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Abstract. It is demonstrated that a closed symmetric derivation δ of a C*-
algebra 21 generates a strongly continuous one-parameter group of auto-
morphisms of a C*-algebra 21 if and only if, it satisfies one of the following
three conditions

2. δ possesses a dense set of analytic elements.
3. δ possesses a dense set of geometric elements.
Together with one of the following two conditions
1. \\(aδ+l)(A)\\^\\Al oceW., AeD(δ).
2. If αelR and AeD(δ) then (α<5 + l)(A)^0 implies ,4^0.
Other characterizations are given in terms of invariant states and the

invariance of D{δ) under the square root operation of positive elements.

1. Introduction

A derivation δ of a C*-algebra 21 is defined to be a linear mapping from a dense
*-subalgebra Z)(c>)£21, the domain of δ, to a subspace R(δ)Q^ί, the range of δ,
satisfying the property

δ(AB) = δ(A)B + Aδ(B\ A, Be D(δ).

A derivation of this type is called symmetric if

δ(A)* = δ(A*), AeD(δ).

A general derivation δ always has a decomposition

in terms of symmetric derivations.

* Supported by the Norwegian Research Council for Science and Humanities.
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The principal interest of symmetric derivations of the above type is that they
arise as infinitesimal generators of strongly continuous one-parameter groups of
^-automorphisms of 91. Let

be a one-parameter group of automorphisms of the foregoing type and define δ by

δ(A) = unif. lim (τt(A) - A)/t.
ί->0

where D(δ) is the set of AeΨί such that the limit exists. It can be checked that δ is
a derivation of 91 satisfying the symmetry condition. We will refer to derivations
which arise in the above manner as the infinitesimal generator of a group τ, or,
more briefly, as an infinitesimal generator; the automorphic and continuity
properties of the group will be left implicit.

One basic property of infinitesimal generators is that they are closed in the
Banach space sense, i. e. if Aae D(δ) is such that

lim ||ylα-yl||=0 and lim ||5(^α)-J5||=0
α α

then AeD(δ) and δ(A) = B.
In Section 2 we discuss some algebraic properties of the domains of closed

derivations, and in Sections 3 and 4 we consider characterizations of infinitesimal
generators. This material extends previous work of the authors [1]. Related
material is contained in [2-5].

2. Closed Derivations

If this section we consider a closed derivation δ. If the C*-algebra 9ί does not
contain an identity element 1 then it can be embedded in a canonical fashion in a
larger C*-algebra, 21 = 21 + 0 , with identity. One may then extend δ to a closed
derivation δ of 91 by setting D(δ) = D(δ) + (Ci and

δ(A + Cί) = δ{A\ A e D(δ)9 Ce<£.

If, however, 91 contains an identity 1 it is not "a priori" evident whether 1 is
automatically included in the domain of δ. The main result of this section is to
prove that this is indeed the case. The method we use is an adaptation of the
resolvent functional analysis for the domains of closed derivations developed
in[l]

Theorem 1. Let 91 be a C*-algebra containing an identity element t and let δ
be a closed derivation of 91.

It follows that le D(δ), and

(5(1) = 0.

Proof Let δ be a strictly positive number such that ε< 1/4. Clearly one may
find a self-adjoint Ae^Ά such that
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As D{δ) is dense there then exists a self-adjoint Be D(δ) such that

\\A-B\\<e

and hence

(l-ε)i^fl^εlL

We now have the following result

Lemma 1. Let δ be a closed derivation of a C*-algebra $1 and for l/2>ε>0
choose B = B*eD(δ) such that

Further define Bn by

Bn = B(i + B)-n, n = l , 2 , 3

It follows that BneD{δ) and

Proof Introduce the sequence of approximants

C \ΓW / i\mn + m/^ τ>m+l

where nCm denotes the usual binomial coefficient.
This sequence converges uniformly to Bn because ||B|| ^ 1 — ε.
Further one has for N2>N1

Hence δ(CN) converges uniformly. As δ is closed one deduces that BneD(δ).
Next note that

Hence

which immediately yields

δ(Bx)B$ + B) = {ί + B)- 1δ(B)B.

