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Abstract. We prove the GHS inequality for families of random variables which
arise in certain ferromagnetic models of statistical mechanics and quantum
field theory. These include spin - 1/2 Ising models, φ4 field theories, and other
continuous spin models. The proofs are based on the properties of a class ^_
of probability measures which contains all measures of the form
const exp(— V(x))dx, where V is even and continuously differentiable and
dV/dx is convex on [0, oo). A new proof of the GKS inequalities using similar
ideas is also given.

1. Introduction

We consider models of general even ferromagnets with pair interactions in a
positive external magnetic field. Such a model is defined by a finite family of
real-valued random variables {X{\ ΐ = l, ..., JV}, whose joint probability distribu-
tion τ h l _ h j v on IRN has the form

τΛl...hN(d*ι,...,^NM^^ (1-1)

H(xί9 . . . , X j v ) is the Hamiltonian defined by

/l(X1, . . . , Xft) = ~~ 2^^^i^J^N^ij^i^j~ £jl^i^N"iXi ' U A)

and Z(hl9 ..., hN) is the partition function defined by

Z(Λ 1,. . .,ftN) = ίRW..Jexp(-H(x1,...,xw))Π^ιft(^ ί). (1-3)
The indices i and j label atomic sites in a lattice Λ={1, ...,N}oϊN sites. Xt denotes
the spin of the /'th atom, J^O the ferromagnetic interaction strength between
Xt and Xj, and h^O the non-negative external magnetic field strength at the
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ΐ th site. The ρf are measures belonging to S, which is the set of all even probability
measures ρ satisfying

j exp (kx2)ρ(dx) < oo for some fc > 0 .

The choice of each ρf as the Bernoulli measure

gives a classical spin — 1/2 Ising model [30, Chapter 5].
We shall assume that the numbers Jf j are so small that the integral in (1.3)

converges for all /z^O. Unless noted otherwise, the inequalities we discuss are
to hold for all h^Q and all J f j ^0 subject only to this restriction.

Our main focus in this paper is on the Griffiths-Hurst- Sherman (GHS)
inequality, which states that

= E{(Xi-E{Xi})(Xj-E{Xj})(Xk-E{Xk})}

= E{XiXjXk}-E{Xi}E{XjXk}-E{Xj}E{XiXk}

-E{Xk}E{XίXj} + 2E{Xi}EXj}E{Xk} (1.4)

for all (not necessarily distinct) sites iJ,keΛ. We discuss several implications of
(1.4) below. The GHS inequality was first shown to hold for spin— 1/2 Ising
models [11]. Also, one can prove the GHS inequality indirectly for ferromagnetic
families of random variables. These are systems which can be built out of spin— 1/2
Ising models in a suitable way [18, §4]; examples are given after the statement
of Theorem 2.5 below. Other inequalities known for even ferromagnets include
the Griffiths- Kelley- Sherman (GKSI and II) inequalities. They were originally
proved for spin— 1/2 Ising models [8,13] and have since been shown for all
measures in S and for Hamiltonians more general than (1.2) (see [4; 26, p. 274]
and Appendix A of this paper). In contrast, measures in S for which the GHS
inequality fails are easily obtained [12, p. 153]: for example,

) for 2/3<α<l . (1.5)

The GHS inequality has a number of interesting implications: concavity of
the average magnetization N~ 1 £f= i E {Xt} as a function of the external field [11];
absence of phase transitions for hί = ...= hN> 0 [23] monotonicity of correlation
length in Ising models [14] and of mass gap in φ4 field theories [12] as functions
of the external field; absence of certain bound states in quantum field theory
[6,7]. It has also been used to derive critical point exponent inequalities [11,
p. 795], absolute bounds on physical coupling constants in quantum field theory
[5], and eigenvalue inequalities in quantum mechanics. For the latter, see the
remark before Theorem 1.2 below.

Our main result is to give conditions on the measures ρf which guarantee (1.4).
This is done in terms of a subclass ^_ of S, defined at the beginning of Section 2.

Theorem 1.1. // ρ1? ...,QN are in ^_, then the GHS inequality (1.4) holds.

