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Abstract. The existence and uniqueness of global solutions to the Cauchy
problem is proved in the space of "smooth" density matrices for the time-
dependent Hartree-Fock equations describing the motion of finite Fermi
systems interacting via a Coulomb two-body potential.

1. Introduction

In this note, we indicate how to generalize the recent results of Bove, Da Prato,
and Fano [1] concerning the time-dependent Hartree-Fock equations with
bounded two-body interaction to include the Coulomb two-body interaction.
(See this work and the references therein for a discussion of the origin of the
problem.) Specifically we consider the existence of global solutions to the Cauchy
problem for the equations

idK/dt = [£Δ-U,K]-9 (1.1)

where K = K(t) is a density matrix [i.e. a non-negative trace class operator on
L2(#3)] and U is the self-consistent potential UD— UEX defined by

(UDf) (x) = (ί \x-y\~ 1Λ(y, y; t)dy)f(x) (1.2)

and

(EW)(χ)=-f x-yΓ^y WMdy (1.3)

when K(t) is represented as the integral operator (K(t)f)(x) = § k(x,ym,t)f(y)dy.
The idea of the argument is to extend to this situation our results [2] for N-

electron systems governed by the Hartree-Fock equations

U^ψj, (1.4)
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where

EΌpφ/x,')= Σ (<?/*»0ί \χ-y\ l\
1 = 1

-φ,(χ, ί) J |x-y\-^(y, ί)φ/x, ί) dy). (1.5)

The connection between the problems (1.!)-(!.3) and (1.4), (1.5) is the following:
Suppose φ -(x, ί) is the unique global solution of the latter Cauchy problem with

N

data φ7{x,0) = ]/l^°(x), then kN(x,y;t) = Σ φ^x.ήφ^y.t) is the kernel of a
j=ι

solution of the original Cauchy problem with data K^ having kernel
N

Σ λjφ
(j(x)φ^(y). In this framework, the results of [2] can be interpreted as a

j = ι
solution of the problem (1.!)-(!.3) within a certain class of finite-rank operators.
Section 2 of this paper consists of making precise this idea as well as that of taking
the limit ΛΓ-κx). The key ingredient in the limiting procedure will be the a priori
estimates developed in Lemma 3.4 of [2].

2. The Results

It is well-known that in order to handle the Coulomb potential one must ultimately
introduce derivatives (see, for example, the calculations of Lemma 2.3 of [2]
which are typical). For this reason the solution space is taken to be the following
Banach space of "smooth" operators.

Definition 2.i. Let A2 denote the self-adjoint realization oϊI — Δ on L2(IR3).
Suppose ^(L2(IR3)) is the set of all bounded operators on L2(IR3) and JS?1(L2(R3))
is the set of trace class operators on L2(IR3). Define S = {K; Xe^f(L2(lR3)) and
A\K\AE^(L2(R3))} with the norm in S taken to be \\K\\ 1 1=trμ|X:|^[) =
\\A\K\A\\t.

In what follows we use || || to denote the norm in L2(R3) and ^(L2(IR3)), || || 1
the norm in <g 1(L2(1R3)) and || \\1Λ for the norm in 5 in as much as it corresponds
to the Sobolev space ff *(R3) of scalar functions. Indeed for physical reasons
we are only interested in the cone of positive operators in S, denoted by S+ and
called smooth density matrices. Before beginning the main discussion, we summa-
rize some ideas about trace class operators (cf. [3]) which will be useful in the
later calculations. Since \K\^Q, then A\K\A^O so that \\K\\^ 1=tr(A\K\A) =
\\A\K\A\\^ But A~l is bounded on L2(IR3) so that \K\^A-lA\K\AA~l and hence
Ke£fl(L2^)). Thus K can be written as an integral operator (Kf)(x) =
j /φc, y)f(y)dy, with kernel fc(x, y)e L2(IR3) x L2(R3) and \k\(x, x)e L^R3). Moreover

00

k(x,y)= X λjφj(x)φj(y) and the kernel associated with |X|, |fe|(χ,j;) =
^> = 1

Σ \λj\φj{x)φj{y) [where {Iλ^l, φ7 } is a spectral set for |K| and the convergence is in

L2(1R3) x L2(R3) with Σ\λj\ = Σ\λj\\\Φj\\2=l\k\(χ>χ)dx<™']' Finally? because
\K\φ~\λj\φj9 Aφj = \λj\-1A\K\φj=\λj\-1A\K\AA-1φj. Thus \\AΨj\\^
^Γ^AWA^U'iφ^λ^^^ so that ΨjeD(A).