As B is invertible one then concludes that

which implies the bound

WδiBMS \\δ(B)\\(l + ε Γ 2 .

Next note that

BnB=Bn.1B1
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and hence, using the expression for

Using the invertibility of B once again one finds

δ(Bn)= -B^A 1

Therefore

where the second inequality follows by iteration.
Let us now return to the proof of the theorem.
Consider the sequence of elements

This sequence converges uniformly to the identity.
But

and the estimate of Lemma 1 establish that δ(FN) also converges uniformly.
Therefore ίeD(δ).

The last statement of the theorem follows from the relation 1 = I 2 which yields

and the relation

Combining these relations one has

(3(1)-2(5(1)

i.e. 5(1) = 0.
The foregoing result allows us to assume there exists an identity ieD(δ)

without loss of generality. Throughout the sequel we will make this assumption.
Analysis of the foregoing type was used in [1] to obtain functional properties

of the domains of closed derivations δ. In particular if A = A * e D(δ) then (λί — A) ~ 1

eD((5)and

Consequently functions f(A) representable by Cauchy integrals

f(A)=l/2πί jV dλf{λ)(λ±-A)-1

also satisfy f(A)e D(δ) and

δ(f(A)) = ίβπi jY dλf(λ)(λl -A)' xδ(A)(λί - A) ~1.
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Manipulation of such integrals allows one to reproduce a result of Powers [3]
that for A = A*eD(δ) one has exp {ίtA}eD(δ) for tεWL and

δ(eitA)=it f j drβ i ί

Consequently if / is a function of one real variable such that

where / is the Fourier transorm of f, then f(A)eD(δ) and

δ(f(A)) = i j dpf(p)p JJ dre^

Hence

[This result is most easily derived for smooth / and then exploiting (*) to extend
the result to general / In [3] a stronger result is stated but the proof is erroneous
(the inequality stated on Line 1 of p. 91 is false for the algebra of 4 x 4 matrices).]

3. Infinitesimal Generators I

In the introduction we mentioned that symmetric derivations arise as infinitesimal
generators of groups of automorphisms. In this section we attempt to characterize
such derivations and establish some properties of their domains.

There are two aspects to this analysis, the linear or vector space aspect, and the
algebraic aspect. The characterization of infinitesimal generators of groups of trans-
formations of a Banach space is well understood (see, for example [6-8]) although
several aspects such as the properties or analytic and geometric elements have not
been fully esploited. We will analyze these properties in the first subsection of this
section. The C*-algebraic structure of the Banach space adds a new element to the
analysis and can be utilized to strengthen the results obtained purely from the
Banach space structure; this will be discussed in the second subsection.

a) Banach Space Theory

Let 93 denote a Banach space, possibly complex, and τ a one-parameter family
of mappings of 93 into itself Be 93κ>τf(£)e 93, ί e R

The family τ is defined to be a (quasi-bounded) group of type G(M, β) if

lim||τt(β)-B||=0,
ί->0

τo(B) = B, Be 53,

lim ||τt(B;
ί->0

and, finally,

where M ̂  1 and β ̂  0.
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If τ is a group of the foregoing type one may define an infinitesimal generator
δ of τ by

δ(B)=lim(τt(B)-B)/t

with the domain D(δ) of the unbounded operator δ defined to be the set of J3e33
such that the foregoing limit exists. It is well-known, and easily established, that
δ is a closed, densely defined operator on 33. We now aim to characterize operators
on 33 which generate groups of type G(M, β) in the above manner. The characteriza-
tion will be partly in terms of analytic and geometric elements.

Definition ί. Let δ be an operator on the Banach space 33. An element £e33
is defined to be analytic for δ if Be D(δn), n = 1, 2, 3,..., and the function

has a non-zero radius of convergence. An analytic element is defined to be geometric
for <S if Be D(<5";u = 1, 2, 3,..., and

\\δ\B)\\^rδ{Bγ\\Bl * = 1,2,3,...

for some rδ(B)e 1R+.
If δ is the generator of a group τ of isometries of 33, then the geometric elements

of δ are just those elements in 33 that has bounded Arveson spectrum with respect
toτ.

