 3.

2. "Pseudo-Differentiable" Structure of the Space of States

Our main goal in this paper is to find a natural symplectic structure in the space
ffl. It is known that such a structure defines Poisson brackets and the connection
between canonical vector fields and physical quantities.

If the set 3? was an infinite-dimensional manifold the symplectic structure
would be represented by a differential 2-form Γ, closed and non-degenerate (in
some sense). But a construction of a differentiable structure in ffl is in general
very difficult. For our purposes it is more natural to use the notion of an
"inductive differential manifold" (I.D.M.) which will be defined below.

An inductive differentiable manifold is, roughly speaking, a space in which
the notion of finite-dimensional submanifold is defined, and which is "exhausted"
by its finite-dimensional submanifolds, in the sense given below. None of these
submanifolds, however, may be "thick" enough to fill a neighbourhood of Ω.
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Definition. By an inductive differential manifold of class Cs we mean a pair
(JT,<O where:

1. ^f is a set.
2. s$ is a family of injective mappings (κ, P^) of open fc-dimensional cubes Pk

(where fc = 0, 1,2,...) in R*:

into Jf i.e. κ:Pk-+Jf.
3. The following axioms are satisfied:
a) For every point ΩeJf there exists at least one mapping (κ, P/Je^ such

b) For each two maps (κl5 Pfcl), (κ2, Pfc2) with intersecting images [i.e. κ^P^n
κ2(Pk2) is non-empty] there exists (κ, P^) such that κl(Pkί)Cκ(Pk); κ2(Pk2)Cκ(P^.

c) If (κ l9Pkl), (κ2,Pfc2)e^ and %i(Pfel)Cκ2(Pfc2) then κ2 ^κ^P^P^ is a Cs

diffeomorphism onto a submanifold embedded in Pfc2.
d) If (κ,Pfc)e^/ and φ:Pkl-»Pk is a Cs-diffeomorphism onto a submanifold

embedded in Pk then (κ°φ, Pkί)e^.
The family j/ will be called an atlas of ^f. Its elements will be called finite

dimensional (parametrized) surfaces in Jf7.
The axiom d) plays the role of a completness axiom for the atlas jtf. The

family ja/ defines in Jf the inductive topology (cf. [4]).
We shall now define the tangent space at the point ΩE 2tf . Consider the family

Ωeκ(Pk)

where "e" is a vector in IRΛ We introduce in ^Ω the following equivalence rela-
tion: (Pfcl, κ l 9 ^ι)^(Pfc2? κ2, β2) if and only if for every surface (κ3, Pfc3) containing
(κx, Pkl) and (κ25 Pfe2) [in the sense of axiom b)] the following equality holds:

(κ3-
 1 oκJίκΓ H^))^ =(κj Ioκ2)' (*ί 1(Ω)>2 ? (2.1)

where Fr(x) ^ denotes the derivative of the mapping F taken at the point x and
acting on the vector e.

The quotient space TΩ = 3/~Ω/~ will be called the tangent space to Jf at Ω.
It inherits a natural vector space structure from that of the set of representatives :

α(Pfc? κ, *) + flPfc, κ, /) = (P* κ, αe + βf) ,

where α, jβ are real numbers. The self-consistency of this definition can be easily
proved.

For a given inductive differential manifold $f we can define in a natural way
such geometrical objects as Cs-mappings, tangent mapping, vector fields, dif-
ferential forms, exterior derivative, submanifolds (of finite dimension), Lie deriv-
ative etc. (cf. [10]). All these definitions use the possibility of pulling back the
corresponding object to IRfc using our mappings (κ, Pfc).
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For example:
The mapping ϊtf 3Ω-+Ϋ(Ω)e TΩ(J4?) is said to be a Cs-vector field in 2tf if for

every Ω there exists a surface (κ, P )̂ passing through Ω [i.e. Ωe κ(Pk)] such that
Ϋ is a Cs-vector field tangent to κ(P^ in a neighbourhood of Ω on κίP^).

The last statement is to be understood in the following sense: there exists
a vector field (of Cs-class) e(x) in some neighbourhood of κ~1(Ω) in Pk such that
(Pfc, κ, e(κ~ \Ω)}) represents Ϋ(Ω).

As a second example we can take the commutator of two vector fields. We
use the fact that "locally" both fields are contained in a common finite-dimen-
sional surface (κ, Pk). The commutator is thus defined with the use of the com-
mutator of finite-dimensional fields.