Essentially, a measure belongs to ^_ if an infinite string of moment inequalities
are satisfied. These inequalities were used in [2] to prove the special case of (1.4)



Correlation Inequalities 169

where JV=1. The new element needed to prove (1.4) is certain multivariate cor-
relation inequalities satisfied by measures in ^_.

Our next result, Theorem 1.2, gives a large class of measures which belong
to ^_. This property of measures of the form (1.7) generalizes Theorem 4 in [2],
which admitted entire functions V(x) with the expansion

Σΐ=1akx
2\ak^Q for fc = 2,3, ...,aί real (αx>0

if all other ak are 0).

As an application of Theorems 1.1 and 1.2 c), it follows that when V satisfies the
hypotheses of Theorem 1.2, the first three eigenvalues E1<E2<E3> of the quantum
mechanical Schrodinger operator — d2/dx2 + V(x) on L2(IR;ώc) satisfy E3 — E2 =
E2 — E1 [24]. It also follows that the gap E2(d) — El(d) between the first two
eigenvalues E^a) and E2(ά) of the operator — d2/dx2 + V(x) + ax on L2(IR;ώc)
increases with a [26, p. 335].

Theorem 1.2. a) <^_ contains the Bernoulli measure b(dx).
b) ^_ contains the measures ρa(dx) in (1.5) /or 0^α:g2/3 *.
c) ^ _ contains all measures of the form

ρv(dx) = (fR exp(- XMίdxΓ1 exp(- 7(x))dx , (1.7)

where V(x) is even, continuously differentiate, and unbounded above at infinity,
and V'(x) is convex on [0, oo) (' denotes d/dx).

d) ^ _ contains all absolutely continuous measures ρeS* with support on [ — α, α]
/or some 0<α<oo provided g(x) = dρ/dx is continuously differ entiable and strictly
positive on ( — a, a) and gf(x)/g(x) is concave on [0, a).

That b(dx) belongs to ^_ was first noted in [2]; we give another proof.
Combining Theorems 1.1 and 1.2, we obtain a direct proof of the GHS

inequality for spin — 1/2 Ising models, and, for example, for the measures

ρ(dx) = const x exp( — ax4 — bx2)dx , (1.8)

ρ(dx) = const x exp( - a coshx - bx2)dx , (1.9)

where a > 0 and b is real. Both of these are of physical interest (for (1.9), see [26, §5.6]).
Since the measure in (1.8) has been shown to be ferromagnetic, the GHS inequality
holds for it [12], but until now a direct proof has been lacking. We point out that
ferromagnetic families of random variables satisfy other properties, such as the
Lee- Yang theorem, which are distinct from (1.4) [20].

In Section 2 of this paper, we define the class ^_ and prove the multivariate
correlation inequalities needed for the proof of Theorem 1.1. We also derive other
properties of this class. In Section 3 we prove Theorem 1.1. Our idea is to use the
multivariate ^_ inequalities to show that the multi-Taylor coefficients in the
expansion of the entire function

[Z(Λ19 .., hN)

1 By an argument of Preston [23], this implies that the tricritical point in Griffiths-type models of
He3-He4 mixtures (see [1, 10]) is not less than 2/3.
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in powers of hb 1=19 ...9N9 are all negative. We also note other correlation in-
equalities, one of which appears to be new:

<ijkiy - <ίjy<kiy - <ife><//> - <//></*> + 2<i></><fe></> ̂  o , (i.io)
where ij, fc, / are any (not necessarily distinct) sites in A and (ijkiy = E{XiXJXkXι}9

etc. In Appendix A, we give simple proofs of the first and second GKS inequalities
as well as other correlation inequalities valid for arbitrary measures in S. One of
these is new:

Σϊ=o(-l) k Σθ\...Λ></ f c + ι . . .J2π>^0, W =l,2,. . . , (1.11)

where the inner summation runs over all partitions of a fixed set {il5 ..., i2n} of
(not necessarily distinct) sites of A into two subsets {/1? . . . 9 j k } 9 {/k+ι> "-Jin} an^
the empty expectations equal one. In Appendix B, we modify our methods to
prove GKS-type inequalities for systems with

+l)) , i= 1, ..., N ,

and with the following Hamiltonians which are different from (1.2):

H(xl9 .. ,xN)=-Σί^jίNJij(axl-bxl)(ax2

j-bxj)

H(xί9 . . ., XN) = -

with Jjj^O, y f j ^0, fy^O, μf real, 0 and έ> real. Such systems have been used to
model ternary mixtures [16] and He3-He4 mixtures [1].