An essential condition that enters all our characterizations is a bound on
powers of the resolvent of the operator in question. The operator δ is said to
satisfy condition R(M,β) if \\A\\^M\\(oίδ + ί)n(A)\\{l-\a\β)~n, for all αeR such
that |α|/ί < 1 and all Ae D(δn\ n = 1,2,..., where M Ξ> 1 and β ̂  0. Note that condition
R(ί, 0) simplifies to the sole condition

where AeD(δ).

Theorem 2. Let δ be an operator on the Banach space 33. The following condition
are equivalent

1. δ is the infinitesimal generator of a group of type G(M,β).
2. δ is closed, (α(5-kl)(D((5)) = 33 for all αGlR such that |α|jβ<l and δ satisfies

condition R{M, β).1

3. δis closed, δ possesses a dense set of analytic elements, and δ satisfies condition
R(M,β).

In the particular case M=l, β = 0, the above conditions are equivalent to.
4. δ is closed, δ possesses a dense set of geometric elements, and δ satisfies

1 Here, and in the sequel, the assumption {ocδ + l)(D(δ)) = © can be replaced by (+ aoδ + l)(D(δ)
for some α0 such that \oc0\β< 1. This follows by use of the Neumann expansion

together with condition R(M, β).



Unbounded Derivations of C*-Algebras II 17

Proof. It is a well known fact of semi-group theory that Condition 2 implies
Condition 1 and proofs may be found, for example, in [5-8]. We next prove that 1
implies 3.

Let τ denote the group generated by δ and for BeD(δ) form the family of
regularized elements Bλ by

Bλ=\/\/π\dtτλt{B)e-<2.

First note that

Bλ-B=l/]/π$dte-t2(τλt(B)-B)

and hence for 2 ^ 0

\\Bλ-B\\ S 1/lA J dte'1 V Λ | ί | -

But as /l->0 the right hand side tends to zero, i. e. Bλ converges to B.
Next one has

£ t(B)d"/dfe"2

where Hn(t) is the usual Hermite function. Thus

^M2\\B\\2λ-2Ί/π$ dte~'2e2βW $dt\Hn{t)\2e~'\

where we have used the Schwarz inequality.
Using the normalization properties of the Hermite functions one finds that

Hence ez(Bλ) is an entire function. The desired result now follows from the density
£>(<5).
Next we show that 3 implies 2. If B is analytic we may define τ by

whenever | ί | < ί B , the radius of analyticity of B. Now as B is analytic one finds
that BeD({\ + tδ/ή)n) and

^ Σm = o \t\"lm\ \\δ"{B)\\ \ί-cnj

where c B i m = ( l - 1/nχi -2/n).. .(1 - ( m - l)/n). But

0 ^ 1 - cn > mg 1 - ( 1 - ( m - lVπ)"1"1 ^ m ( m - l)/n

Therefore

"(B) | ί | < ί B .,()

But one also calculates that

|, |s|<ίB/2.
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Next from the condition R(M, β) one has

\\(l + tδ/nnB)\\^\\B\\(l-\t\β/ny/M

and hence

\\τt(B)\\^e~m\\B\\/M, | ί | < ί B .

Using the group property one then finds that

whenever |ί| < tB/2 and hence

\\τt(B)\\^M^\\B\\9 \t\<tB/2.

From the definition of τ, one concludes however that

φ(B)) = δ(τt(B))

and hence it is possible to iterate the definition of τ,

)= Σ ^ o tn/n\δn(τs(B))

for \t\<tB and | s |<ί B .
Repeating this argument one may define

τf(B) = (τt/II)
Λ(B), \t\<ntB/2.

(The fraction tB/2 is used in order to easily prove that this definition is independent
of n). One then has

\\τt(B)\\SMnem\\B\\

or, alternatively

\\τt(B)\\SMe^\\B\\

where

β' = 2/tBlogM + β.