Now we shall construct the structure of I.D.M. in the space Jtf of states of
a given multi-phase space (̂ , y) by means of families of transformations in £P.
As we have already noticed (Section 1) there are in general few transformations
of & which carry all states onto states. But for defining local Cs-surfaces "in a
neighbourhood" of Ω we need only such transformations which carry Ω onto
states :

Definition. The I.D.M. structure in jjf is given by the family j/ of all mappings
of the following form:

where

(2.2)

and ψ is a smooth mapping PkxέP-*& such that
1. For every (t1,...,t1ϊ)ePkψ(t1,...9tk; ) is a diffeomorphism of ̂  such that

image of Ω is a state i.e. ψ(tί,...9tk'9Ω)eJ#'.
2. V(0 l 9...,0;.) = id^
3. ψ satisfies the non-degeneracy condition which will be formulated in two

stages :
a) If fc=l then for every tePl there exists peΩ such that the following

mapping: Pi^t-^ip(t;p)e^) is transversal to Ω at (t p) [i.e. d/dtιp(t9p)φTp(ΩJ].
b) If τ-»(f1(τ),...,tΛ(τ))ePΛ is a curve in Pk with non-vanishing tangent vector

then the map φ(τi ) = ψ ( t ί ( τ ) 9 . . . , t k ( τ ) , ) fulfils the condition a).
The fundamental problem of our theory is to prove that such mappings

satisfy Axioms 3 a) and 3b) of the definition of I.D.M. (the other axioms are
satisfied). It is a question about the global geometry of the set of solutions of a
given system of field Eq. (1.2). We know, however, that our axiomatics is not
empty. It is satisfied by the large class of relativistic, globally hyperbolic field
theories. In this case & is a tensor bundle over space-time M, and states are global
sections of this bundle. By hyperbolicity we mean a possibility of parametrization
of the space ffl by the space of Cauchy data over a fixed space-like surface σ C M.
Cauchy data are here sections of the bundle ( σ̂, π|σ, σ) which is the reduction
of (̂ , π, M) to σCM. Now we can limit ourselves to transformations ψ\0*σ of the
space 0>σ (and not the whole space 3P\ If constraints imposed by the theory on
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the space of initial data are not too complicated (as is the case in all reasonable
theories) we can easily prove that the set j/σ of mappings generated in 2tf by
families ψ\^σ,ψes/ satisfies our axioms. Now it remains to prove that different
atlases ^σ obtained by choosing different space-like surfaces σ in M are com-
patible (i.e. are the same). This is a consequence of global hyperbolicity of our
theory.

The I.D.M. approach is even in this case less complicated than a construction
of a differentiable structure in ffl by using e.g. Cauchy data as local coordinates.
In the last case we should have to worry about a topology in the space of Cauchy
data, a notion of Frechet derivative etc. which are very hard problems in the
general case. We would like however to mention that our approach can be useful
even for theories in which there are no global solutions (because states may have
singularities at some points at space-time).

If ιp is such as in 2 a) then

t-+Ωt={ιp(t',p)e0>:peΩ} = κ(t) (2.3)

is a smooth curve in ffl such that Ω0 = Ω. Let us take the vector field generated
on Ω by ψ:

ψ(t;p)eTp(0>). (2.4)
ί = 0

Such vector fields which are defined on Ω and may be not tangent to Ω will be
called "vector fields on Ω". Vector fields on Ω which are also tangent to Ω will
be called "vector fields in £Γ (cf. [6]).

Theorem 1. // Ϋ is any prolongation of Y onto a neighbourhood UofΩ in & then

J^y(ljy)|Ω = 0 (2.5)

for every vector field X in U.

Proof in Section 6.
We would like in the sequel to represent vectors tangent to 2tf at the point

Ω by vector fields generated by families of diffeomorphisms {ιp(t; )} by the for-
mula (2.4). We see however that this correspondence can not be univalent. The
same curve t-^Ωt can be obtained by different diffeomorphisms i.e. the same
vector tangent to a given curve can be represented by different vector fields on

Ω. Let ψ1 and ψ2 giγe the same curve in ffl i.e. for every |ί|< 1 the corresponding
images are equal:

It means that:

^:=V>2(ί; Γ l oVι(ί; ) (2-6)

transforms Ω onto Ω and the vector field ΩBp-+dλt(p}/dt is tangent to Ω. If we
differentiate the formula (2.6) we obtain

) , (2.7)
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i.e. the difference between vector fields defined on Ω by \pi and ψ2 *s a vector
field in Ω (tangent to Ω). Such vector fields satisfy automatically the condition
(2.5) since

by virtue of (1.1).
Vector fields in Ω are generated e.g. by transformations ψ(t ) leaving Ω

invariant which correspond to constant curves in 3>ίf(Ωt = Ω;\t\<l\ i.e. vector
fields in Ω (and only they) represent the zero vector in TΩ(^f).

Condition (2.7) is not only necessary but is also sufficient for Ύγ and Y2 to be
tangent to the same curve t-*Qt\ Take Y2=Yί+X where X is tangent to Ω and
Yί = dιφί/dt(0;-). Take any family ξt:^^^ of diffeomorphisms of & trans-
forming Ω onto Ω "tangently" to X i.e. :

d/dt\t=0ξt(p) = X(p) for peΩ.

Then put ψ2(t; p):= ψ^t; ξt(p)). Both curves generated by ψί and ιp2 in ̂  are °f
course the same and:

dιp2/dt(Q;p}=Yί+X=Y2

which was to be proved.