One contribution of the present work is that it proves the GKS and GHS
inequalities by a unified technique. The proof of each employs independent,
identically distributed copies of random variables (one for GKS I, two for GKS II,
four for GHS) as well as a special orthogonal matrix used to rotate the independent
copies. The 4 x 4 matrix used for GHS is the direct product with itself of the 2 x 2
matrix used for GKS II. While the infinite string of correlation inequalities which
enter in the proof of GHS are conditions for a measure's belonging to ^_, the
analogous correlation inequalities needed for GKS are automatically satisfied
by all measures in S.

The idea of using two or four independent copies of random variables has
been employed to good advantage by other workers in the field [4, 15, 22, 27, 29].
No use has yet been found for eight or more independent copies.

As this paper was being prepared, we learned of new work of Sylvester [27],
who has independently proved Theorem 1.1 and who has shown that the ^_
inequalities imply the correlation inequalities of Lebowitz [15]. Similar results
have also been obtained by Schrader and Mehta (unpublished).

Acknowledgment. One of us (R.S.E.) has benefited from conversations with the following people :
A. Devinatz, J. Glimm, A. Jaffe, J. Lebowitz, M. Marcus, J. Percus, S. Sawyer, G. Sylvester, and
S. Varadhan. Another of us (C.M.N.) would like to thank A. Lenard and S. Sherman for many
useful conversations.
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2. Facts about <^_

Our definition of ^_ is taken from [2]. After giving it, we indicate an alternate
form which simplifies calculations.

Definition 2.1. Given ρe<f, let W(Λ\ α=l, ...,4, be four independent copies
of a random variable W distributed by ρ. Let W = (W(i\ ..., W(4}) and m =
(m(1), ...,m(4)), where each m(α) is a non-negative integer. We say that m is odd
(resp., even) if each m(α) is an odd (resp., even) integer. Take A to be the orthogonal
matrix

(2.1)

and define

We define

^0 for all m odd}.

_) and W distributed by ρ, we shall writeRemark 2.2. Given ρe<ί (resp.,
We <? (resp., We^_).

Sylvester [28] has noted that the definition of ^_ is equivalent to requiring
that

E{(BW)m}^0 for all m, (2.2)

where B is the matrix
1 1 1 1

1 - 1 1 - 1

1 1 - 1 - 1

-1 1 1 - 1

(2.3)

This is so because B is obtained from A by multiplying an odd number of rows
by —1 and because the expectation E{(AW)m} vanishes unless m is either even
(in which case the expectation is clearly non-negative) or odd. The latter fact is
proved as Part (c) of Theorem 2.5. We define

. (2.4)

Warning. In [2], μρ(m) denotes E{(AW}m}.
Our proof of Theorem 1.1, given in Section 3, is based upon multivariate

versions of the ^ _ inequalities (2.2). We prove the following result at the end of
this section.

Theorem 2.3. Let {7l5 ..., YN} be a set of real-valued random variables with
joint distribution (see (1.1))

Let {Y[a\ ..., 4α)}, α=l,2,3,4, be four independent copies of {7 l 5 . . . 5 Y N } and
define

(2.5)



172 R. S. Ellis et al

Given multi-indices ιw l 5 . .., mN, we define

I f ρ ί 9 ...,ρNE&_, then

μ(m1, ..., wN)^0 for all w l 5 . . . , W N . (2.7)

We state additional facts about ^_ (proved at the end of this section) after
the next definition.

Definition 2 A. Let Yl,...,YN be random variables as in Theorem 2.3. If
Y = ΣJϊί=ιλiYi for some A^O, then 7 is a ferromagnetic union of the {YJ.