Next we proceed as in the proof that 1=>3 and form

One has once again that

l i m | | β Λ - β | | = 0
λ-*0

and, further, that Bλ is an entire element for δ, i. e. z\->ez(Bλ) is an entire function.
Thus we may define

and this definition is valid for all te IR.
Now, however, we can conclude that

τt(Bλ)= li
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and argue, as for B, that

\\τt(Bλ)\\SMe^\\Bλ\\

forallίeR
If, next, α>0 we may define

g(t)= -et/a/a J,00 dsμ~^- s 2

and note that

One estimates straightforwardly that if 0 < ocβ < 1 then

j ^ dteβ%(t)\ S eμ2

and one concludes that

is an element of the Banach space 33 satisfying

[μδ + 1)(J5,,Λ) = 1/jΛ J dt/μ- V ^

But we have already proved that

l im| |5 A -J5 | |=0.

Hence (aδ + l)(D(δ)) is dense in 95, by the assumption that the analytic vectors are
dense whenever 0<αβ<l . But (aδ -1) {D(δ)) is closed [by use of condition
R(M, β) with n = 1] and the desired conclusion is reached. A similar argument
holds for - l < α β < 0 .

Finally consider the isometric case M = l , β = 0. Clearly Condition 4 implies
Condition 3 and we next show that Condition 1 implies Condition 4. Again let τ
be the group generated by δ and, for BE D{δ) form the regularized elements

Bλ=μtf(t)τλt(B),

where/is now a function, with integral one, whose Fourier transform is continuous-
ly differentiable with support in the interval \_ — R, K]. Once again

\\Bλ-B\\^\\μtf{t){τλt{B)-B)\\

^\dt\f{t)\\\τλt{B)-B\\

and hence Bλ converges to B. But

and \\δn(Bλ)\\mΓn\\B\\$dt\pn\t)\.
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Next one has

by the Schwarz inequality. Therefore by Fourier transformation

Thus Bλ is geometric and δ has a dense set of geometric elements by the density
oΐD(δ).

It is often useful to have criteria for cores of generators.

Theorem 3. Let δ be an infinitesimal generator of a group τ of type G(M, β).
Let D Q D(δ) be a dense set with the property that

τt(D)QD

It follows that D is a core for δ, i. e. the closure, δ\D, of the restriction of δ to D
satisfies

δ\D = δ.

Proof It suffices to demonstrate that (α<5 + 1)(D) is dense for some α such that
0<αj3<l. If ΛeD consider

and (α<5 + l)(rα(,4))= \% dte~ιτ_αί((αc5 + l)(A)). One may approximate both the
integrals uniformly by Riemann sums

whenever 0<α/?<l. Hence by closure ra(A)eD(δ\D) and

= A

i. e. DQ(aδ + 1)(D) and the proof is complete.
Corollary 1. Let δ be an infinitesimal generator of a group τ of type G(M, β).

If DQD(δ) is a dense set of analytic elements for δ such that

δ{D)QD

then D is core for δ.
Proof As Ae D is analytic and δ(A)e D [hence δ2(A)e D, etc.] one may conclude

that
τt(A)=Σ^otn/n\δ"(A)eD(δ\D)

for \t\<tA, the radius of convergence oϊez(A). But \\τt(A)\\^Mem\\A\\ and δ\(A) =
τt(δn(A)) thus we may conclude that τt(A) is again analytic_with radius of convergence
tA. Iterating this argument we deduce that τt(A)e D(δ\D) for all ίelR and the
desired result follows from Theorem 3.
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b) Algebraic Theory

Let us next consider the situation in Theorem 2 but with the extra assumption
that 93 is a Banach-algebra and δ is a symmetric derivation. If δ is an infinitesimal
generator of a group τ of type G(μ, β) one has for Ae D(δ) that τt(A)e D(δ) and

Hence for A, Be D(δ) one finds that

d/dtτ_t(τt(Λ)τt(B))

= τ_ f { - δ(τt(A)τt(B)) + δ(τt(A))τt(B) + τt(A)δ(τt(B))}
__Q

It follows immediately that

τt(AB) = τt(A)τt(B).

It also easily follows from the symmetry of δ that

Thus the first algebraic aspect is to ensure that the group τ is in fact a group of
*-automorphisms of 95.