The above considerations show that vectors tangent to Jtif can be represented
by classes of vector fields on Ω satisfying condition (2.5) modulo vector fields in
Ω. Denote the space of such classes by TΩ. In general we do not know if the tangent
space TΩ(J^f) (which can be identified with a subspace of TΩ:TΩC TΩ) is equal the
whole space TΩ.

A very important role is played in the sequel by the subspace TΩcTΩ composed
of vectors corresponding to "spatially compact" deformations of Ω. More pre-
cisely: vectors of TΩ are represented by such vector fields Y on Ω that for every
a.i.s. cCΩ there is a compact set Kcc such that Y is tangent to Ω in {c — K}.

3. Symplectic Structure and Poisson Brackets

We approach now the main point of our considerations: defining in 2ff a smooth
2-form Γ. Such a 2-form is a bilinear, antisymmetric functional on the tangent
space:

According to the general procedure in I.D.M. the smoothness of Γ means that
κ*Γ is a smooth 2-form in Pk for every local surface (κ, P^GJ/. Our 2-form Γ
will be finite-valued only on a subspace of TΩ x TΩ. For the sake of simplicity we
shall define it only for such pairs of arguments that at least one of them belongs
to TΩ°.

)= ί (Y^Y2)Jy, (3.1)
cCΩ
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where Γ1? Y2 are arbitrary vector fields on Ω which represent vectors 71? Ϋ2 (at
least one of which belongs to 7$) and ccΩ is an arbitrary a.i.s. contained in Ω.

Remark i. If Y^ or Y2 is tangent to Ω then (^ Λ Γ2) Jy|Ω = 0 by virtue of the
field Eq. (1.1). It follows from the definition of T£ that the integration in the
formula (3.1) is extended over a compact set in c.

Remark 2. The value of the integral in (3.1) does not depend on the particular
choice of field Y representing a vector Ϋ by virtue of the same arguments as in
Remark 1.

Lemma 1. // the fields Yί9 Y2 on Ω satisfy Eq. (2.5) then

where (Yί A Y2)_\y is understood as a (n— I) -form on the manifold Ω.

For the proof see Section 6.

Remark 3. Lemma 1 and the properties of admissible initial surfaces imply
that the integral in (3.1) does not depend on the particular choice of cεΉ con-
tained in Ω.

Remark 4. The definition of JΓ could be extended to a larger class of tangent
vectors. Instead of the condition of "spatially bounded" support for fields Y we
could impose some weaker condition of "sufficiently rapid vanishing at infinity".
Such a condition is necessary if the value of (3.1) has to be finite. For theories
with positive energy (as λφ4 theory with λ<0 and all physically meaningfull
theories) we could reduce the space of states to the space Jf f in which corresponds
to finite energy. It seems that the tangent space to JΊffϊn would belong automati-
cally to the domain of Γ.

Theorem 2. The form Γ is closed, i.e. dΓ = Q.

For proof see the Section 6.
The form Γ defines a linear mapping from the tangent to the co-tangent space:

T°3Ϋ^P = ΓΩ(t.)εT$, (3.2)

where TJf is the space of linear functional on TΩ. The image of 7^ in 7^ will
be denoted Tg\

Definition. By an observable (physical quantity) we mean any smooth func-
tional F on the space of states ^ίf for which there exists a smooth 7^-valued
vector field Ω-» Ϋ(Ω)e TΩ° satisfying

dF=-Ϋ*. (3.3)

Remark 5. It suffices to assume that the field Ϋ exists "locally" in the sense
of I.D.M. This means that for every point ΩeJjf there exists a local surface (κ, P^
passing through Ω (Ωe κ(Pk)) and the field Ϋ tangent to κ(P^ in the neighbour-
hood of Ω, such that (3.3) is satisfied.
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Definition. For two observables F1 and F2 we put:

(3.4)

where Ύl and Y2 are as in (3.3):

dF2=-Ϋ».
(3.5)

The functional {Fί9F2} is called the Poisson bracket of Fl and F2.

Remark 6. The definition above is consistent because the right-hand side of
(3.4) does not depend on the particular choice of vectors Ϋl9 Ϋ2 satisfying (3.5).
To see this take Z£= Yib; Z2 = Ϋ2\ Then

Theorem 3. The Poisson bracket of two observables is also an observable and

where Ϋ ί 9 Ϋ2 are as in (3.5).

For the proof see Section 6.