Theorem 2.5. (a) Given 7l5 ..., 7N as m Theorem 2.3 with each ^e^
ferromagnetic union of the {YJ belongs to & _. (b) // P ,̂ n=i,2, ..., are random
variables in $ '_ SMC/I ί/iaί W = w-\imWn exists (i.e., the probability distribution

o/ ί/ze P π̂ converge weakly to the probability distribution of W) and
n

K<GQ, ί/zen We@_. (c) Gzuew ρe^, f/zew μρ(m)>0 z/m z's ei en and μρ(m)=0 if m
is neither even nor odd. (d) The numbers μρ(m) vanish for all m odd if and only if
either ρ is an even Gaussian measure or ρ = δ(x).

In [18, § 4] the set ̂  of mean zero ferromagnetic random variables is defined.
We shall say that a measure QE$ is mean zero ferromagnetic if a random variable
distributed by ρ belongs to J 0̂. Using the fact that the Bernoulli measure belongs
to ^_ [see Theorem 1.2(a)], we have by Theorem 2.5(a) and (b) that J 0̂ is a subset
of ^_. As examples of measures in J ,̂ we have the measure in (1.8), the measures
ρa(dx) in (1.5) for O^α^^ (as can be shown by direct construction), the measures
[9]

fc = l,2,..., 0<c<(X),

and normalized Lebesgue measure on [ — c, c], any 0<c<oo [weak limit of

We claim that ̂  is actually a proper subset of ^_. Indeed, the measures
ρa(dx) for 0^α^2/3 belong to ^_ [see Theorem 1.2(b)] while for l/2<α<l these
measures are not mean zero ferromagnetic. To see the latter fact, we note that
any mean zero ferromagnetic measure satisfies the Lee- Yang condition [18,
Remark 5], which is that

the entire function h-^^ehxρ(dx) has pure imaginary zeroes in h . (2.8)

It is easy to ckeck that (2.8) is not true for ρa(dx),^<a<l.
We end this discussion with a conjecture concerning the <^_ inequalities and

another set of inequalities, called the Khintchine inequalities. The latter have
single-site and multivariate forms. In their single-site form, the Khintchine
inequalities state that the moments of qeS are bounded by the corresponding
moments of a mean zero Gaussian measure with the same variance as ρ; they are
known to hold for any measure in § which satisfies (2.8). In their multivariate
form they are known to hold for any mean zero ferromagnetic family of measures.
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See [19, Theorem 5] and [18, Theorem 3] for complete statements of these
inequalities and proofs of the above facts and [25] for an application of the
multivariate Khintchine inequalities in field theory.

Based on calculations with the first four ^_ inequalities, we make the following
conjecture.

Conjecture. Given Yl9 ..., YN as in Theorem 2.3 with each ρίe
(g_, then the 7/s

satisfy the multivariate Khintchine inequalities. In particular, any ρe^_ satisfies
the single-site Khintchine inequalities.

As further evidence, we consider the measures Qa(dx) in (1.5). By Theorem 1.2(b)
these measures belong to ^_ for Orgα 5^2/3. One can verify that the ρa(dx) satisfy
the single-site Khintchine inequalities for exactly the same values of a. We also
note that it is precisely for Gaussian measures or the trivial measure that all the
single-site ^_ inequalities and all the single-site Khintchine inequalities are
equalities.

Proof of Theorem 2.3. For each i=l, ..., Aί, let W(*\ α=l, ...,4, be four in-
dependent copies of a random variable distributed by ρ f. We assume that W\β)

and WW are independent unless i=j and β = y. We set

By the definition of Yt and the orthogonality of B, we have

(2.9)

where Z0 = Z(hί9 ...9hN)\Λnhi = 0 and denotes the standard R4 inner product.
Expanding the exponential and using the positivity of the Jij9 we see that it suffices
to prove that

£{Πf= i (BWy^Q for arbitrary indices n t . (2.10)

But (2.10) follows from the independence of the Wt and from the hypothesis that
each Qi is in ^_. This completes the proof.

Proof of Theorem 2.5. For Part (a) it follows from Theorem 2.3 that for any m
and λ f^0

For Part (b), since each Wne&_9 we have by Theorem 1.1 and [19, Proposi-
tion 1] that for all real h

, n=l,2, ... .

