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Abstract. We consider as in [1] an infinite dynamical system idealized as a
C*-algebra acted upon by time-translation automorphisms. We show that a
stationary state of such a system which is stable for local perturbations of the
dynamics and is clustering in time, either gives rise to a one-sided energy
spectrum or is a KMS state. The clustering property assumed here is weaker
than the one assumed in [1]. The new proof makes explicit use of spectral
properties of clustering states.

1. Introduction

In an earlier paper, [1], it was proposed to characterize equilibrium states in
quantum statistical mechanics by the following three properties

i) Stationarity.
ii) Stability under local perturbations of the dynamics.

iii) Relative purity (clustering).
The system under consideration is idealized as a C*-algebra acted upon by a

one-parameter group of automorphisms representing the time translations. In
[1], it is proved that a state satisfying i), ii), and iii) either gives rise to a one-sided
energy spectrum in the corresponding cyclic representation, or satisfies the
/J-KMS condition for some inverse temperature βe R Analogous requirements of
stability and clustering applied to the field (rather than to the observable) algebra
allow to develop the concept of chemical potential along with that of temperature
([2], announced in [3]).

This paper is devoted to a weakening of the clustering condition iii) of [1]. The
resulting new proof is more transparent than the previous one, by making use of
additivity properties of the spectra of ergodic groups of transformations.

We next list the definitions and properties needed in this paper. For a more
complete discussion of the concepts involved, the reader is referred to [3].

We consider a C*-algebra 91, a strongly continuous one-parameter group
ί-»αt of *-automorphisms of 9ί and a state ω on 91. ω is said to be stationary if
it is α-invariant.
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(i) ω°oct = ω, ίelR.

If ω is stationary there exists a unique strongly continuous unitary group U(t)
in the corresponding cyclic representation {π, Jf9 Ω} such that

n{at{A)) = U{t)π{A)U{t)*,

U(t)Ω = Ω, ίelR.

By Stone's theorem there exists then a self-adjoint operator H such that

U(ή = eitH, ίeJR.

Now, if Pe 21 is a self-adjoint operator, define a perturbed unitary group by

and a perturbed group of automorphisms by

α<%4) = U(P\t)AU(PW, teIR, Ae 21 .

By a Trotter type argument one can show that ί->α|p) is a strongly continuous group
of automorphisms of 21, [1]. If ω ( P ) is a state of 21 which is α(P) stationary, a straight-
forward argument by differentiation and integration shows that

ω^(aΊ{A)-^(Λ)) = i J ω ( P )([P, α fμ)])Λ .
s

Replacing P by IP, dividing by λ and using the stationarity of ω, this relation
takes the form

| ( ω < λ p ) - ω ) ( α ϊ < ^ ) - α s ( ^ ) ) = / f ω ( Λ P )([P, α ^ ) ] ) * .
λ s

Now, stability can be taken to be any condition ensuring that, as T->oo, S-> — oo
and Λ->0 in some order, the left hand side tends to zero whilst the right hand side
tends to

i J ω(lP,ott(A)-])dt.
— oo

Two such conditions are discussed in [1] and [2]. Araki, [4], has proved that if ω
is a KMS-state for α, then ω(P) exists as a vector-state for all P = P * E 2 1 , and
λ-+ω(λP) is differentiable for λ=0 with derivative in 21^. Thus the theorem of this
paper is a partial converse of Araki's theorem. As our formulation of stability
we take

(ii) for all elements A, Pe 21 such that

is an L1 function, it is true that



KMS and Stability 39

The next condition, hyperclustering of order 4, implies that there is enough
such A, Fs in 2ί. This is a condition of the purity of the state ω.

(iii) There exists a dense subset 2I0 of 21, such that for any set Aί9 A2>..., Ape 2I0,
p ^ 4 , there are positive constants C and δ such that

ωlP)(octι(A1%...,ottp(Ap))SCn+sup\ti-tj\

where ωjp) denotes the truncated expectation value of order p cf [3].

By [1], Lemma 3, one can assume that 2l0 is closed under regularization by
00

functions /e^(IR), i.e. if AeSΆ^ then j f(t)oct(A)dte2l0. This will be assumed

in the following.

2. Derivation of the KMS-Condition

Theorem. Let {21,1R, α} be a C*-dynamical system, and let ω be a state of 21
which is

(i) Stationary.
(ii) Stable under local perturbations of the dynamics.

(iii) Hyperclustering of order 4.

Then either ω generates a covariant representation with a one-sided energy
spectrum, or ω is a KMS state for some inverse temperature /JelR. (The case of
negative or infinite temperature is not ruled out.)

We prove the theorem via some lemmas. For completeness we state all the
required lemmas, although some have been proved elsewhere. We assume in the
following that ω satisfies (i), (ii), and (iii).

Let {π, JΊf, Ω} be the cyclic representation of 21 generated by ω, define U
and H by

Let 3W = π(Sl)" and define

oct(X) = U(t)XU(ή*, te R, Xe 9M.