Proposition 1. The set of all observables 3F with its natural linear structure and
with the form {-, •} is a Lie algebra. In particular the Jacobi identity is satisfied:

4. Gauge and Degeneracy

The mapping 7-»7b is not in general injective, i.e. the form Γ is degenerated.
The degeneration is connected with:

1. Existence of constraints imposed on the space of Cauchy data (which means
that the tangent space TΩ is small).

2. The fact that an a.i.s. c does not determine uniquely the state ΏDc.
In electrodynamics,
1. The initial data [Aι(x)9 Ek(x)} must satisfy the following constraint

div£k = ρ, (4.1)

where ρ is a charge density.
2. The values of potentials and fields at the time ί0 do not determine uniquely

the values of potentials in the whole space-time.
We deal in this case with the gauge: many states in the geometrical sense

correspond to the same physical state (two states which differ only by a gauge
transformation are equivalent from the physical point of view).
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However, for hyperbolic theories without constraints the form Γ is non-
degenerate: the space TΩ is large enough and the equality

ΓΩ( Ϋ,Z) = Q for every Ze TΩ

implies 7 = 0. We shall see in the next section that this is the case in the scalar
field theory.

In the general case we define the degeneracy distribution:

The distribution WΩ is involutive:

Proposition 2. // 7t and Y2 are smooth W-valued vector fields in Jf then the
values of [71? 72] lie also in W. (For the proof see Section 6.)

Especially interesting are theories for which W is integrable. Then we can
divide the space ffl into classes composed of integral surfaces of W. Two states
belong to the same class if they can be joined by a curve the tangent vectors of
which belong to W. We meet such a situation in electrodynamics: two states which
differ by a gradient are put into the same class.

The quotient space $ (space of classes) has the tangent space equal to the
quotient

Using the fact that Γ is singular on }V we can project Γ onto the quotient, ob-
taining Γ. The form Γ on $ is closed (dJΓ = 0) as Γ is closed on Jtif.

Becausd W contains the whole degeneracy of Γ the quotient form Γ is non-
degenerate. We thus see that (Γ, J-f ) is something like a symplectic I.D.M. which
means that the space of physical states has a symplectic structure.

If there is no gauge in our theory then J$ = ̂  and (jjf, Γ) is already symplectic.
Let us notice now that the forms Γb (where Ύe TΩ) vanish on vectors belonging

to W:

for Xε WΩ.
We thus see that the condition (3.3) means that dF vanishes on vectors tan-

gent, to the gauge-congruence (in the case where W is integrable), i.e. observables
are gauge-invariant functional, so they can be treated as functional on J$. The
whole canonical structure is thus reduced to the symplectic geometry in ($, Γ),
and our definition of Poisson bracket coincides with the usual definition in the
symplectic case.

Every observable defines the unique vector field [Yp] on J^ (which is a class
of vector fields in Jf7 modulo fields tangent to the gauge congruence) by the
formula (3.3). The uniqueness follows from the fact that ΫF is determined in Jtf
up to vector fields belonging to W (tangent to the gauge). Such fields in $ will
be called canonical.
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Theorem 4.1. Canonical fields with Lie bracket [•>•]> form a Lie algebra and
the mapping ^3F-^[YF~\ is a homomorphism of Lie algebras.

2. The kernel of this mapping is composed of constant functional^.
1. Is an immediate consequence of Theorem 3. 2. Is a consequence of the non-

degeneracy of Γ.

5. Examples

As a first example we shall consider a non-linear electrodynamics (cf. [9, 16])
and compute equal-time Poisson brackets for components Bk and Dk of magnetic
and electric fields.

By M we denote now Minko wski's space-time with metric tensor ( -f , — , — , — ) .
Take the space W=T*(M) as a configuration space. We have in W local co-
ordinates (xμ, Aμ) induced by local coordinates (xμ) in M. The phase space

4

0>C /\T*(W) is composed of 4-co vectors in W which have the form:

hdx°A ... Λ d x 3 + Σ/z μ v dx°Λ ... ΛdAuΛ ... Adx3 (5.1)
V

and hμv= -hvμ; h = H(xμ, Aμ, hμv).

For the sake of simplicity of notation consider the case when currents vanish,
i.e. H = H(hμv). In this situation the canonical (4 + l)-form in & is

y = (l/2)dH/dhμvdhμv Λ dx° Λ ... Λ dx3 + dhμv Λ dx° Λ ... Λ dAμ Λ ... Λ dx3

(the summation convention is used). The equations of motion (1.2) are (cf. [9, 16])

=dμAv-dvAμ

The space & has bundle structure over M(π:^-»M). Solutions of field Eq. (5.2)
are sections of this bundle, given in local coordinates (xμ, Aμ, h

μv) by functions

Aμ = Aμ(x*)
(5.3)

hμv = hμv(xy)

satisfying (5.2). The set ̂  of a.i.s. consists of all 3-dimensional submanifolds which
are sections of bundles 0>σ (where &σ is a reduction of ̂  to an arbitrary space-
like surface σ) and which satisfy constraints analogous to (4.1). For the sake of
simplicity take σ= {xeM x0 = const}. In this case the constraints are

(5.4,
fki= diAi- dtAk

where we suppose that fkl are functions of hμv.
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Let Ϋ be a vector tangent to 2tf at Ω. It can be represented by a π-vertical
vector field Y defined on Ω. In local coordinates:

