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Abstract. Phase transitions for the quantum field interaction
m,Q/λ<ξ 1 are established in two dimensional space time.

1. Introduction

We present a direct proof of the existence of phase transitions in quantum field
theory. We consider here the simplest interaction for which a phase transition
is expected, namely the

λφ* + \miφ\ m g / λ « l , (1.1)

perturbation of the free field of mass m0. We give a complete proof in space time
dimension d = 2. Our same methods apply in principle to arbitrary even P(φ)2
models without cutoff.

To define the interaction (1.1) for a — 2 we require Wick ordering. We denote
Wick ordering of P with respect to the covariance (-Δ+ m^)"1 by :P:mo. Then
scaling and re Wick ordering leads to an equivalent theory with the bare mass
0(σ}~1 and the interaction which we study, see [13], is

:?(<?):„-,= :(Φ

2-σ2)2/σ2:σ-,, σM. (1.2)

It is the occurrence of two distinct minima, separated by a large barrier, which
suggests the occurrence of phase transitions for the interaction (1.2). The two
pure phases are ground states localized (in φ space) near the two minima φ= ±σ.

In the case we consider, the polynomial P(φ) is invariant under the symmetry
transformation φ-*—φ, while the pure phases are interchanged by the symmetry.
We note, however, that symmetry breaking is a distinct issue from the existence
of phase transitions. Just as in statistical mechanics, where phase transitions
may occur without symmetry breaking [11], we expect phase transitions in field
theory for certain P(φ) models which do not possess a symmetry group, such as
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for the interaction

for σ> 1, ε<O, and μ = μ(ε, σ).
The method we use here to study the interaction (1.2) is to generalize the φj

bounds [3, 8, 2, 6, 5] in order to estimate perturbations of the measures for the
interacting ground state. These estimates follow from the Osterwalder-Schrader
positivity and the Euclidean invariance of the theory, combined with bounds
we prove in Section 2 on the vacuum energy per unit volume. The existence of
long range order (phase transitions and symmetry breaking) follow by a variant
of a statistical mechanics argument due to Peierls. As a consequence, we find
that the Dirichlet φ4 theory (1.2) has a non-unique vacuum for σ^>l. The two
phases are separated by an external field — μφ added to P(φ) of (1.2).

In a separate article [7], we generalize our convergent weak coupling ex-
pansion to yield a cluster expansion for the interaction (1.2). This expansion
allows us to introduce boundary conditions (other than zero Dirichlet) which
yield two distinct pure phases. In each pure phase we obtain from the cluster
expansion a model with a unique vacuum, which satisfies the Wightman axioms
with a mass gap. Of course, it would be of interest to pursue the particle structure
of the model (1.2) via the cluster expansion.

In contrast to our detailed study based on the cluster expansion, our present
paper gives a simple, direct proof that phase transitions occur. An alternative
approach to the problem of phase transitions has been announced in [1], but the
proof has not appeared.

We now introduce some notation and explain the Peierls argument. Let
ΛcRa be a square, centered at the origin, and let ΔΛ be the Laplace operator
with zero Dirichlet boundary conditions on the boundary dΛ of Λ. Let dφε Λ

denote the Gaussian measure over ίf'(R2) wit mean zero and co variance

V(Λ)=$A:P(φ(x)):dx9 (1.3)

where :P: denotes Wick ordering with respect to the covariance ( — AΛ + ε2)~ί.
We let

and in order to ensure that P defined by (1.2) is equivalent to (1.1), we also choose
ε = σ~l .

For P given by (1.2), plus a linear term, the limit Λ?R2 in (1.4) exists for

A = jVOXi) . . . φ(xr)v(xί, . . . , xr)dx , v e <f ,

and also for ,4 = expg with Q defined by (1.9), as well as for

defined below.
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For each unit lattice square A = Δp centered at j e Z2, we define the averaged
field

φ(Δ)=$Δφ(x)dx.

Essentially φ(Δ) is the low momentum field in Δ, so we expect that φ(Δ) char-
acterizes phase transitions in Δ. We define a localizing function of the averaged
field

l if φ ( Δ ) e ( a , b )
.

( 0 otherwise.