If 93 is not only a Banach*-algebra but more specifically a C*-algebra then a
second algebraic aspect enters. This is the property that ^-automorphisms of a
C*-algebra are automatically norm-preserving. Explicitly if ,4e9ίκ>α(,4)e2l is an
everywhere defined *-morphism of a C*-algebra 91.

i. e. α is positivity preserving. But for Be 31 one has

l - J 3 * £ / | | 5 | | 2 ^ 0

and hence using α(i) = i one finds

Whence

If t<£9l then a similar result is obtained by extending α to 9l =
These properties allows one to strengthen the results of the previous subsection

in the case of C*-algebras.

Theorem 4. Let δ be a symmetric derivation of a C*-algebra 91. The following
conditions are equivalent.

1. δ is the infinitesimal generator of a strongly continuous one-parameter group
of ^-automorphisms of 91.

2. δ is closed, (α<5 + l)(D(<5)) = 2l for all αeR, and δ satisfies condition R(M,β)
for some M^l/β^O.

3. δ is closed, δ possesses a dense set of analytic elements, and δ satisfies condi-
tion R(M, β) for some M ^ 1 and β^O.
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4. δ is closed, δ possesses a dense set of geometric elements, and δ satisfies
condition R(M, β) for some M ^ 1 and β^O.

Further if δ generates a group τ and DQD(δ) is a dense *-subspace of^Ά such that

τt(D)QD,

or if D is a dense set of analytic elements for δ such that

δ(D)QD

then D is a core for δ.
This result is a corollary of Theorems 2 and 3 combined with the remarks at

the beginning of this subsection. For example Condition 1 implies Condition 4
because the generator of the group of automorphisms of 2ί satisfies condition
R(l, 0), and hence R(M, β). But 4 implies 3 and 3 implies 2 as in the proof of
Theorem 2. Using Condition 2 one then combines the result of Theorem 2, and
the first remark at the beginning of this subsection, to show that δ generates a
group of ^-automorphisms satisfying

But then the positivity argument shows that

\\τt(A)\\S\\Λ\\

and the group property gives

\\A\\ = ||τ_f(τtμ))|| ^ | |τ fμ)| | ^ M||, Ae%

The core statements are a particular case of Theorem 3.
In the foregoing discussion the group of automorphisms τ of 91 is defined by

a limiting process. For example

τt(A)= lim (l-tδ/n)~n(A).
n~* oo

We have exploited the fact that τ is positivity preserving but we next remark that
the approximants for τ are also positivity preserving and hence derive alternative
characterizations of infinitesimal generators.

Theorem 5. Let δ be a symmetric derivation of a C*-algebra 91. The following
conditions are equivalent.

1. δ is the infinitesimal generator of a strongly continuous one-parameter group
of ^-automorphisms of 21.

2. δ is closed, (α<5 + l)(D(<5)) = 2l and

(ocδ +

implies that A^Q, where AeD(δ), for all
3. δ is closed, δ possesses a dense set of analytic elements and

implies that A^0, where AeD(δ),for all αeR.
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Proof. To prove that 1 implies 2 and 3 it remains to demonstrate the positivity
condition. But this follows from the representation

We next prove that 2 implies 1. This follows from Theorem 4 and the following
result.

Lemma 2.Let δ be a closed symmetric derivation of a C*-algebra 21 such that
l)(D((5))==ϊt for all αelR. The following conditions are equivalent

1. If αeIR and Ae D{δ) then

implies ^ ^ 0 .
2.

where Ae D(δ).
3. If αeIR and Ae D(δ) then

Proof 3=>1. For O^A = (otδ-\- 1)(Q apply the inequality of Condition 3 to
ί + λC. One finds

If, however, O^λ^ - ί/\\A\\ then one has

This gives a contradiction unless C^O.
l=>2.IfC = (α<5+ 1)04) then

and hence

To demonstrate that 2 implies 3, we first note that if AeD(δ) then

(ocδ + 2

As (α^+ 1)(Z>(<5)) is dense one may find a J3e(α<5 + 1)(Z)(<5)) such that

(α<5 + l)(A)*(<xδ + I)(y4) + εl ^ 5 ^(α<5 + l)(A)*(<xδ +

Let CeD(δ) be such that

then from combination of the above inequalities one has
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Hence from Condition 2

