Unbounded Derivations and Invariant Trace States

Ola Bratteli***
Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Derek W. Robinson
Université d'Aix-Marseille II, U.E.R. de Luminy and Centre de Physique Théorique, CNRS Marseille, F-13274 Marseille Cedex 2, France

Abstract

Let \mathfrak{M} be a von Neumann algebra with cyclic trace vector Ω. Let $\delta(A)=i[H, A]$ be a spatial derivation of \mathfrak{M} implemented by an operator H such that $H \Omega=0$ and H is essentially self-adjoint on $D(\delta) \Omega$. It follows that: $$
e^{i t H} \mathfrak{M} e^{-i t H}=\mathfrak{M}, \quad t \in \mathbb{R} .
$$

1. Introduction

In a previous paper [1] we discussed the general theory of unbounded derivations of a von Neumann algebra \mathfrak{M} on a Hilbert space \mathscr{H} and, in particular, introduced the notion of a spatial derivation. This latter form of derivation is defined in terms of a symmetric operator H, on \mathscr{H}, and a weakly dense *-subalgebra $D(\delta)$ of \mathfrak{M}, which leaves the domain $D(H)$ of H invariant. The derivation δ is defined to be a mapping

$$
A \in D(\delta) \rightarrow \delta(A) \in \mathfrak{M}
$$

with the property that
$\delta(A) \psi=i[H, A] \psi, \quad \psi \in D(H)$.
It is of particular interest to study the case that H is self-adjoint and has an eigenvector Ω such that $D(\delta) \Omega$ is a core of H. In [1] it was conjectured that if Ω is also cyclic and separating for \mathfrak{M} then

$$
e^{i t H} \mathfrak{M} e^{-i t H}=\mathfrak{M}, \quad t \in \mathbb{R} .
$$

This conjecture was verified in various special cases. If \mathfrak{M} is abelian then it is essentially a theorem of Gallavotti and Pulvirenti [2]. In this note we extend the abelian result by verifying the conjecture whenever Ω is a trace vector.

2. Main Theorem

Theorem 1. Let \mathfrak{M} be a von Neumann algebra on a Hilbert space \mathscr{H} and let Ω be a cyclic normalized vector defining a trace on \mathfrak{M}, i.e.

$$
(\Omega, A B \Omega)=(\Omega, B A \Omega), \quad A, B \in \mathfrak{M}
$$

[^0]Let δ be a spatial derivation of \mathfrak{M} implemented by a self-adjoint operator H such that $H \Omega=0$.

If H is essentially self-adjoint on $D(\delta) \Omega$ then

$$
e^{i t H} \mathfrak{M} e^{-i t H}=\mathfrak{M}, \quad t \in \mathbb{R}
$$

The proof of the theorem will be divided into three Lemmas.
Lemma 1. Let \mathfrak{M} be a von Neumann algebra with a normalized cyclic trace vector Ω. Assume that there exists a sequence $B_{n}=B_{n}^{*} \in \mathfrak{M}$ such that $B_{n} \Omega \rightarrow \psi$.

It follows that there exists a self-adjoint operator B affiliated with \mathfrak{M} such that $B_{n} \rightarrow B$ in the strong resolvent sense. In particular if $\chi \in \mathscr{S}(\mathbb{R})$ then $\chi\left(B_{n}\right)$ converges strongly to $\chi(B)$.

Proof. For each $\lambda \in \mathbb{C} \backslash \mathbb{R}$ one has

$$
\begin{aligned}
& \left\|\left(\left(\lambda-B_{n}\right)^{-1}-\left(\lambda-B_{m}\right)^{-1}\right) \Omega\right\| \\
& \quad=\left\|\left(\lambda-B_{n}\right)^{-1}\left(B_{m}-B_{n}\right)\left(\lambda-B_{m}\right)^{-1} \Omega\right\| \\
& \quad \leqq|\operatorname{Im} \lambda|^{-1}\left\|\left(B_{m}-B_{n}\right)\left(\lambda-B_{m}\right)^{-1} \Omega\right\| \\
& \quad=|\operatorname{Im} \lambda|^{-1}\left\|\left(\bar{\lambda}-B_{m}\right)^{-1}\left(B_{m}-B_{n}\right) \Omega\right\| \\
& \quad \leqq|\operatorname{Im} \lambda|^{-2}\left\|\left(B_{m}-B_{n}\right) \Omega\right\|,
\end{aligned}
$$

where we have twice used

$$
\left\|\left(\lambda-B_{n}\right)^{-1}\right\| \leqq|\operatorname{Im} \lambda|^{-1}
$$

and, at the third stage, used the trace property. This demonstrates that the resolvents $\left(\lambda-B_{n}\right)^{-1}$ converge strongly on Ω. But the resolvents are uniformly bounded in n and Ω is cyclic for the commutant \mathfrak{M}^{\prime} of \mathfrak{M}. Hence the resolvents converge strongly to some element R_{λ} of \mathfrak{M}. We next prove that R_{λ} is the resolvent of a self-adjoint operator B.