We use the particular functions

X+ = X(θ,π) and χ-=K<-oo,o)

to separate phases and to establish the existence of long range order.
Lattice squares Δh A 3 are nearest neighbors if \i—j\ = 1. Let Jf be a collection

of nearest neighbor pairs and let \Jf\ denote the cardinality of Jf. Assume there
exists a constant K > 0 such that

<U(A,AwX-(A)X+W>^e-KW. (1.5)

Theorem 1.1. Consider a P(φ)2 quantum field theory defined by (1.3)— (1.4).
// (1.5) holds for K sufficiently large and for all Jf, then for any two lattice squares
ΔI and A

Corollary 1. If the field φ has a φ-*—φ symmetry (for example if P and the
boundary conditions are both even) then (χ±(Δ)y = \. In this case,

which establishes the existence of long range order.

In order to establish symmetry breaking, we consider the model

:P(φ,μ): = :(φ2-σ2)2/σ2:-μφ
(1.6)

= :P(φ):-μφ,

with :P: given by (1.2). The estimates in this paper are uniform for 0^
Then we find

Corollary 2. For the interaction defined by (1.3), (1.4), and (1.6),

μ\0

Proof. For μφO, the :P(φ,μ): model has a unique vacuum, as a corollary
of the Lee- Yang theorem [12]. Thus as dist(zl, /)')-> oo,



206 J. Glimm et al.

where we use clustering and translation invariance. Thus by the theorem,

which has the solution <χ+(zl)>μ>0.8. By FKG inequalities, <χ+(/l)>μ is monotone
in μ, as μ^O. Thus lira <χ+(^)>u exists and is greater than 0.8>-j.

Theorem 1.2. Let K be given, and let a φ4 quantum field be defined by (1.3),
(1.4), and (1.6). For σ sufficiently large, (1.5) holds for all collections Λf of nearest
neighbor pairs.

Proof of Theorem 1.1. Let AQ be a square, centered at the origin, containing
Ah Aj and large enough (depending on ί and j) so that

2 + dist(Ai9Aj)^\dAO\^dist(dA09{Ai9Aj}). (1.7)

A configuration is defined as a map from lattice squares in A0 to ±1. Given a
configuration c, a subset Y Cc~1( + 1) is said to be + connected if any two lattice
squares of Y can be connected by a path of nearest neighbor squares belonging
to Y. The definition of - connected is analogous. Each configuration introduces
a decomposition of AQ into -f and — connected components {Xk(c)}. Let Xt

and Xj be components containing Ai and Aj respectively. Let γt be the outermost
contour in dXif Technically, yt is defined to be the boundary of the component
of R2\Xi which contains the point at oo. At least one of the contours y{ or yj must
separate At from Aj. Supposing this contour is yh we define

i.e. the portion of y{ not contained in dA0.
Letting |y| denote the length of y, we assert that

(1.8)

If y l ncLl0 = 0, then there is nothing to prove, since the shortest contour with a
given radius (^dist(y, {A^ Δ^})} is a square, and for this case, the circumference is
eight times the radius. Now suppose y^nδyloΦO. Then

dist(y, {Ah Aj})^ \ dist(J ί9 A^ - \dAQ\
lo

by (1.7). Thus

Since
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we have

<K + (4k- (4)>= Σc <X + Vi)X-(Aj) ΓL Xc

where Σc is the sum over configurations c with c(Ai) = 1, φ^ ̂  — 1 and Y[Δ omits
zj t and z!7 . Let y = y(c) be defined as above, and let Λr = Jf(γ} be the set of nearest
neighbor pairs bordering y. Then

The sum ranges over y's resulting from contours y f enclosing At and separating zl,
from Aj. There are at most 3'7'1 such contours of length \yt\, with a fixed starting
point. We choose as starting point the point of yi lying on the line (Ai9 Δ) and
closest to At. With \yt\ fixed, this can be chosen in at most l l |y | ways, by (1.8). Thus
(χ+(Ai)χ_(AJ)y<l/% for K sufficiently large.

In order to prove Theorem 1.2, we study perturbations of the interacting
Euclidean measure defined by polynomials of the form

Q(ξ,X)=^,= ίQv(ξ^\X), (1.9)

where

Q^(l\X} = σ-l^ΔjCX^\Δj(:φ\xY-σ2}dx, (1.10)

'.dx, (1.11)

Q4(ξf\ K, κ\ X) = σ-*(κ+l)> ΣA.CX ̂  Σί= 1 ί̂  :φί(x)-φί>(x)' dx . (1.13)

In (1.13), K and κf denote ultraviolet cutoffs, and

0 ̂  K ̂  K' ̂  oo , K < oo .

For κ: = 0, :φΐ: =0. Let |^Γ| denote the area of the subset ^ίc^2. Our main technical
estimate is the following theorem, which will be proved in Section 3.