Thus the kernel of A\K\A is Σ\λj\Aφj(x)Aφj(y) and | |X | | l f l = Σ \λj\ \\A(Pj\\2
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Definition 2.2. K(t) is a solution of the Cauchy problem (1. !)-(!. 3) over the
interval (0, T) if the map t^K(t) : (0, T)-+S is continuous and K(t) satisfies the
integrated form of Eq. (1.1),

) = e~iA/2tK(Q)eiAI2t

} [ l J , K] (s)eiA/2(t~s}ds , (2.1)
o

the last integral being interpreted in the strong Riemann sense in S.

Proposition 2.3. The Eq. (2.1) has a unique local solution in S.

Proof. Segal's generalization of the Picard-Lipschitz theory to infinite
dimensional spaces [4, p. 343, Theorem 1] can be applied directly. First the free
propagator is a contraction group since ||β~^/2ίKe^/2ί||1 i = \\A\e~ iAβtKeiAI2i\A\γ =
\\Ae~ iA/2t\K\eiA/2tA\\ = \\e-iA/2tA\K\AeiA/2t\\^ by the spectral theorem and the last
equals H^K^H^ \\K\\1Λ by [l,p. 186, Proposition 3.4]. The local Lipschitz
nature of the non-linearity follows essentially as usual. By straightforward algebra

so that it is enough to show that \\U(K)L\\ίtί and
Now \\U(K)L\\ίΛ = tr(A\U(K)L\A) = tr(\U^)L\A2)^ \\K\\ 1 extracting the
partial isometries in the polar decomposition of U(K] and U(K)L from the left.
Similarly ^LUffi^ ί = tτ(A2\LU(K)\)^ \\L\\ 1 J t/CK:)||. Thus one must show that
||17D(K)J| and \\UEX(K)\\ ^ const \ \ K \ \ I Λ . This follows directly from the Sobolev
type estimates in [2, Lemma 2.3].

Suppose K has a kernel Σ^jΨj{χ)Φj(y) where {l^l,^.} is a spectral set for \K\
and {ψj} is an orthonormal basis in L2(IR3). UD(K) is multiplication by

Σ λj ί x - y\~ lψj(yWj(y}dy and ̂

For the exchange term,

I = Hi Σ λj\* - y\ ~ ^j(
Σ W \\Ψj\\ supf |χ-jrΊφ/j>)l \f(y)\dy

The fact that if K at ί = 0 is positive it remains positive in the interval of existence
is proved in [1].

In proving that this solution can be extended to all of (0, oo) we shall make
use of the following representation of finite rank solutions in S"1".
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Proposition 2.4. Suppose the initial data K° is a finite rank operator in S+

N

i.e. K°= Σ λjφ?(x)φ?(y) where {λj ^ 0, φ° }*= x is a spectral set in L2(R3) with
7=1

φ®eD(A) = Hl for all j— 1, ...,N. Denote by φ^(x,t\ 7'=1,2, ...N the unique
(global) solution of the (integral form of) Eq. (1.4) in ί/^IR3) with initial data

?(x) as given in [2]. Then

K(t)=
7=1 7=1

is £/ze unique global solution in S+ of (the integral form of) problem (1.1)-(1.3)
with initial data K°.

Proof. The idea of the proof can be seen most easily from the viewpoint of the
differential equations and the proof for the integral equations involves only
simple but non-essential algebraic considerations. From (1.4)

N

$y, t) =^Aφj(x, t)ψ$y, ί) - Σ φ/x, t)φ$y, ί) j |x-z\~ 1 \φt(z91)\2 dz
z = ι

N
~1

) J |x — z\ ψι(z, t)(pj(z, t) dz .
1=1

Taking conjugates, exchanging x and y, adding the new equation to the above
and summing over j from / to N one obtains

N

id/dt I

j j I i ι_j ψj\ ' )ψj\y^ ' Z-ί
\ 7 I

— I y—z\ ~1Σ <pj(χ> t)φ](y> 0 Σ Ψι(z> Oζ?i(z' 0) ^z ?
7 i /

+j ί\x - z\~1Σ φ& t)Ψ](y, t) Σ 9ι(χ>l

\ J I

- \y-z\~1 Σ <Pj{x> ϊ}ψ& 0 Σ Vι(z>l

which is just Eq. (1.1) written for the kernel Σ Φ/(X t)Ψ](y> O From [2, Lemmas 3.1

and 3.4] ||φ/f)/l/^ll = ||φ?|| = l and φ j ( t ) e ( A ) for all ί. One can also show in
the same manner that since the {φ? }_ are orthogonal, the {φ/ί)} are orthogonal
for each t. Thus K(ί) = Σ λj{φj(x, t)/yλj) (ψ](y, ί)/l/^/) ^s the unique global solution
of (1.1) in S+ with the given Cauchy data.