Hence (as in [19, Theorem 5])

\imE{W2

n

m} = E{W2m}, m = l , 2 , . . . . (2.11)
H-»00

Since each μWn(m)^Q for all m, this carries over to μw(m)^ΰ for all m. Hence
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The first half of (c) is obvious. For the second half, we use the fact that the
random variables W(i\ ..., W(4) in the definition of ^_ are symmetric and identi-
cally distributed to prove that

μρ(m) = (μβ(m)/4)[(-^
i / •|\m<1> + /n< 2 >+m< 3 >+m< 4 >- |

From this it follows that μρ(m) = 0 if m is neither even nor odd.
The sufficiency of the condition in (d) is checked by explicit calculation. For

the necessity let us assume only that

μe(mj) = Q9 all; odd, where »!,. = (/', 1, 1, 1) - (2.12)

For JV= 1, (3.12) below (also see [2, Eq. (8)]) becomes

d*/dh3 Injexp(foc)ρ(ώc)= -

and so by (2.12)

Thus J Qxp(hx)ρ(dx) = aQxp(bh2\ a and b real, and so ρ = δ(x) if b = Q, Gaussian
otherwise. This completes the proof of the theorem.

3. Proof of Theorem 1.1

Given (not necessarily distinct) sites z'1? ..., ineΛ, n= 1, 2, ..., we define the Ursell
functions

...9hJ (3.1)

and set

^B

0)(i1,...,ί11)=ί71,(i1,...,iI1)| l lUh(=o. (3-2)

We write Z for Z(/z1? ...,hN) and let

</ι...;m>=£{^1-^m},</ι-J»>o = -E{^I'...^JU». = o (3-3)

Given i,j,keΛ, we have

We define vectors

*J = (A} 1 >,. . . , f t | 4 >),/=l, . . . ,N, (3.5)

and consider random vectors Yl as in (2.5). We rewrite U3(i,j, k) as

C/3(ί ,;,/c) = (Z0/Z)4£{^exp(Xf=1/ ! ry ί)}U<f)=f, ! jα=1>... j4, (3.6)

where 2 is the differential operator

2 d3 / dh^ dhf} dh^ . (3.7)
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Define

« _ / « ( ! ) o(4)\ _ fa τ>t 7 _ ι Λ TSl~(Sl ? - > 5 J J— Λμ5 , / — I, ..., JV .

As in [3, Appendix] (where the matrix A was used instead of B\ we find that

[73(U, fc)= -2(Z0/Z)4E{^ expίΣfUvφF,))} , (3.8)

where

®'=53/&<2)ds<3Wfc

4) (3.9)
and £ denotes expectation followed by evaluation at

s|1) = 2Λ,>s}2) = si3) = s}4) = 0,/ = l , . . . ,N. (3.10)

The latter corresponds to the h\x) evaluation in (3.6) since

Expanding the exponential in (3.8), we see that

U3(i,j,k)

= -2(Z0/Z)4[®'Σ((s1r
ι/ι«1!)...((swΓV»]»!K...rw(»ι, -..,«*)] , (3.11)

where the sum extends over all multi-indices m1, ..., mN and

m,! = Π4=ιMα))!

Carrying out the evaluation given by (3.10), we find that

•/^...y^Wi, ...,«*), (3.12)

where

n~(ni9 1, 0, 0), nj = (nj9 0, 1, 0), nk = (nte 0, 0, 1) ,

and nt = (nb 0, 0, 0) for / φ i, j, k.
By Theorem 2.3, the proof is complete.
Remark 3.1. Sylvester [28] has proved this in slightly different form. He sets

and writes

E73(U, fc)=

from which the GHS inequality follows by expanding the exponential and using
Theorem 2.3.

