Commun. math. Phys. 46, 31-35 (1976)

Unbounded Derivations and Invariant Trace States

Ola Bratteli* **

Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Derek W. Robinson

Université d'Aix-Marseille II, U.E.R. de Luminy and Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Abstract. Let \mathfrak{M} be a von Neumann algebra with cyclic trace vector Ω . Let $\delta(A) = i[H, A]$ be a spatial derivation of \mathfrak{M} implemented by an operator H such that $H\Omega = 0$ and H is essentially self-adjoint on $D(\delta)\Omega$. It follows that:

 $e^{itH}\mathfrak{M}e^{-itH}=\mathfrak{M}, \quad t\in\mathbb{R}.$

1. Introduction

In a previous paper [1] we discussed the general theory of unbounded derivations of a von Neumann algebra \mathfrak{M} on a Hilbert space \mathscr{H} and, in particular, introduced the notion of a spatial derivation. This latter form of derivation is defined in terms of a symmetric operator H, on \mathscr{H} , and a weakly dense *-subalgebra $D(\delta)$ of \mathfrak{M} , which leaves the domain D(H) of H invariant. The derivation δ is defined to be a mapping

 $A \in D(\delta) \rightarrow \delta(A) \in \mathfrak{M}$

with the property that

 $\delta(A)\psi = i[H, A]\psi, \quad \psi \in D(H).$

It is of particular interest to study the case that H is self-adjoint and has an eigenvector Ω such that $D(\delta)\Omega$ is a core of H. In [1] it was conjectured that if Ω is also cyclic and separating for \mathfrak{M} then

 $e^{itH}\mathfrak{M}e^{-itH}=\mathfrak{M}, \quad t\in\mathbb{R}.$

This conjecture was verified in various special cases. If \mathfrak{M} is abelian then it is essentially a theorem of Gallavotti and Pulvirenti [2]. In this note we extend the abelian result by verifying the conjecture whenever Ω is a trace vector.

2. Main Theorem

Theorem 1. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathscr{H} and let Ω be a cyclic normalized vector defining a trace on \mathfrak{M} , i.e.

 $(\Omega, AB\Omega) = (\Omega, BA\Omega), \quad A, B \in \mathfrak{M}.$

* Supported by the Norwegian Research Council for Science and Humanities.

^{**} Present address: ZIF der Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

Let δ be a spatial derivation of \mathfrak{M} implemented by a self-adjoint operator H such that $H\Omega = 0$.

If H is essentially self-adjoint on $D(\delta)\Omega$ then

 $e^{itH}\mathfrak{M}e^{-itH}=\mathfrak{M}, \quad t\in\mathbb{R}.$

The proof of the theorem will be divided into three Lemmas.

Lemma 1. Let \mathfrak{M} be a von Neumann algebra with a normalized cyclic trace vector Ω . Assume that there exists a sequence $B_n = B_n^* \in \mathfrak{M}$ such that $B_n \Omega \rightarrow \psi$.

It follows that there exists a self-adjoint operator B affiliated with \mathfrak{M} such that $B_n \rightarrow B$ in the strong resolvent sense. In particular if $\chi \in \mathscr{S}(\mathbb{R})$ then $\chi(B_n)$ converges strongly to $\chi(B)$.

Proof. For each $\lambda \in \mathbb{C} \setminus \mathbb{R}$ one has

$$\begin{split} &|((\lambda - B_n)^{-1} - (\lambda - B_m)^{-1})\Omega\| \\ &= \|(\lambda - B_n)^{-1}(B_m - B_n)(\lambda - B_m)^{-1}\Omega\| \\ &\leq |Im\lambda|^{-1} \|(B_m - B_n)(\lambda - B_m)^{-1}\Omega\| \\ &= |Im\lambda|^{-1} \|(\bar{\lambda} - B_m)^{-1}(B_m - B_n)\Omega\| \\ &\leq |Im\lambda|^{-2} \|(B_m - B_n)\Omega\| , \end{split}$$

where we have twice used

 $\|(\lambda - B_n)^{-1}\| \leq |Im\lambda|^{-1}$

and, at the third stage, used the trace property. This demonstrates that the resolvents $(\lambda - B_n)^{-1}$ converge strongly on Ω . But the resolvents are uniformly bounded in *n* and Ω is cyclic for the commutant \mathfrak{M}' of \mathfrak{M} . Hence the resolvents converge strongly to some element R_{λ} of \mathfrak{M} . We next prove that R_{λ} is the resolvent of a self-adjoint operator *B*.