Y = Qμd/3Aμ+ ΣPμvd/dhμv. (5.5)
μ< v

It is easy to check that Y satisfies Eq. (2.5) only if

δβQv(xλ) ~ 8vQ,(xλ) = 1/2 dfμJdti*P*

3VP"V)=0 (5.6)

pμv __ _ pvμ

If Ϋί and Y, are given by /£„, P"Λ and (̂  Pμv, according to (5.5) then

jyίί, Ϋ2)=S(γι Λ y2) J7= J (Pk0Qk-Pk°Qk\dxl Λdx2 Λdx 3 . (5.7)
c σ \ 1 2 2 1 /

Vectors from the subspace 7^ are represented by vector fields such that cor-
responding functions Qμ and Pμv have spatially compact supports. Let us define
the following observable-valued distributions:

where

Dk(φ) = \hk° ψdxί Λdx2 Λdx3, (5.8)
σ

B\ψ) = - l/2εkίj J fij - ψdx1 Λ dx2 Λ dx3 . (5.9)
σ

The value of Dk(φ) and 5k(t/;) is thus the value of fe-th component of electric
(magnetic) field smeared with the test function ψ.

Take any vector Z tangent to ffl and its representative

where Uμ and Vμv satisfy Eq. (5.6).
The infinitesimal change of the value of Dk(ψ) and Bk(ψ) caused by the change

of a state connected with the displacement of initial data (5.4) along the field Z
is given by the formula:

dDk(ψ)Z= J V^.ψdx1 Λdx2 Λdx3 , (5.10)
σ

dBk(ψ)Z= - ί/2εklj j (diUj- djU^ψdx1 Λ dx2 Λ dx3 . (5.11)

If YDk is such that

Q> = δ}φ and P ί 0σ = 0 (5.12)
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then comparing (5.10) with (5.7) we see that

= -ΓΩ(ΫDk, Z) = <Z, - ί&> (5.13)

Integrating (5.11) by parts we obtain

dB\ψ)Z = -^s^Uidjipdx1 Λdx2 /\dx3 . (5.14)
σ

Take YBk such that

Qj\σ=Q, Pί0\σ = εiikdjΨ. (5.15)

Comparing (5.14) with (5.7) we obtain

dBk(ψ)Z = - ΓΩ(ΫBk, Z) = <Z, - ϊ&> . (5.16)

Hence
The Poisson brackets are :

(B\Ψl), Bs(ψ2)} = Γ(V(φι), yΰs(φ2)) = 0 , (5.17)

[D\ψά Ds(ψ2)} = Γ(ΫDk(Ψl), 7DS(Ψ2)) = 0 , (5.18)

{Bk(Ψl), D?(ψ2)} = Γ(ΫBk(Ψl), ΫDS(ψ2))

x1Λdx2Λdx3. (5.19)

If we strip the above formulae of test functions ψ1 and ψ2 we obtain the Poisson
brackets in the distribution form:

(B\x), B*(y)} = 0 = (Dk(x),
(j.ZΌ)

As a second example we shall compute the commutation relations for the
components of the energy-momentum tensor in the non-linear Klein-Gordon
theory. Let M be space-time and P^ = M x R Let (xμ) denote local coordinates

4

on M and (xμ, φ) local coordinates on W. The phase space ^C /\T*(W) is com-
posed of 4-forms given by formula (1.4) which satisfy the condition (1.5). We take

H(φ,ημ)=l/2ημημ + G(φ] where GEC°°(IR). (5.21)

There is on & the canonical 5-form γ = dω\0> where

ω(xμ, φ, ηv) = - H(φ, ημ)dx° Λ dx1 Λ dx2 Λ dx3

+ ημdx°Λ ...ΛdφΛ... Λdx3 . (5.22)
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Because H does not depend on (xμ)μ=0 space-time translations in ,̂ i.e. fields
X = aμd/dxμ (where aμ are constant) preserve γ:

<exω = Q = d(XJω) + X_]y . (5.23)

Such fields X are thus local canonical fields and 3-forms d/dxμ_\ω determine the
energy-momentum tensor (cf. [9]).

States of this theory are sections of the bundle π:^-+M. In local coordinates
they are given by functions:

φ = φ(xμ), ημ = ημ(xμ) (5.24)

where

(5.25)

where gμv is the metric tensor.
The set # of all a.i.s. is equal to sections of all reductions 0*\σ of & to space-

like surfaces σCM satisfying some compatibility conditions implied by (5.25). For
σ— {x° = const} this condition is following

For any state Ω given by (5.24), (5.25) a π-vertical vector field on Ω Y = Qd/dφ +
Pμ d/dημ can represent a tangent vector to Jf at Ω only if

ΏQ + G"(φ)Q = Q

p^«e. (5<26)

Let c be an a.i.s. generated by the space-like surface σ= {(xμ):x° = const}. If the
fields Y19 Y2 on Ω fulfil (5.26) and at least one of them has a compact support
on c then using formulae (3.1) and (5.21) we obtain:

Ϋ2) = ί (PΪQ2 - PΪQJdx1 Λ dx2 Λ dx* . (5.27)
σ

We see from (5.27) that Γ is here non-degenerate. Values of Q and P° on σ can
be taken completely arbitrarily. If thus (5.27) vanishes for every Q1 and Pj then
β2 = 0 and P^-0 on σ. But Eq. (5.26) imply that Q2 = Q, P2=Q on Ω i.e. 72=0.