Define ψ_{n} by

$$
\psi_{n}=\left(\lambda-B_{n}\right) \Omega
$$

and hence

$$
\lim _{n \rightarrow \infty} \psi_{n}=\lambda \Omega-\psi .
$$

Now

$$
\begin{aligned}
\| \Omega & -R_{\lambda}(\lambda \Omega-\psi) \| \\
= & \left\|\left(\lambda-B_{n}\right)^{-1} \psi_{n}-R_{\lambda}(\lambda \Omega-\psi)\right\| \\
\leqq & \left\|\left(\lambda-B_{n}\right)^{-1}\left(\psi_{n}-(\lambda \Omega-\psi)\right)\right\| \\
& +\left\|\left(\left(\lambda-B_{n}\right)^{-1}-R_{\lambda}\right)(\lambda \Omega-\psi)\right\| \\
\leqq & |I m \lambda|^{-1}\left\|\psi_{n}-(\lambda \Omega-\psi)\right\| \\
& +\left\|\left(\left(\lambda-B_{n}\right)^{-1}-R_{\lambda}\right)(\lambda \Omega-\psi)\right\| \xrightarrow[n \rightarrow \infty]{ } 0 .
\end{aligned}
$$

Hence one concludes that

$$
R_{\lambda}(\lambda \Omega-\psi)=\Omega
$$

Thus for $C \in \mathfrak{M}^{\prime}$

$$
\begin{aligned}
R_{\lambda} C(\lambda \Omega-\psi) & =C R_{\lambda}(\lambda \Omega-\psi) \\
& =C \Omega .
\end{aligned}
$$

But as Ω is cyclic for \mathfrak{M}^{\prime} this demonstrates that the range of R_{λ} is dense. By the Kato-Trotter theorem [3] there exists a unique self-adjoint operator B such that

$$
R_{\lambda}=(\lambda-B)^{-1} .
$$

Moreover

$$
e^{i t B_{n}} \psi \rightarrow e^{i t B} \psi
$$

for all ψ, uniformly for t in compacts.
Since

$$
(\lambda-B)^{-1}(\lambda \Omega-\psi)=\Omega
$$

one immediately concludes that

$$
B \Omega=\psi .
$$

Finally for $\chi \in \mathscr{S}(\mathbb{R})$

$$
\chi\left(B_{n}\right) \psi=\int d p e^{i p B_{n}} \psi \hat{\chi}(p)
$$

and

$$
\chi(B) \psi=\int d p e^{i p B} \psi \hat{\chi}(p) .
$$

Hence $\chi\left(B_{n}\right)$ converges strongly to $\chi(B)$.
Lemma 2. Adopt the assumptions of Theorem 1. If $B=B^{*} \in D(\delta)$ and

$$
A=(1+\alpha \delta)(B)
$$

with $\alpha \in \mathbb{R} \backslash\{0\}$ then

$$
(\Omega, \chi(B) B \Omega)=(\Omega, \chi(B) A \Omega)
$$

for all $\chi \in \mathscr{S}(\mathbb{R})$.
Proof. As $A-B=\alpha \delta(B)$ the statement of the Lemma is equivalent to
$(\Omega, \chi(B) \delta(B) \Omega)=0$
for all $\chi \in \mathscr{S}(\mathbb{R})$.
Let f be a function such that $f^{\prime}=\chi$. The Fourier transforms then satisfy ip $\hat{f}(p)=\hat{f}^{\prime}(p)=\hat{\chi}(p)$.
Thus by Lemma 2 of [4] one has $f(B) \in D(\delta)$ and

$$
\delta(f(B))=i \int_{-\infty}^{\infty} d p p \hat{f}(p) \int_{0}^{1} d r e^{i p r B} \delta(B) e^{i p(1-r) B}
$$

The trace property of Ω then yields

$$
\begin{aligned}
(\Omega, \delta(f(B)) \Omega) & =i\left(\Omega, \int_{-\infty}^{\infty} d p p \hat{f}(p) e^{i p B} \delta(B) \Omega\right) \\
& =(\Omega, \chi(B) \delta(B) \Omega)
\end{aligned}
$$