Again applying Condition 2 we find

or

Taking the limit ε-»0 yields the desired result.
We remark in passing that in the above Lemma 3=>1, 1=>2 even without the

assumption that (ocδ + l)(D(δ)) is dense.
Returning to the proof of the theorem we see that Condition 2 implies Condi-

tion 2 of Theorem 4 with M=l and β = 0. Hence δ is a generator.
It remains to prove that Condition 3 implies Condition 1.
Let A be analytic. Define

for |ί |<ί^. One estimates, as in the proof of Theorem 2, that

τt(A)= lim(l+ίδ/w)%4), \t\<tA.
n —*• o o

Hence

and ε > 0 implies that

for \t\<tA and all n larger than some Nε. The positivity assumption of Condition 3
then implies that ,4 + εt^O. As this argument is valid for all ε>0 one has ^1^0,
i. e. we have deduced that τ,(/4)^0 for some \t\<tA implies that ^1^0. Next note
that

for \t\<tA*J2 = tA/2. Therefore one concludes that τ_t(A*A)^0 for all \t\<tAβ.
Applying this argument to the positive analytic element 1 — ,4*,4/||,4||2 one finds

\t\<tAβ.

Therefore

| | τ . f μ ) | | 2 ^ μ | | 2 , \t\<tAβ,

but this then implies

by the group property. The rest of the proof then parallels that of Theorem 2
with the simplification that M=l and β = 0, i.e. one extends the definition of
τt(A) to all ίelR by iteration and then one regularizes τt(A) with a suitable smooth
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function and eventually concludes that Ae(otδ + l)(D(δ)% and hence this latter
set is dense.

This completes the proof of the theorem.
The foregoing analysis of infinitesimal generators shows that there are three

conditions which are necessary and sufficient; δ must be closed, the resolvent
(α<5 + 1 ) ~ ι should be densely defined for all α e R and the third condition demands
that the resolvent have norm less than, or equal to, one. The analysis bears some
similarity to the analysis of when a symmetric operator H on a Hubert space Jf?
is self-adjoint, i. e. when does iH generate a strongly continuous one-parameter
group of unitary operators on Jf\ This latter analysis is simplified by the fact
that each symmetric operator is automatically closeable and

>

Thus the analogues of the first and third condition mentioned above are auto-
matically guaranteed. It is natural to ask whether the algebraic structure might
be exploited to ensure a similar simplification for derivations of C*-algrbras.
The answer for general algebras is, however, no, although certain special classes
of algebras might provide simplifications. In [1] we exhibited non-closeable
derivations of UHF algebras and abelian algebras and the following example
demonstrates that the resolvent bound is not automatic.

Example ί. Let 9ί = C[0,1] be the C*-algebra of continuous functions on the
interval [0,1] and define δ by

δ(f)(x) — df(x)/dx,

where D(δ) is the set of continuously differentiable functions over the interval.
It follows that

a) δ is closed,
b) (uδ + l)(D((5)) = 9ί, α + 0.
c) δ has a dense set of geometric elements, the polynomials.
d) (ocδ + l)(e-χla) = 0 and hence ||(α<5 + l)(,4)|| £ \\A\\ for all AeD(δ).
e) There is no state ω over 91 satisfying the in variance condition ω(δ(A)) = 0

for all AeD(δ).
Points a) and b) are established by differential equation techniques, c) and d)

are obvious and e) follows by noting that for the linear function xeD(δ), δ(x) = %
and hence ω(δ(x)) = 1 for all states ω. This last point will be of relevance in the
following section.

4. Infinitesimal Generators II

In this section we continue to discuss characterizations of infinitesimal generators
but the subsequent characterizations differ from the foregoing because they
only provide non-empty results for certain types of C*-algebras; the previous
results were generally applicable. We consider conditions which ensure closeability
and the resolvent bound. There are two such conditions known at present;
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existence of invariant states, and invariance of the domain of the derivation under
the square root operation. We consider these two conditions in separate sub-
sections.

a) Invariant States

If δ is the infinitesimal generator of a group τ of automorphisms of the C*-algebra
91, and if ω is a state over 9Ϊ, the invariance condition

ω(τt(A)) = ω(A), Ae% ίeIR,

is equivalent to the "infinitesimal" invariance condition

ω{δ(A)) = 0, AeD(δ).