The energy-momentum tensor is

λ - G(φ)) (5.28)

according to the following formula:

(S/ax*Jω)|Ω= Σ (-iγ+ί(ηvημ-δ;(l/2ηληλ-G(φ)))dx°Λ ...... Λ^x 3 . (5.29)
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We define observable- valued distributions

Cco(σ)3ip-*Tμv(ψ) = J 7 (̂0, x)\p(x)dxl Adx2 Λ<bc3 . (5.30)
σ

If Z=Ud/dφ+Vμd/dημ is any π-vertical vector field on Ω fulfilling (5.26) then
according to (5.28) we have:

Λdx2Λdx3. (5.31)

Using (5.25), (5.26) and integrating by parts we obtain

= Jfo 0F°v>- U(ψd0η°-ηkdkψ))dxi Λdx2 Adx3 . (5.32)

If 7°° is given by (g, Pμ) such that

Q\σ = η0ιp and P°\σ = ιpd0η° -ηkdkφ (5.33)

then comparing (5.32) with (5.27) we have:

dT°°(φ)Z = <Z, -(Y00)b> . (5.34)

In the similiar way we compute:

dT0k(ιp)Z=$(V°ηk+Vkη0)ιpdx1Λdx2Λdx3 . (5.35)
σ

Using (5.25) and (5.26) we obtain

dT0k(ιp)Z= J (- V°ηkιp + C/ d£η0ψ))dxl Λ dx2 Λ rfx3 . (5.36)
σ

If y°* is given by (β, P") such that

β|σ=-^ψ and P°|σ= - dk(η0ψ) (5.37)

then we have

dτ0k(Ψ)z=(z, -(Ϋ^yy . (5.38)
Now

dT"(ψ)Z = I ( - F^' - Vlrf - gu(η0 V° + ηsV
s- G'(φ) U))ψdx ^dx2A dx3 (5.39)

σ

Using again (5.25), (5.26) and integrating by parts we obtain

dΓw(v>)Z=fl/(-3^v;-φΛ^
σ

+ gklV°η0ψ)dx'L Λdx2Λdx?> . (5.40)

If 7fc/ is given by (β, P") such that
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and

P° I σ = δk(η V) + a,fa V) + 0V δsφ - d0η
Qιp] (5.41)

we have

dTkl(ψ)Z = (Z,-(Ϋkγy. (5.42)

Now we can compute the Poisson brackets

8kιp2)dx1 Λ dx2 Λ dx3

σ

= f (T°'v>ι ditVa - T° V2 ΦfiWx 1 Λ dx2 Λ dx3 . (5.43)
σ

In distribution notation we write

{ Γ0k(x), Tol(y) } - Γ0/(jc) afc^(^ -y)+ T0k(y) δtδ(x - y) , (5.44)

(T00^), T00^)}^^^00^,), y°>2))

= J (ΛoVi ̂ 2 - nkγloΨ2 dkΨiWx1 Λ dx2 Λ dx3

σ

= J (TWVΊ 3kV2 - Γωψ2 ̂ Ψi)^1 A dx2 Λ dx3 . (5.45)
σ

In distribution notation :

{T°°(*), T°°(j)} = Tfc°(jc) δfcδ(jc -y) + TkQ(y) dkδ(x - y) . (5.46)

In a similiar way:

(x-y), (5.47)

Tk°(x) d^x-y) . (5.48)

The same formulae can be obtained for a non-linear electrodynamics with
vanishing currents (cf. [2]).

6. Proofs

In this section we shall use the following notation. If Ω is a submanifold embedded
in ̂  and X, Y, Z are vector fields on Ω (tangent to & and defined on Ω) then we
shall denote by X, Ϋ, Z any extensions of X, Y, Z onto some neighbourhood of

p

Ω in 3P. If ω is any p-form on & and X0, Xί,...,Xp_l,Xp are vector fields in 3P
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then we shall use the following formulae (cf. [15]):

p ω(X0,Xί,...,Xp-ί)=(xQ_\ω)(Xl,...,Xp-1)

= l / ( p - l ) ! < X 0 Λ X 1 Λ . . . Λ A 1,_1 |ά> (6.1)

ί)dω(X0,...,Xp)= Σ (-ί)kXk(&(XQ,..,.,Xp))

£ (-ί)k+sωxk,Xs-],X0, ......... ,*,, (6.2)
0^k<s^p \ k s '

ldω, (6.3)

XxάXj^lXtoXj}. (6.4)

Proof of Theorem i. If ip was the local group of diffeomorphisms generated
by Y (at least in a neighbourhood [ — ε,ε] x t/ of the set ( O j x Ω c J R x ^ ) then
(2.5) would be obvious:

lim

_ t)} = 0 (6.5)

the last equality being fulfiled because both Ω and Ω_t are states i.e. satisfy
Eq. (1.2). In general case \pt has to be replaced by the group of diffeomorphisms
Gt generated by Ϋ. We must also replace Ω_t = ψ_t(Ω) by G_r(Ώ). But it follows
from (2.4) that in a neighbourhood of ί = 0 both surfaces ψ-t(Ω) and G_r(Ω)
"are equal up to terms of second order in the variable ί". It means that (6.5) is
satisfied.