Theorem 1.3. There is a constant Kv and a c)>0 such that for all Q defined by
(1.9H1-13), wiίfc Iξ f l^ l and for < - > defined by (1.2)-(1.4), and (1.6) wiίΛ σ SM^I-
ciently large

Proof of Theorem 1.2, assuming Theorem 1.3. For each pair (ΔhΔ^eJ^ we
write

( -σ/2, 0))

as a sum of four terms. We shall bound each term for any even M by
[σ~1Qv(φ)]M

? v = l , 2,3. By using the Cauchy formula for derivatives in the
variable ξ as in [2] we have

]M
„ /v ι ' 11 ~ ^ r.~ )

(1.15)
2π
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In each case we choose M = 2[σ/8] to optimize the above bound. Here [x] denotes
the integer part of x.

For instance, we bound the term χ ( < y/2,oo)(^ik(-oo, -σ/2)(^7 ) by

_-M
M

ξ=0

Each of the remaining three terms is bounded by χ(0,σ/2)(^i) or X(-σ/2,o)(Aj). Note
that on the support of χ(0 σ/2)(J),

Here O(lnσ) is a Wick ordering constant. Since σ~2O(lnσ)-»0 one has for suffi-
ciently large σ either

-(^ι:φ(x)2:dx-σ2)

or

The factor χ ( _ σ / 2 t 0 ) ( A j ) is bounded by the same expressions with Δj replacing A(.
Now we can apply (1.15) to each pair of squares. Since a single square Ai occurs

in Qι or Q2 in at most four pairs (Ai9 Aj)ε Jf, the factorials are bounded by

The theorem now follows from

In the last line we have used Stirling's formula (with n= [σ]),

Note that the weakly divergent bound exp(0(ln2σ)) per square from Theorem
1.3 is bounded by the strongly convergent factor exp( — 0(σ)).

2. Bounds on Vacuum Energy per Unit Volume

In this section we give upper and lower bounds on the vacuum energy per unit
volume. The upper bound is more elementary, and we 'consider it first. Let \dΛ\
denote the length of the boundary of A.

Proposition 2.1. There is a constant O(i) independent of σ and Λ such that

e-°^Λ\^\e-V(A}dφσ-^Λ (2.1)

for all A satisfying σ\dΛ\^\A\.
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Proof. We translate φ by the function σf(x\ where

(Note that the Dirichlet Green's function is less than the free Green's function.)
By convexity of the exponential,

Hence for W(φ) a Wick ordered polynomial without a constant term,

= 0 and ewdφ^l.

Thus we need only compute the constant in the exponent after translation. The
purpose of the translation is to eliminate the leading term O(σ2|yl|). There is a
constant term associated with V(Λ) and a constant associated with the change
of measure dφ-+d(φ-\-σf}. The constant associated with V(A) of (1.3) is

In the first term, A and ΔΛ agree except on dΛ, so that the difference kernel con-
tributes only along the boundary dΛ. Scaling the length scale σ back to one shows
that this term is 0(σ\dA\). The second term is integrated with one variable in and
one variable outside of Λ. Again scaling the length back to one we obtain a con-
tribution 0(σ\dA\\ Thus

where the last inequality follows by our restriction on the volumes.
The constant associated with the translation of the Gaussian measure dφσ-^Λ

is

and the proof for μ = 0 is complete. For μ>0, we use the Griffiths inequality

to complete the proof.
The lower bound on the vacuum energy concerns the perturbed Euclidean

measure

le-r(Λ} + W A"dφσ-ltA. (2.2)

This bound, which is slowly divergent as σ-^oo (see Theorem 1.3), is sufficient for
the present paper. Bounds uniform in σ may be found in [7]. By Schwarz'
inequality, it is sufficient to establish separately the bounds

v = 2,3, (2.3)

\Λ\9 V = l j 4 ί (2.4)
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Proposition 2.2. There is a constant independent of σ and A such that (2.3) and
(2.4) hold.

Proof. The main point is that the low momentum modes of Q2 and Q3 are
suppressed, thereby introducing an effective mass into the co variance. In technical
terms, this idea emerges as the following fact: The Laplace operator of a bounded
region, with Neumann boundary data, has λ1=0 as the lowest eigenvalue, and
the next eigenvalue λ2 is strictly positive. The eigenspace corresponding to λί = 0
is the space of functions which are constant on each connected component of the
bounded region.