In the same way as the invariance condition gives the unitary implementability
of τ in the cyclic representation defined by ω, the "infinitesimal" condition gives
an implementability of <5, in the cyclic representation, by means of a symmetric
operator. The following result improves a statement occurring in [1].

Theorem 6. Let δ be a symmetric derivation of a C*-algebra 91. Assume that
there exists a state ω over 91 which generates a faithful cyclic representation (Jf, π,
Ω) and also satisfies the invariance condition

ω(δ(A)) = 0, AeD(δ).

It follows that
1. δ is closeable.
2. There exists a symmetric operator on 2tf such that

D(H) = π(D(δ))Ω,

and

π(δ(A))ψ=liH,π(A)-]ψ,

for all Ae D(δ) and ψe D(H).
If further, (aδ + l)(D(δ)) = 91 for all ocelRor, alternatively, if δ possesses a dense

set 9ία of analytic elements then δ, the closure of <5, is an infinitesimal generator.

Proof The first two statements are proved in [1]. Either of the supplementary
conditions of the theorem ensure that H is essentially self-adjoint. Let H denote
the self-adjoint closure of H.
We need the following result.

Lemma 3. Let δ be a symmetric derivation of a C*-algebra 91 of operators on
a Hubert space Jf. Supnose there exists a strongly continuous one-parameter
group of unitary operators U(t) on Jίf, with infinitesimal generator H, such that
tel&h*U(ήAU(—t)ψ is differentiable in the strong topology whenever AeD(δ\
ψeD(H),and

d/dt U(t)A U( - t)ψ = U(t)δ(A) U( - t)ψ .

It follows that
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Proof. Under the assumptions of the lemma

d/dte1 U(oct)A U( - aήψ = e% U(otή(ocδ(Ά) + A)U(- ocήψ

and hence for ί^O

\\etU((xt)AU(-at)xp-Aψ\\^tet\\aδ(A) + A\\ \\ψ\\ .

Therefore, using the triangle inequality,

\\U(at)AU(-at)ψ\\et^{tet\\oiδ(A) + A\\ + \\A\\}\\ψ\\

which immediately yields

\\A\\(et-l)/t^et\\ocδ(A)+A\\.

Taking the limit ί->0 competes the proof.

To apply this result to the proof of the theorem note that by closure π(A)D(H)Q
D{H) for AeD(δ). Hence with U(t) = exp{iHt} one finds that U(ήπ(A)U(-ήψ
satisfies the conditions of the lemma whenever AeD(δ\ ψeD(H). One has namely

[ϋ{t)AU{-t)~A~\xplt

(t)-l)A(U(-t)

l/t(U(t)-l)Aψ

Thus the resolvent bound is valid in the representation π. But this representation
is faithful and hence the bound is valid algebraically. The last statement of the
theorem now follows from Theorem 4, Parts 2 and 3.

We have previously remarked in Example 1 that for some C*-algebras there
exist closed derivations without invariant states, hence Theorem 6 is not universal-
ly applicable. It does, however, give simple criteria in a case of particular interest
in mathematical physics.

Corollary 2. Let δ be a closed symmetric derivation of a simple C*-algebra
with identity. The following conditions are equivalent

1. δ is an infinitesimal generator.
2. There exists a state ω over 91 such that ω°δ=0 and (ocδ-\-l)(D(δ)) = <Ά for

α//αeR.
3. There exists a state ω over 91 such that ω°δ = 0 and δ possesses a dense set

of analytic elements.
The only thing that remains to be shown is that if τ is a strongly continuous

one-parameter group of ^-automorphisms of 9ί then there exists a state ω over 21
such that ω°τ = ω. The existence of such an ω follows by applying an invariant
mean to </>°τ, where φ is an arbitrary state.

b) The Square-Root Operation

Theorem 7. Let δ be a symmetric derivation of a C*-algebra 3X with identity.
Assume that the domain D(δ) of δ is invariant under the square root operation,
i. e. AeD(δ) and A^O imply that Alf2eD(δ).
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It follows that δ is closeable and satisfies the resolvent bound ||α<5(̂ 4) + ,4|| ^ ||^4||,
αe IR, Ae D{δ).