Hence as $H \Omega=0$ one has

$$
(\Omega, \chi(B) \delta(B) \Omega)=0
$$

Lemma 3. Adopt the assumptions of Theorem 1. If $A=A^{*} \in \mathfrak{M}$ and $\alpha \in \mathbb{R} \backslash\{0\}$ then there exists a self-adjoint B affiliated with \mathfrak{M} such that

$$
B \Omega=(1+i \alpha H)^{-1} A \Omega
$$

and, furthermore,

$$
(\Omega, \chi(B) B \Omega)=(\Omega, \chi(B) A \Omega)
$$

for all $\chi \in \mathscr{S}(\mathbb{R})$.
Proof. As $D(\delta) \Omega$ is a core for H there exists a sequence $A_{n}=(1+\alpha \delta)\left(B_{n}\right)$ such that $A_{n} \Omega$ converges to $A \Omega$. But

$$
\begin{aligned}
A \Omega & =A^{*} \Omega \\
& =\lim _{n \rightarrow \infty} A_{n}^{*} \Omega \\
& =\lim _{n \rightarrow \infty}(1+\alpha \delta)\left(B_{n}^{*}\right) \Omega
\end{aligned}
$$

where the second step uses the trace property of Ω. Replacing B_{n} by $\left(B_{n}+B_{n}^{*}\right) / 2$ we may assume the B_{n} self-adjoint.

Because

$$
(1+\alpha \delta)\left(B_{n}\right) \Omega=(1+i \alpha H) B_{n} \Omega
$$

and the resolvent of H is bounded we conclude that

$$
B_{n} \Omega=(1+i \alpha H)^{-1} A_{n} \Omega
$$

converges to $(1+i \alpha H)^{-1} A \Omega$. The existence of B now follows from Lemma 1 . Further B_{n} converges to B in the strong resolvent sense.

Next from Lemma 2
$\left(\Omega, \chi\left(B_{n}\right) B_{n} \Omega\right)=\left(\Omega, \chi\left(B_{n}\right) A_{n} \Omega\right)$
and the desired result follows by limiting.
Proof of Theorem 1. From Theorem 6 of [1] it suffices to show that

$$
(1+i \alpha H)^{-1} \mathfrak{M}_{+} \Omega \subseteq \overline{\mathfrak{M}_{+} \Omega}, \quad \alpha \in \mathbb{R} \backslash\{0\}
$$

In order to show this take $A \geqq 0$ in Lemma 3 and χ also positive. One then has

$$
(\Omega, \chi(B) B \Omega)=(\Omega, \chi(B) A \Omega) \geqq 0
$$

by the trace property. Since Ω is separating for \mathfrak{M} it follows that $\chi(B) B$ can never be negative for χ positive. Hence $B \geqq 0$ and the proof is complete.

Remark. As Ω is a trace vector for \mathfrak{M} it follows that \mathfrak{M} is a finite von Neumann algebra. Let \mathfrak{M} be the set of operators affiliated with \mathfrak{M} and having Ω in their domain. It follows from [5] that \mathfrak{M} is a self-adjoint space and $\mathfrak{N M} \subseteq \mathfrak{M}$. This last statement follows because $\mathfrak{M M \subseteq} \subseteq \mathfrak{N}$ and $\mathfrak{M M}=(\mathfrak{M} \mathfrak{N})^{*}$. If the definition of a spatial derivation is generalized to allow a mapping

$$
A \in D(\delta) \subseteq \mathfrak{M} \rightarrow \delta(A) \in \mathfrak{N}
$$

then the result of Theorem 1 is still valid. The proof of this more general result needs a slight extension of Lemma 5 of [1] to establish that the automorphism property is equivalent to the positivity preserving property

$$
(1+i \alpha H)^{-1} \mathfrak{M}_{+} \Omega \subseteq \overline{\mathfrak{M}_{+} \Omega}, \quad \alpha \in \mathbb{R} \backslash\{0\}
$$

and in the proof of Lemma 2 above $\delta(f(B))$ must be calculated directly in the vector state given by Ω.

Acknowledgements. We are indebted to G. Gallavotti for several illuminating discussions concerning his joint work with M. Pulvirenti. We would also like to thank L. Zsido and S. L. Woronowicz for a number of useful discussions of finite von Neumann algebras.

References

1. Bratteli, O., Robinson, D.W.: Unbounded derivations of von Neumann algebras, Marseille preprint 75, P 733 (June 1975)
2. Gallavotti, G., Pulvirenti, M.: Classical KMS condition and Tomita-Takesaki theory. Commun. math. Phys. 46, 1-9 (1976)
3. Kato, T.: Perturbation theory for linear operators. Berlin-Göttingen-Heidelberg: Springer 1966
4. Powers, R.: A remark on the domain of an unbounded derivation of a C^{*}-algebra. J. Funct. Anal. 18, 85-95 (1975)
5. Murray, F.J., von Neumann, J.: On rings of operators. Ann. Math. 37, 116-229 (1936)

Communicated by J. L. Lebowitz

[^0]: \star Supported by the Norwegian Research Council for Science and Humanities.
 ** Present address: ZIF der Universität Bielefeld, D-4800 Bielefeld, Federal Republic of Germany