We write Q3 (and ξ ( 3 } ) as a sum of four terms so that in a single term, each
lattice square Δ occurs only once in the sum over nearest neighbor pairs. By
Holders inequality, it is sufficient to consider a single such term. Let Jf ' = {(A, A1)}
be the corresponding set of nearest neighbor pairs of lattice squares, and let ΔjV

be the Laplace operator with Neumann data on

Let dq>jr be the Gaussian measure with co variance (— zl^ + σ"2)"1. By con-
ditioning [10] and factorization of dφ^ across boundary lines, it is sufficient to
consider a single pair of lattice squares. The required bound reduces to

where χ = χΔ — χΔ> *s the difference of the characteristic functions of A and A'. To
establish the bound 0(1), independent of σ, we use the fact that χ is perpendicular
to the functions which are constant on Δ\jΔ', and so the lowest eigenvalue λ1=0
of Δjy does not contribute.

For the case v = 2, it suffices to estimate

fe4ξ:φ^(Δ)-φ(Δ^:l\ogσ^

where the Gaussian measure dφ^ has a covariance corresponding to Neumann
boundary conditions on the boundary dA of the lattice square A. Let PΔ be the
orthogonal projection onto the subspace of L2 spanned by χΔ and let

Then by a standard computation (see also [7])

Γ^ξ'.iφiW-φμW'./losσ^φ =\e-i t r ln(/-Λ)g- ± tr ή < ̂  \\A\ \\ ^

where || \\ is the Hubert-Schmidt norm and we use Org/l</, true for σ> 1. In
fact, since χΔ — PΔ annihilates the eigenspace oϊA^ corresponding to the eigenvalue
λί = 0, we see that for large σ

This completes the proof.
For the case v = 1, we note that when |£| ̂  1,

n2κ)^ .(φ2(x)-σ2)2 .+ξσ .φ2

κ(x)-σ2:, (2.5)
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with Wick ordering with respect to a unit mass. By standard methods the vacuum
energy per unit volume corresponding to the polynomial on the right is 0(σ2\n2σ\
see [9]. The proof of (2.4) for μ— 0 then reduces to scaling by σ~2. We introduce
the external field μφ directly into (2.5). Again, for μ sufficiently small, we obtain
the lower bound (2.5) by removing Wick ordering, and this completes the proof
of (2.4). We omit the discussion of v = 4.

3. Local Perturbations of the Interaction

In this section we extend the φj bounds to localized perturbations of the type
Q(ξ, X\ and thereby prove Theorem 1.3. We make two modifications to the basic
φj bound argument [3, 8, 2, 5]. The first is that we consider perturbations of the
measure such as

φ(Δ}2- \Δ :φ(x)2:dx,

which, while localized in a bounded region A, cannot be expressed as a local
perturbation of the Hamiltonian. Secondly, by using Euclidean invariance of the
physical measure (Λ = R2\ we show that it suffices to consider the case where X
is a large rectangle. In the case X = rectangle, we work in a finite volume and obtain
bounds uniform in Λ. This allows the passage to the limit ΛfR2. The φ bounds
have the form

rather than the cruder estimate

We do not require estimates on β^ [cf. 8, 2] which measures surface effects on the
vacuum energy due to removing or adding parts of the interaction associated
with a bounded region. (We remark that estimates on β^ are poor because of the
small mass σ'1 in the covariance.) Dirichlet data provide a further complication
to such estimates.

Let

Hl(σ) = HOJ(σ} + σ-2^Ll :(φ(x)2-σ2)2:dx (3.1)

be the Hamiltonian with Dirichlet boundary conditions at x= ±1 Here HQίl(σ)
is the free Hamiltonian with the same boundary conditions and mass σ"1. Then
HQj(σ) and Ht(σ) act on the time zero Fock space

& = L2(,9>'(Rl),dμΌtl). (3.2)

Here dμoj is the Gaussian measure defined by the condition that the vacuum
ΩOJ for H0j is represented by the function 1. Let Ωl be the vacuum for Ht(σ) and
let Eι(σ) be the vacuum energy, so that

Recall that H^σ) is a direct sum of a free Hamiltonian associated with the region
\x\^l and an operator with compact resolvent associated with the region
so that the existence oϊΩl follows.
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Lemma 3.1. There is a constant independent of σ and a sequence //- >oo
(possibility dependent on σ) such that

- £/£ _» ̂  - Elt(σ) + const α , (3.3)

for any a ̂  0.