We shall now rewrite the Eq. (2.5) in the form which will be useful in later
calculations.

We denote Z0=Ϋ. Let Z1 ?...,ZΠ be vector fields on a neighbourhood of Ω
tangent to Ω at points belonging to Ω.

Using formulae (6.1), (6.2), and (6.3) we have

Z0, >Zn)k=o v k
7 7 ~\ 7 7

0> ^ ^

t=ι

.Z!, ...... ,ZB . (6.6)
ί
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Now Eq. (2.5) are equivalent the following condition:
For every vector field X given in a neighbourhood of Ω in & and arbitrary

vector fields Z1 ?..., Zn given in this neighbourhood and tangent to Ω on Ω we have

,Z1? ,ZΠ
k

Ω = 0. (6.7)

Remark. The condition (6.7) does not depend on the choise of extension Ϋ of
Y onto a neighbourhood of Ω in 3P. This fact can be easily seen if we use field
Eq. (1.2) written in the form

(XJy)(Z1,...,Z l l)|Ω = 0 (6.8)

and compute (6.7) in local coordinates on Ω. The formula (6.7) represents a system
of linear differential equations for Y which involves only differentiations of Y in
directions tangent to Ω. Therefore (6.7) is a differential equation on the sub-
manifold Ω. It follows from (6.8) that if Y is tangent to Ω then Eq. (6.7) are auto-
matically fulfilled.

Proof of Lemma 1. Let 71? Y2 be vector fields on Ω and 71? Ϋ2 be any extensions
of Yl9 Y2 onto some neighbourhood of Ω. Fields Ϋ1 and Ϋ2 fulfil Eq. (6.7).

Using formulae (6.1) and (6.2) we have

,ZB . (6-9)
l g / c < s g n

But dy=0 and we have from (6.2)

0 = (n + 2)dγ(Ϋl,Ϋ2,Z1,...,Zn)

+ Σ(-i) t+1z*(y(rι,r2Λ, ...... Λ)) -}<[?!, ̂ .z^....
k=ι . V \ t I)

ι > Z k ] , Y 2 , Z 1 , ,ZM

fc=l v k

k= 1

Σ (-l) fc+sT [ZfcZJ,^,^,^, ......... ,ZB . (6.10)
k s
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If we restrict both sides of (6.10) to the submanifold Ω, use (6.7), (6.8), and (6.9)
we obtain at last:

d((Ϋ1ΛΫ2)_Ay)(Z1,...,Zn)\Ω = 0.

Our Theorem 2 follows from the following lemma:
Lemma 2. // Ϋlt Ϋ2, Ϋ3 are vector fields on a manifold 9 ana y is a closed

(n+ί)-form on 3? (n^.2) then:

(6.11)

+ y3 jr2 _!<*(?! jy). (6.12)
Applying (6.12) we obtain that the left hand side of (6.11) is equal to:

(6.13)

= d(Ϋ3_]Ϋ2JΫ1_]y).

Proof of Lemma 2. It follows from (6.3) and (6.4) that

But we have:

= d ( Ϋ l _ [ y ) ( Ϋ 2 , Ϋ 3 , Z 1 , . . . , Z n _ 1 ) = Ϋ 2 ( y ( Ϋ ί , Ϋ 3 , Z 1 , . . . , Z n _ l ) )

-Ϋ3(y(Ϋ1,Ϋ2,Z1,...,Z^1))+nΣ\-l)k+1Zk(y(Ϋί,Ϋ2,Ϋ3,Zί,

k=l

+ Σ
lSlc<s§n-l

Using equality dy=0 we obtain

+ y([y1,Ϋ3],Y2,Z1,...,ZB_1)

+ "Σ (-D
k=ι

,ZB-ι (6.14)

(6.15)
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On the other hand we have :

k=l k

+ Σ (-l)*+ >yf71,72 >73,[Z4,ZJ,Z1,..._ ι ...... ,Zn\ . (6.16)
l § f c < s g n - l V i s /

Using again the condition dy=Q and (6.16) we obtain

(φ + l))-1d(73J72j71Jy)(Z\,...,ZI1_1)

= y1(y(y2,F3,z1,...,zn_1))-y2(y(y1,y3,z1>...,zπ_1))

+ y3(y(y1,y2,z1,...,zπ_1))-y([y1,y2],y3,z1,...,zn_1)

z">^n— 1
fc=l

(6.17)

If we put (6.15) and its cyclic permutations to (6.13) we obtain (6.17).