Theorem 2.5. The Cauchy problem for (the integral version of) the Eg. (1.1)
has a unique global solution in S + .

00 _

Proof. Suppose the Cauchy data at ί = 0 is K°= Σ ^jΦjMφjGO where,
7=1

oo

since K°e5+, {̂ 0, φ?} is a spectral set and ||K°||U= Σ W
7=1
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{
N ϊ oo

Kχ= Σ λjφ
( (x)φ^(y)> is a sequence of finite rank operators approxi-

j~ ~ N

mating K° in S. From the above KN(t)= Σ ^j(9j(x > 0/l/^y) (Ψ](y> 0/1/ζ ) is the

unique global solution of Eq. (1.1) with data K^ at t = Q. The theorem will be
proved if we can show that for each te(0, GO), KN(t) converges in S (indeed, we
will show that the convergence is uniform in t) and that the limiting operator
function of t is a solution of (1.1).

To this end consider, for any £e(0, oo),

N

= Σ λj(1+λ]
J=M

= Σ λj+Σ IW)II2,

where we have used the estimate [2, Lemma 3.1] \\φ^f)/yλ^\\ = \\φ^\\ = i. From
[2, Lemma 3.4], since φfa) is a solution of (1.4),

N N N N N N

7=1 7 = 1 1 = 1 ' 7 = 1 . / = l l = l

where IjJ(t) = $vl(x9t)\φJ{x9t)\2 — l/4π\Pυjl(x,t)\2dx9 with vfat) and v j t l ( x , t ) being
respectively the first and second integral in Eq. (1.5). Now 1^(0^0 (cf. [2], from
Eq. (3.7) on) for each j, I, so that

N N N N MM

Σ \\vφj(t)\\2^ Σ ii^Φ/o)!!2 + Σ Σ ^j,i(o)~~ Σ Σ iji(ty
j=M j=N j=l1=1 ' j = l 1 = 1

N N M N N
^ v—\ Λ M r-, Π i t 9 V""1 V~^ T /r\\ \~~\ \Γ~^ Ύ /s\\< V λ:\\Vφ" 2+ ) V ///(0)+ V V /, ,(0).

— L-ι j π ^ 7 i i ' Z—( Z—/ J»^ > L-i LJ 7' ίv 7

But 7j>;(0) = J {(J |x - y\ -^φfc, 0)\2dy) \Ψj{x, 0)|2 - l/4π| V \ \x - y\~ 1φfy,, 0)φj(y, 0) -
dy\2}dx, so that

\x-^

?\\\\φ°\\2\\?φ?\\+c/4π\\φ°φ°\\2

6/5)

j\\2+\\φ?\\2

l2,5\\φj\\l2,5)

where we have used Sobolev inequalities as they appear in [5, p. 220] and [6, p. 27,
Theorem 10.1] in a manner like [2] and the inequality aίllbi/m^a/l+b/m if
1/1+ ί/m = 1. The constant C changes from line to line. Thus
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showing that (KN(t)} is Cauchy in S uniformly in ί e(0, oo) since Kχ-+K° in S.
As a result (KN(t)} converges in S uniformly in ίe(0, oo) to an operator which
is continuous in fe(0, oo) [since for each JV, KN(t) is continuous in 5] and positive.
The uniformity in t of the convergence, the continuity of the non-linearity in S
and the invariance of the || ||1>;l-norm under the free motion (Proposition 2.3)
guarantee that the limiting operator is a solution of Eq. (2.1) in S. Thus it is the
(necessarily unique) global solution of the Cauchy problem in S+ of Eq. (1.!)-(!.3).

In conclusion we remark that other two body potentials (e.g. Yukawa) along
with the inclusion of a central potential can be treated in this manner by suitably
adjusting the "Sobolev spaces" Sn?p= {KeJ^(L2(R3)), \\K\\Pip = tτ(An\K\pAn)<ao}
in a manner suggested by the classical (i.e. scalar or vector) theory of partial
differential equations.
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