Remark 3. 2. Other inequalities follow from (3.12). Under the same hypotheses
as in Theorem 1.1, we have

...dhίn{z\h1,...,hN)U3(ij,k)}\hl^..=hN=0^o, (3.13)
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for all ij, fc, i1? ..., ineΛ, w = 0, 1, 2, ... . For n— 1, we obtain

(3.14)

and for ?? = 3

t/H'Ί, »2, <3, i*. is, iβ)^ -(4/5) Σi <i'A>0U^(i'3, 4, ii, 4) , (3.15)

where £ι extends over the 15 different partitions of {i l9 . .., i6} into subsets {i'l5 i'2}
and {i'3, . . ., 4 }. Using [18, Eq. (3.24)], which is valid for a mean zero ferromagnetic
family of random variables [18, §4], we obtain from (3.15) for the latter type
system

where £2 extends over the 15 different partitions of {i l5 ..., ί6] into subsets {i'2, i'2}9

{f3,4}, {Γ5,4}.
As explained in [3, Theorem 1], further inequalities can be obtained from

different choices of the derivative operator 3)' in (3.8). For example, (1.10) follows
if we let

4. Proof of Theorem 1.2

By the discussion following (2.3), in order to show that a given ρ e $ belongs to
^_ , we need only show

E{(BW)m}^Q for all m odd. (4.1)

We first obtain an alternative expression for the expectation in (4.1) and then
derive a sufficient condition for (4.1) to hold. We define

IR4 = {>v = (w(1), w(2), w(3), w(4))eR4: each w(α)>0}

and denote by (IR^)01 the closure of R+. IR+ and (R+)cl are defined analogously.
To ease the notation in this section, we denote w by w.

Given ρe$ and T a 4 x 4 invertible matrix, we define the measure ρτ on
R4 by

ρτ(F) = ρ^-^l F a Borel set in IR4, (4.2)

where ρ(dw} is the product measure [|4= ί ρ(dw(a}}.

Proposition 4.1. Given ρe$, define the signed measure ρ(dw) on IR4 by

ρ(dw) = ρB(dw) - ρA(dw) ,

where B and A are the orthogonal matrices in (2.3) and (2.1) respectively. Then

£{J5MK)m} = 8jlR1 wmρ(dw), for m odd. (4.3)

Hence a sufficient condition for ρ to belong to ^_ is that ρ be a positive measure on
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Remark 4.2. For future reference we write out ρB and QA in case ρ is absolutely
continuous with density g :

ρB(dw) = g((ww + w(2) + w<3> - w(4))/2)0((w(1> - w<2) + w<3) + w(4))/2)

g((ww + w<2) - w<3) + w(4))/2M(w(1) - w(2) - w(3) - w<4))/2)
3)dw<4), (4.4a)

> - w(2) - w(3)

w

1) + w(2) - w(3) - w<4))/2)

+ w(3) - w(4))/2M(w(1) + w<2) + w(3) + w<4))/2)

(4.4b)

Proo/ Given numbers σ(α)= ±1, ot=l,...,4, we denote the diagonal matrix

(σ(%,), α, /?=!,.. ., 4, by /(σ). We have

= ,<»,...,,^= ± ! t = i ) - w

= Li Πί= i (w(β)Γ<")[Σ>",...^^= ± i Πί= i (^ΓMq,MB(dw)-] .
(4.5)

We now use the fact, which follows from the evenness of ρ, that

0 ίΛrt _ f β ̂ ί if ΓC-ι^= + ι.&«***> - \QA(dW), if ro=^<α)=-ι (4.6)
Formula (4.3) follows by the oddness of m. This completes the proof.

We next turn to the proof of Theorem 1.2. We shall use the sufficient condition
in Proposition 4.1 to prove Parts (a), (c), and (d). To prove Part (b), we will use
formula (4.3). Our calculations will indicate that the sufficient condition in the
proposition is not necessary.

For Part (a), we have that bA vanishes on 1R+ [although it does have support
on the boundary of R^ at the points (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), and (0, 0, 0, 2)],
and so b is a positive measure on IR+ .

For Part (b), we use the following easily verified facts: the only points in the
support of ρa which are mapped to 1R+ by B are

their images under B are
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respectively; the only point in the support of ρα which is mapped to IR4 by A is

, and A I.Hence by (4.3) we have for m odd

= 8 2-M[((l-α)/2^

(4.7)

where M=£4

=1m
(α). We see that E{(BW}m}/% 2-M is increasing in the m(α)'s,

and hence (4.1) will follow once we prove

But this equals (1 — α) (2 — 3α)/4, which is non-negative for 0^α^2/3. This com-
pletes the proof of Part (b). It is clear that the sufficient condition in Proposition 4.1

lι\is not necessary since for α>0 (ρa)A has support at the point \ L , where (ρa)B