Proof. By Proposition 2.1, there is a constant independent of σ and / such that

/^ «</)=-£, + const/ (3.4)

for / sufficiently large. Choose lt to be a one-sided maximum of β, so that for
positive l^lh

Since e(/)->oo as /->oo, there is a sequence of such /;, /t-->oo. This completes the
proof.

The Euclidean Fock space is

where ./!/ = # x [ — /,/]. For each time t there is a natural imbedding Jt\ $'-*,%*
from J^ to the time ί subspace of Jf. We also introduce spacetime rectangles

For each α G (—/,/), we also introduce the Fock spaces

and

The space jΓ(—/ + 2α, /) is determined by placing zero Dirichlet data on the line
x = I and also on the symmetric line x = — I + 2a obtained by reflecting the line
x = / about the line x = α, for a > 0. The definition of Jf (-/,/- 2a\ a > 0, is similar.
The measure dμaj is Gaussian, and its co variance is given explicitly in [5]. It is
characterized by the following property: Let Ia be the natural injection from
polynomials on ^'(jR1) to generalized polynomials on ^'(R2) defined by the
formula

and φ on the left above is a field (linear function) defined on
y'(Rl\ while φ on the right is a field on ^'(R2). We extend Ia to polynomials,

Ia(Q(Φ(fά - . . , Φ(fn)) = Q(Ia(Φ(A}\ - - . /«(#/„))) ,

so that Ia can be regarded as an identification map. Then dμaj is characterized
by the fact that Ia is isometric from ̂ (α, /) into Jf ( - / + 2α, /) (a > 6) or jf ( - /, / + 2α)
(α<0). We use the fact that conditional expectation onto the line x = a, α>0, of a
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function supported in the region a^x^l, is independent of the location of
Dirichlet boundary data in the region x<a. In particular these conditional ex-
pectations, defined in jf (-/4-2α, /) and in jf (-/, /) coincide, see [5]. In order to
give this statement a meaning, we identify the x = a functions of the fields in these
two spaces. However, this identification is not a unitary map between the Hubert
spaces.

Proposition 3.2. Let l = lt be as in Lemma 3.1. There is a constant independent
ofξ, α, σ, and i such that for a ^0(l)σ and for I sufficiently large,

2' «} J0 1 |

Proo/. Let

and let β"(ξ, X"2?α) be the sum of Q(ξ, 72,«) and its time reflextion about the x-axis.
Then

Since AA* is self adjoint and positivity preserving, there is a unit vector
v 6 L^'(Rl\ dμ0) t) such that

- \\AA*\\= lim
N^oo

< lim l l i i l l 2 / W / O= iιm l l ^ l i L \M

The inner product can be written in Euclidean form, yielding

\\A\\2 ̂  lim (\e-V(X™^}e^^x™>«}dφσ-. Λl)
1/N

N-+CO '

|| J* g-^Λ-zN.Jgβ

e~El-a lim | | . . . |

where we use Lemma 3.1. Here the norm || ... || is the operator norm from 3F(a, I)
to ^( — a,ΐ). The norm is estimated by an integral. For vectors v±

we have by the Schwarz inequality

'^^

By Proposition 2.2, the second factor is bounded by exp[const(Inσ)2Nα]. We
bound the first factor as in [5]. For a ^ 0(1 )σ and / large, we have the hyper-
contractive bound
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Thus the norm || ... || in (3.5) satisfies

and using (3.5), the proof is complete.

Theorem 3.3. The limit ATR2 in (1.4) exists for

A = e*Q(t.x> and A=l\Δ]χ±(ΔJ) .

Proof. We prove convergence for exp(zg) in two steps. First in the ultraviolet
cutoff case Q = QK, the existence of the limit A?R2 for A = Qn

κ exists by Griffiths'
inequality. (Because of the use of full Dirichlet data, this argument is special to
φ4.) We expand exp(zβκ) in a power series in z. Using term by term convergence,
and a φj bound to give a uniform bound on the sum, we obtain convergence for
exp(zgκ). We then remove the momentum cutoff by considering the difference
exp(zβκ) — exp(zβκ/) as a power series. By Proposition 2.2 (and 3.2) we have a
uniform bound which is 0(1) as K, κ/->oo. Here we use the bound on Q4, cf. [6,
Chapters 2 and 5].

To prove the convergence for A = Πχ±(A) note that since <[]jexp(^7 φ(zl))>yί

converges so does (ψ(φ(A))y for ipΈL^. Using the fact that χ± g 1 we need only
establish

uniformly in A for a suitable sequence ψ~εLι. To deal with the singularities of
χ~± it suffices to show

(a) ̂
(b) ξ\

are bounded uniformly in ξ and A. (a) is an immediate consequence of the φ bound.
(b) follows from integration by parts, e.g.