Define ψ_n by

$$\psi_n = (\lambda - B_n)\Omega$$

and hence

$$\lim_{n\to\infty}\!\psi_n \!=\! \lambda \Omega \!-\! \psi$$

Now

$$\begin{split} \|\Omega - R_{\lambda}(\lambda\Omega - \psi)\| \\ &= \|(\lambda - B_n)^{-1}\psi_n - R_{\lambda}(\lambda\Omega - \psi)\| \\ &\leq \|(\lambda - B_n)^{-1}(\psi_n - (\lambda\Omega - \psi))\| \\ &+ \|((\lambda - B_n)^{-1} - R_{\lambda})(\lambda\Omega - \psi)\| \\ &\leq |Im\lambda|^{-1}\|\psi_n - (\lambda\Omega - \psi)\| \\ &+ \|((\lambda - B_n)^{-1} - R_{\lambda})(\lambda\Omega - \psi)\| \xrightarrow[n \to \infty]{} 0 \,. \end{split}$$

Hence one concludes that

 $R_{\lambda}(\lambda\Omega-\psi)=\Omega$.

Derivations and Invariant Traces

Thus for $C \in \mathfrak{M}'$

$$\begin{split} R_{\lambda}C(\lambda\Omega-\psi) &= CR_{\lambda}(\lambda\Omega-\psi) \\ &= C\Omega \;. \end{split}$$

But as Ω is cyclic for \mathfrak{M}' this demonstrates that the range of R_{λ} is dense. By the Kato-Trotter theorem [3] there exists a unique self-adjoint operator B such that

$$R_{\lambda} = (\lambda - B)^{-1}$$
.

Moreover

 $e^{itB_n}\psi \rightarrow e^{itB}\psi$

for all ψ , uniformly for t in compacts. Since

 $(\lambda - B)^{-1}(\lambda \Omega - \psi) = \Omega$

one immediately concludes that

 $B\Omega = \psi$.

Finally for $\chi \in \mathscr{S}(\mathbb{R})$

 $\chi(B_n)\psi = \int dp e^{ipB_n}\psi\hat{\chi}(p)$

and

 $\chi(B)\psi = \int dp e^{ipB}\psi \hat{\chi}(p) \,.$

Hence $\chi(B_n)$ converges strongly to $\chi(B)$.

Lemma 2. Adopt the assumptions of Theorem 1. If $B = B^* \in D(\delta)$ and

 $A = (1 + \alpha \delta)(B)$

with $\alpha \in \mathbb{R} \setminus \{0\}$ then

 $(\Omega, \chi(B)B\Omega) = (\Omega, \chi(B)A\Omega)$

for all $\chi \in \mathscr{S}(\mathbb{R})$.

Proof. As $A - B = \alpha \delta(B)$ the statement of the Lemma is equivalent to

 $(\Omega, \chi(B)\delta(B)\Omega) = 0$

for all $\chi \in \mathscr{S}(\mathbb{R})$.

Let f be a function such that $f' = \chi$. The Fourier transforms then satisfy $ip \hat{f}(p) = \hat{f'}(p) = \hat{\chi}(p)$.

Thus by Lemma 2 of [4] one has $f(B) \in D(\delta)$ and

$$\delta(f(B)) = i \int_{-\infty}^{\infty} dp p \, \hat{f}(p) \int_{0}^{1} dr \, e^{i p r B} \delta(B) e^{i p (1-r)B}$$

O. Bratteli and D. W. Robinson

The trace property of Ω then yields

$$(\Omega, \,\delta(f(B))\Omega) = i \left(\Omega, \,\int_{-\infty}^{\infty} dp p \,\hat{f}(p) e^{ipB} \delta(B)\Omega\right)$$
$$= (\Omega, \,\chi(B)\delta(B)\Omega) \,.$$

Hence as $H\Omega = 0$ one has

 $(\Omega, \chi(B)\delta(B)\Omega) = 0$.