\has no support. \1/
For Parts (c) and (d), it suffices to prove (c) only. Indeed, given g(x) as in (d),

we can find equibounded C1 functions gε(x\ ε>0, such that ρε(dx) = gε(x)dx/
§gε(x)dxe$, gε>Q on IR, g'Jgε concave on (0, oo), limgε(x) = g(x) for all x, and

sup ί x2gε(x)dx<co. By (c) we then have that each ρ εe^_, and so we conclude
ε>0

that ρe^_ by Theorem 2.5(b).
Concerning (c), the hypotheses on V imply that as x->oo V(x)^δx2 for some

(5>0, and so ρv£$. By Proposition 4.1 and formula (4.4), it suffices to prove that

F(w(1) - w(2) - w(3) + w(4)) + F(w(1) + w(2) - w(3) - w(4))

- w(2) + w(3) - w(4)) + 7(w(1) + w(2) + w(3) + w(4))

(4.8)
on(R4)cl.
The point is that the expression in (4.8) is an eight point difference approximation
to the third derivative of K Part (c) is then a consequence of the following lemma.

Lemma 4.3. Suppose that V(x) is an even C1 function on R Then V'(x) is
convex on [0, oo) if and only if V satisfies (4.8).

Proof. We show that (4.8) is equivalent to

on (IR3,)01, (4.9)

then that (4.9) is equivalent to the convexity. For the first part, we rewrite (4.8) as

^

on (R4)cl. (4.10)
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By taking w(4)^ε>0, dividing both sides of (4.10) by ε, and letting ε-»0, we see
that (4.8) implies (4.9). Conversely, since we may assume by symmetry that
w(1)^w(4), we see that if (4.9) holds, then the integrand in (4.10) is non-negative
for all -l^r^l, and so (4.8) follows. Hence (4.8) and (4.9) are equivalent. Now
(4.9) clearly implies that

V'(y + fc) - V'(y) ^ V'(x + k) - V'(x\

for all O^x^y and fc^O, (4.11)

and (4.11) is equivalent to convexity on [0, oo) for continuous V. On the other
hand, assuming the oddness and the convexity on [0, oo) of V, we have (4.11)
together with (we claim)

-Vf(y)^Vf(x)-Vf(x-k), for all ΰ^x^y and fc^O. (4.12)

Let us accept (4.12) for a moment. We now prove that (4.11) and (4.12) imply (4.9).
By symmetry, we may assume that in (4.9) w(1)^w(2)^w(3)§:0. When w ( 1 )grw ( 2 ) +
w(3), then (4.9) follows from (4.11) (take x = w(1)-w(2)-w(3), y = w(1) + w(2)-w(3),
and fc-2w(3)). When w ( 1 )<w ( 2 ) + w(3), then (4.9) follows from (4.12) (take x = w(1)-
w + w(3), y = w(1) + w(2)-w(3), and fc-2w(3)). We are finished except for (4.12),
for which we need only consider the case x — /c<0. Then

V'(x) -V'(x -k) = V'(x) + V'(k-x) = V'(x) + (V'(k-x) - F'(0))

^ V'(x) + ( V'(x + k-x)- V'(x)) = V'(k) = V'(k] - V'(ϋ) ^ V'(y + ic) - V'(y] ,

(4.13)

where we have used (4.11) in the third step and in the last step. This completes
the proof.

Remark 4.4. If V(x)= ££L0 %x2k is entire, then the condition in (1.6) that
αfc^0 for all fc^2, although sufficient for the ^_ inequalities, is too restrictive.
For example, one can have a2>®, #3<0, α4>0, and still satisfy the hypotheses of
Theorem 1.2. On the other hand, we clearly need a2 >0 in order to have 7w(x)^0
for small x. We refer the reader to [27, Appendix], where the question of allowable
negative coefficients is studied more closely. Concerning polynomial field theories
of degree greater than four, we note that Hf2k(x) does not have constant sign in
[0, oo) for any k>2. Here, H2k is the 2fe/th Hermite polynomial exρ(x2/2)(d/ώc)2k

exp( — x2/2). This is consistent with an observation of Spencer [26, p. 335].