Thus, if further (ocδ -f 1)(D(<5)) = 51, or, alternatively, if δ possesses a dense set
of analytic elements then δ, the closure of δ, is an infinitesimal generator.

Proof The proof of closeability is due to Powers and Sakai [4] we elaborate
on their method to derive the resolvent bound

\\aδ(A) + A\\ ^ \\A\\, αeR, AeD(δ).

For AeD(δ) choose a state ω over % such that

ω(A*A)=\\A\\2.

We may write

A*A = i\\A\\2-U2

and

U = }/t\\A\\2-A*Ae D{δ)

by assumption. Note that we then have

ω(U2) = 0

But it immediately follows that

ω(δ(A*A))= -ω(δ(i\\A\\2-A*A))

= -ω{Uδ{U))-ω(δ(U)U)

= 0,

where the last step uses the Schwarz inequality.
Therefore one finds

\\aδ(A) + A\\2^ cφδ{A*) + A*K<ώ{A) + A))

= a2ω{δ(A*)δ{A)) + aco(δ(A*A)) + ω{A*A)

- M i l 2 .
The statement of the theorem now follows from Theorem 2.
Unfortunately the invariance of D(δ) under the square root operation is not

a generally useful criterion. In [1] it was demonstrated that if δ is closed and
AeD(δ) is not only positive but invertible then Ai/2eD(δ). Here the assumption
of invertibility is essential as the following example shows.

Example 2. Let 91 = C0(IR) and δ the infinitesimal generator of the group τ of
translations /(x)κ>/(χ + α), i. e. the action of δ is given by

(δf)(x) = df(x)/dx

with D(δ) the continuously differentiable functions whose derivative vanishes at
infinity. It follows that \x\3/2e~χ2eD(δ) but the square root of this element is not
contained in D(δ).
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Thus the square root criterion has limited applicability. It does, however,
apply to derivations δ of UHF algebras whose domain consists of an increasing
sequence of matrix algebras.

5. Conclusion

We conclude this article with some remarks concerning the stability of infinitesimal
generators. If δι and δ2 are both generators then their sum δι + δ2 satisfies the
resolvent bound

\Hδι+δ2tA) + A\\ ̂  Mil, AeDiδJn D(δ2)

by an argument due to Kato and Trotter (see, for example, [6], p. 499). In particular
if δ2 is bounded the resolvent bound holds for the closed derivation (51+(525

defined in a natural manner on D(δί). But in this latter case perturbation theory
allows one to conclude that

Thus δί+δ2 is an infinitesimal generator. One can in fact show that the groups
τ 1 2 , and τ 1, generated by δί+δ2, and δί9 respectively, are connected by

for all Ae% and ί^O, and by a similar series if ί^O.
Thus the notion of infinitesimal generator is stable under bounded perturba-

tions. This situation is satisfactory except in the case of abelian 91 because no
bounded derivations of an abelian C*-algebra exist. Thus we are led to consider
a more general notion of perturbation.

A natural concept is to define the derivation δ2 to be δx-bounded, with δx-
bound b, if D(5 2)2i)(^) and

Examples of relatively bounded derivations can be given; if 2ί is the continuous
functions on the circle, δ is usual differentiation and δg = g(Θ)d/dΘ with g con-
tinuous then

\\δg(A)\\S\\g\\J\δ{A)l AeD(δ).

It is natural to ask whether δί + λδ2 is an infinitesimal generator for small λ
whenever δx is a generator and δ2 is relatively bounded by <5t. One can use the
Neumann series to deduce that R(oι(δί + λδ2) +1) = 91 for small enough α, whenever
\λ\ < I/2b but the difficulty is to prove that δx -f λδ2 satisfies the resolvent bound.
If this can be established by independent means, for all λ, for example by showing
that δ2 is an infinitesimal generator, then δί + λδ2 will be a generator for \λ\ < l/2b.
But the argument can then be iterated by noting that

for all AeDiδJ and for \λ\ < 1/b. One then finds that δ1 + λδ2 is a generator for all
\λ\ < i/b. The crux of the matter is the resolvent bound and it does not appear that
this follows without extrastructure.
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