Lemma 3. Adopt the assumptions of Theorem 1. If $A = A^* \in \mathfrak{M}$ and $\alpha \in \mathbb{R} \setminus \{0\}$ then there exists a self-adjoint B affiliated with \mathfrak{M} such that

$$B\Omega = (1 + i\alpha H)^{-1}A\Omega$$

and, furthermore,

 $(\Omega, \chi(B)B\Omega) = (\Omega, \chi(B)A\Omega)$

for all $\chi \in \mathscr{G}(\mathbb{R})$.

Proof. As $D(\delta)\Omega$ is a core for H there exists a sequence $A_n = (1 + \alpha \delta)(B_n)$ such that $A_n\Omega$ converges to $A\Omega$. But

$$A\Omega = A^*\Omega$$

= $\lim_{n \to \infty} A_n^*\Omega$
= $\lim_{n \to \infty} (1 + \alpha \delta)(B_n^*)\Omega$

where the second step uses the trace property of Ω . Replacing B_n by $(B_n + B_n^*)/2$ we may assume the B_n self-adjoint.

Because

 $(1+\alpha\delta)(B_n)\Omega = (1+i\alpha H)B_n\Omega$

and the resolvent of H is bounded we conclude that

 $B_n \Omega = (1 + i\alpha H)^{-1} A_n \Omega$

converges to $(1+i\alpha H)^{-1}A\Omega$. The existence of *B* now follows from Lemma 1. Further B_n converges to *B* in the strong resolvent sense.

Next from Lemma 2

 $(\Omega, \chi(B_n)B_n\Omega) = (\Omega, \chi(B_n)A_n\Omega)$

and the desired result follows by limiting.

Proof of Theorem 1. From Theorem 6 of [1] it suffices to show that

$$(1+i\alpha H)^{-1}\mathfrak{M}_+\Omega\subseteq \overline{\mathfrak{M}}_+\Omega, \quad \alpha\in \mathbb{R}\setminus\{0\}.$$

In order to show this take $A \ge 0$ in Lemma 3 and χ also positive. One then has

 $(\Omega, \chi(B)B\Omega) = (\Omega, \chi(B)A\Omega) \ge 0$

by the trace property. Since Ω is separating for \mathfrak{M} it follows that $\chi(B)B$ can never be negative for χ positive. Hence $B \ge 0$ and the proof is complete.

Derivations and Invariant Traces

Remark. As Ω is a trace vector for \mathfrak{M} it follows that \mathfrak{M} is a finite von Neumann algebra. Let \mathfrak{N} be the set of operators affiliated with \mathfrak{M} and having Ω in their domain. It follows from [5] that \mathfrak{N} is a self-adjoint space and $\mathfrak{N}\mathfrak{M} \subseteq \mathfrak{N}$. This last statement follows because $\mathfrak{M}\mathfrak{N} \subseteq \mathfrak{N}$ and $\mathfrak{N}\mathfrak{M} = (\mathfrak{M}\mathfrak{N})^*$. If the definition of a spatial derivation is generalized to allow a mapping

 $A \in D(\delta) \subseteq \mathfrak{M} \to \delta(A) \in \mathfrak{N}$

then the result of Theorem 1 is still valid. The proof of this more general result needs a slight extension of Lemma 5 of [1] to establish that the automorphism property is equivalent to the positivity preserving property

 $(1+i\alpha H)^{-1}\mathfrak{M}_+\Omega\subseteq\overline{\mathfrak{M}_+\Omega}, \quad \alpha\in\mathbb{R}\setminus\{0\}$

and in the proof of Lemma 2 above $\delta(f(B))$ must be calculated directly in the vector state given by Ω .

Acknowledgements. We are indebted to G. Gallavotti for several illuminating discussions concerning his joint work with M. Pulvirenti. We would also like to thank L. Zsido and S. L. Woronowicz for a number of useful discussions of finite von Neumann algebras.

References

- Bratteli, O., Robinson, D.W.: Unbounded derivations of von Neumann algebras, Marseille preprint 75, P 733 (June 1975)
- Gallavotti, G., Pulvirenti, M.: Classical KMS condition and Tomita-Takesaki theory. Commun. math. Phys. 46, 1–9 (1976)
- 3. Kato, T.: Perturbation theory for linear operators. Berlin-Göttingen-Heidelberg: Springer 1966
- Powers, R.: A remark on the domain of an unbounded derivation of a C*-algebra. J. Funct. Anal. 18, 85–95 (1975)
- 5. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116-229 (1936)

Communicated by J. L. Lebowitz

Received July 24, 1975