Proof of Theorem 2. For n = 1 y is a 2-form and the space ffl is finite dimen-
sional (a.i.s. are points in )̂. Jf is equal to the quotient space &/L where L is
a congruence given by the distribution of singular vectors of y. The form Γ is the
projection of y onto 2P/L so it is closed.

Let now n^.2 so we can use Lemma 2. Let Y^, Γ2? 3̂ be vectors tangent to
2tf at ίλ In order to calculate the value of dΓΩ(Ύ^ Ύ2, Ϋ3) we must take any vector
fields in a neighbourhood of Ω equal yl5 72, 73 at the point Ω and use the formula
(6.2) which reads for p = 2 :

l9 2, 73)= 7^(72, 73)- Y2Γ(71? 73)+ 3 Π ι ? 72)

ι? 73], f2)-Γ([f2, 73], 7J. (6.18)

Now we can use the possibility of choosing a surface κ(Pk), (%, Pfc)ej</ passing
through Ω and such that fields ^ z'=l,2,3 are tangent to %(Pfc). The mapping κ
is given by a smooth mapping

Pk x

where φ(ί; ) are diffeomorphisms of & and tp(0; ) = id^. In the manifold
we take a submanifold Jf = {(ί ψ(t p))e Pkx^\te Pk9 pe Ω} .



204 J. Kijowski and W. Szczyrba

We have the sequence of smooth mappings

Jf-^Pfcx^»^, (6.19)

where π is the natural projection and i is the natural embedding.
Take in jf the (rc+l)-form y which is the pull-back of 7 from & onto JΓ:

y = i*π*y. (6.20)

Given any diffeomorphism φ:Pk->Pk there is the canonical lift of φ to Jf :

It is easy to see that φ is a diffeomorphism:
Our lift preserves group properties:

(6.21)

This allows us do define the lift of a vector field in Pk to Jf .
The generator of a local 1-parameter group of diffeomorphisms φτ is namely

lifted to the generator of φτ. It follows from (6.21) that this lift preserves Lie
bracket :

[Y1? 72]~<yι? 72] . (6.22)

It is easy to check that

Γκ(ί)(l, y) = ί (X Λ 7) Jy = j (1 Λ 7) Jy , (6.23)
ct ct

where c,= {(ί, q):qEct}: cte% and cfCκ(ί).
Because ct is arbitrary we can take ct— {φ(t\ p):pec}, where c is any a.i.s. con-

tained in Ω = κ(0).
Now if Z is a vector field tangent to κ(Pj) and φτ is a local 1-parameter group

of diffeomorphisms generated in Pk by pull-back of Z then:

lim( J (l
τ^O ( φ τ ( c t )

y) Jy] . (6.24)

We can change the order of integrating and passing to the limit because everything
is smooth and supports of forms are compact.

Using (6.22), (6.23), and (6.24) we can rewrite the left hand side of (6.18) in the
following way :

where da is equal to left hand side of (6.11). Using formula (6.11) we see that
J)'. The form α has a compact support therefore
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Proof of Theorem 3. Let F1,F2 be physical quantities Z, Zj, Z2-vector fields
on 3? and

dFk Z = (Z, -Ϋk»y = Γ(Z, ίy fc = l,2 (6.25)

We have:

Z2]) . (6.26)

From (6.25) and (6.26) we have for /c=l Zj = Z, Z2 = 72

Z(Γ(y2, ΫJ = Ύ2(Γ(Z, ΫJ) + Γ([Z, Ϋ2], Yi) (6.27)

and for k=2Zl=Z, Z2 = Ϋι

z(Γ(y1; y2))= ήίπz, y2))+r([z, yj, y2) . (6.28)
On the other hand we have dΓ = Q:

o=3rfr(z, yl5 y2)=z(r(yls ίy)- Yi(Γ(z, y2))+ y2(Γ(z, yj)
-r([z, yj, y2)+r([z, yj, y^-ricf!, yj, z) . (6.29)

From (6.27), (6.28), and (6.29) we obtain

d{Fί, F2}z=z(Γ(Ϋlt y2))=r(z, [ylf y2]> , (6.30)
so we have

d{F1,F2}=-[Y1,Ϋ2]>. (6.31)

Proof of Proposition 1. From Theorem 3 we have:

lt yj, y3)+r([y2> y, Y ^ + A C , yj, 2) . (6.32)
Using the formula (6.30) we have

j= - y3n^ι, y2)- ΫιΓ(Ϋ29 y3)- y2r(y3, yj . (6.33)
If we add (6.32) and (6.33) we obtain minus right hand side of (6.29) where Z is
replaced by 73. Thus 2J = 0.

The proof of Proposition 2 follows immediately from the formula (6.18) and
Theorem 2. If Ϋl9 Ϋ2e W then (6.18) reads:

0- 3dΓ(y1? y2, y3)= -Γ([f1? y2], y3) for any field Ϋ3. It means that [yl9 Y2]e .̂
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