Lemma 1. Let τt be a weakly continuous group of automorphisms oftyJl such that

τtocs = asτt, ί,

Define the self-adjoint operator K by the requirement

eitKXΩ = τt(X)Ω, XeWl.

Then K and H commute strongly, and the joint spectrum of {H, K} is additive.
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Proof. This is essentially Theorem 4.1 of [3]. The result follows from the
clustering properties of ω.

Lemma 2. Either H has one-sided spectrum, or Sp(//) = IR.

Proof. This is the last assertion of Proposition 3 in [1] (for a somewhat better
proof see Theorem 4.2 of [3]). The proof makes use of Lemma 1 and of the fact
that Sp(//) has no isolated points (except possibly 0) because of the clustering
of ω.

For X, Ye 9JI, we now define, with Eo = the orthogonal projection onto the
subspace spanned by Ω.

XiY(t) = ω(Yat(X))-ω(Y)ω(X)

= (Y*Ω,(U(t)-E0)XΩ)

x>γ(t) = ω(zt(X)Y)-ω(X)ω(Y)

= (X*Ω,(U(-t)-E0)YΩ).

For A,Be% set FAtB = Fπ{Λ)MBί and GAίB = Gπ{A)MB). Then, if A,Be<Ά0, FA^B and
GAB are in L1, and by stability

Using hyperclustering of order 4 one derives from this relation (Proposition 5
and implication (4.5) in [1] or [3], Lemmas 6.3 and 6.4).

Lemma 3. // Al9 Bt, A29 B2eS!l0, then

ϊ FAίBι(t)FA2B2(ήdt= J GAιBι(t)GA2B2(ήdt.
— 00 — 00

From this relation it follows that if H has not one-sided spectrum, then there exists
a continuous real function Φ such that

Φ(0)=l, Φ(~E) =

and

where denotes Fourier transform.

In the next lemma, the Φ in question is the Φ of Lemma 3.

Lemma 4. // H has not one-sided spectrum, then Ω is separating for 90Ϊ. // Δ is
the modular operator associated to the pair {9JI, Ω}, then

Φ(-H) = A.

Proof. Let H= \EdP{E) be the spectral decomposition of//. Then

Fx.At)- ί e~itE(Y*Ω, (dP(E)-dδ(E)E0)XΩ)

Gx γ(t) = J e " itE{X*Ω, (dP( -E)- dδ(E)E0) YΩ).

Thus by Lemma 3, if X, Ye 9l0

(7*Ω, dP(E)XΩ) = Φ(E) {X*Ω, dP( - E) YΩ).
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Now, let 9I 0 0 be the subspace of 2l0 consisting of elements with bounded Arveson
spectrum [3] with respect to α. Since 9I0 is closed under regularization by functions
in cŜ , 2IOo is dense in 21. If X, Ye 2ΪOO, it follows from the relation above that

(Y*Ω, XΩ) = (X*Ω, Φ(-H)YΩ)

and since Φ(E) > 0 for all E,

{Y*Ω,XΩ) = (Φ{-H)1I2X*Ω, Φ{-H)ί/2YΩ). (*)

Now 9I 0 0 is weakly, thus strongly *-dense in 501, [5]. Since Φ( — H)1/2 is closed,
it follows from (*) that mΩQD(Φ(-H)ί/2) and (*) extends to all X, 7e50ϊ. NOW,
from (*)

0, Xe50t.

Hence for X, Ye 501, since 501Ω is dense in

XΩ = 0 ^ Y*XΩ = O^X* YΩ = 0

Thus Ω is separating for 501, and we may form the modular operator A corre-
sponding to the pair {501, Ω}. The latter is characterized by

(Y*Ω, XΩ) = (A 1 / 2X*Ω, A1/2 YΩ\ X, Ye501. (**)

By the Tomita theory, 50ΪΩ is a core for A1/2. If 501^ denotes the Arveson subspace
of 501 corresponding to a bounded closed interval M, then it is easily seen that
WMΩ is dense in P(M)J4f, hence (J 50l^ί2 is a core for any Borel function of H

M

which is bounded on compacts. Thus 50ΪΏ is a core for Φ( — H)ί/2. It now follows
from (*), (**), and [6], VI, Theorem 2.23 that

Φ ( - H ) 1 / 2 = A 1 / 2 .

We are now ready to prove the main theorem. Setting A = eκ, the modular
automorphism group τt is given by

τt(X) = eitKXe~itκ.

Since ω is stationary for oct, it follows from the uniqueness of the modular auto-
morphism group that

Hence by Lemma 1, the joint spectrum of (//, K) is additive. But by Lemma 4,
this spectrum lies on the curve

φ(-h) = ek.

Thus log°Φ must be a linear function, hence there exists a βelR. such that

K = βH.

Thus α satisfies the β-KMS condition with respect to ω.
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Note Added in Proof. After finishing this paper we have been made aware of that the main theorem
has been proved independently by Frank Hoekman.