Appendix A. GKS Inequalities

We give simple proofs of the first and second GKS inequalities

fc=l,...,n-l, (A.2)

where ίΐ,...,ίneA (n^.2) and ρί9...,ρN are arbitrary measures in $.
Inequality (A.I) follows by expanding the exponentials in the representation
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where Wi9 i=l9...9N9 are independent random variables distributed by ρ f. For
(A.2), we define Wί = (Wi

(^\ W{

(2}} (where W^\ α= 1, 2, are two independent copies

and write the left-hand side of (A.2) as

We define ^ = (5^^ s\2)) = Athi9 where

.-ί 3-
[A is the matrix used to define the matrix A in (2.1).] Q) goes over to an operator
3)', which is a sum of products of derivatives in the s\*\ each product appearing
with a positive coefficient [17, Eq. (3.7)]. Inequality (A.2) follows from the fact
that for any ρ fe^ the numbers E{(AWf)mί\ m^^mj1^ m(;2)), equal zero unless
m\1} and mj2) are both zero, in which case this expectation is positive.

Other inequalities such as (1.11) are obtained by different choices of 2'.
Inequality (1.11) comes from

Appendix B. GKS Inequalities for Certain Non-Even Ferromagnets

We establish GKS-type inequalities for two systems not directly covered by the
preceding analysis. System I is defined as in (1.1) with Hamiltonian Hl given by

Hl(xl9...9xN)

where J^O, h^O, μt are real (i9j=l9...9N\ a and b are real, and with

Qi(dx) = (lβ)(δ(x - 1) + δ(x) + δ(x + 1)), i = 1,. . .,JV . (B.2)

This system has been used as a model for ternary mixtures [16]. System II is
defined as in (1.1) with Hamiltonian Hn given by

— ~~ Δ^l^i^J^N JijXiXj ~~ L^ί^ί^j^N 7i /flXi

(B.3)

where J0 ̂ 0, y0 ̂ 0, Λ^O (i,j=l,...9N\ a and b are real, and with the ρ s as in
(B.2). System II has been used to model ternary mixtures [16] and He3-He4

mixtures [1]. By methods similar to those used below, inequalities for higher
spin systems and more complicated Hamiltonian may be established.

Theorem B.I. a) For System I, if a^.\b\9 then for any i l v,.,ιweΛ. (n^2) and all

\ - bX,)}- E(Ylk

j= , (aXl - 6^)}£{ΓL"= fc+ , (aX\ - bXt)} .

-l. (B.4)
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b) For System II, if a^2b and α^O, then for any iί9...,ineΛ (n^.2) and all

.jrj^Q, E{Xiί...Xίn}-E{Xil...Xik}E{Xik+l...Xin}

^0, fc=l,...,n-l. (B.5)

To prove Part a), we rewrite the Hamiltonian Hl in terms of the variables

t = ax2 — bxi9 isolate the part with the same form as (1.2), and redefine the measures

t. We have

where

- " i si* AHί(w lv..,wN)=- Σ ι "

Hence, if we define

ρ'.(dw) - (<5(w - (α - b))e ~ αhί + μι + <5(w) + <5(w - (α + fe))e ~ ahί

then the systems {Hl;ρi,i=l,...,N} and {HJ ρJ, ί=l9...9N} are equivalent.
Although the ρ are no longer even measures, the technique of Appendix A is still
valid, and (B.4) follows once we prove that

£0 for all m-(m(1), m(2))^0 . (B.6)

In (B.6), Wi = (Wi

(1\ W^2}\ where the ί^(α) are two independent copies of a random
variable distributed by ρ . A straightforward calculation yields (B.6) provided

Concerning Part b), we let Wi = (Wi

(l\ Wt

(2}), where W^} are two independent
copies of a random variable distributed by ρ ί? and

Zί = (a(Wi

(^)2-b,a(Wi

(2}}2-b}.

A check of Appendix A shows that it suffices to prove that

E{(AWίΓ(AZ^}^ for all m-(m(1), m(2))^0

and all n = (n ( 1 ),w<2 ))^0. (B.7)

A straightforward calculation yields (B.7) provided α^2ί>, α^O. This completes
the proof.
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