δφ(x)

and Proposition 3.2.
For the remainder of this paper, we take A = R2. The bounds of Proposition 3.2

extend to this case, and prove Theorem 1.3 for (sufficiently long) rectangles (cf.
[4]). The problem is to allow X to be an arbitrary union of lattice squares. Let Ta

denote time translation, (£, x)-»(ί + β, x) and let $, denote time inversion,
(ί, x)->(—/, x), and let Ta and βfr act on functions of the Euclidean field φ(ί, x).

Proposition 3.4. Let A, B, and C be functions of φ localized in the time intervals
(— GO, — 1), (— 1, 0), and (0, GO) respectively, and suppose B^O. Then

Γ>Mim <^ί=,T2ί(Bm~)yi2N
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Proof. We use the positivity condition of Osterwalder-Schrader (positivity of
the inner product in the physical Hubert space). The result then follows from the
Schwarz inequality and the density of L^ in L2.

Proof of Theorem 13. Let z = (i0, i je Z2. Given ξ, let ξ(i^N) and ξ(i,N) be
multiindices defined by

H. *n _ K f if l'ι=A and l l 'o-/
ς(h' )j 0 otherwise

ξi if |ίo- > o l=N and I'Ί-
θ otherwise.

Consider the case Q^=^ By repeated use of Proposition 3. 4 in the x0 direction
and again after Euclidean rotation in the xl -direction we conclude that when XN is
an N x N rectangle

o

N ~~* GC

< Π i e v lim < eQ(ί«.N»>ι/N 2.
— 11'" ̂ ^

By Theorem 3.3 with Λ = Λl = [ — l,ΐ]xRvιe have

<ec«(i.w»>= ιim <eβ(ί(i,Aί))>yi
Z-^oo

To express the last term in Fock space let

[̂ = J?2e-^ y2,ι)g-Q(«(i,w,r2.w)jo >

Then

<^ ,,const N2 (log σ)2

Here we have applied Proposition 3.2 with α = N. Hence combining these estimates
we have

Q(ξ,X}\ < ΓT
= 1 lie

In the case of Q3 we apply the same argument with appropriate reflections, as in
Proposition 3.2.

References
1. Dobrushyn,R., Minlos,R.: Construction of a one-dimensional quantum field via a continuous

Markov field. Funct. Anal. Appl. 7, 324—325 (1973)
2. Frohlich, J.: Schwinger functions and their generating functionals. II. Adv. Math, (to appear)
3. Glimm,J., Jaffe,A.: The λ(φ4}2 quantum field theory without cutoffs. IV. J. Math. Phys. 13,

1558—1584(1972)
4. Glimm, J., Jaffe,A.: On the approach to the critical point. Ann. Inst. Henri Poincare 22, 13—26

(1975)
5. Glimm, J., Jaffe,A.: φj bounds in P(φ)2 quantum field models. Proc. of the Colloq. on Math.

Methods of Quantum Field Theory, Marseille, June 1975



216 J. Glimm et al.

6. Glimm, J., Jaffe,A.: Two and three body equations in quantum field models. Commun. math.
Phys. 44, 293—320 (1975)

7. Glimm,!., Jaffe,A., Spencer,T.: A cluster expansion for the φ\ quantum field theory in the two
phase region (in preparation)

8. Guerra,F., Rosen,L., Simon, B.: Nelson's symmetry and the infinite volume behavior of the
vacuum in P(φ)2. Commun. math. Phys. 27, 10—22 (1972)

9. Guerra,F., Rosen, L., Simon, B.: The vacuum energy for P(φ)2 infinite volume limit and coupling
constant dependence. Commun. math. Phys. 29, 233—247 (1973)

10. Guerra,F., Rosen, L., Simon, B.: The P(φ)2 Euclidean quantum field theory as classical statistical
mechanics. Ann. Math. 101, 111—259 (1975)

11. Pirogov,S. A., Sinai, Ya.G.: Phase transitions of the first kind for small perturbations of the
Ising model. Funct. Anal. Appl. 8, 21—25 (1974) (Engl. trans.)

12. Simon, B., Griffiths, R.: The φ\ field theory as a classical Ising model. Commun. math. Phys. 33,
{45—164 (1973)

13. Glimm, J., Jaffe,A., Spencer,T.: Existence of phase transitions for φ\ quantum fields. Proc. of the
Colloq. on Math. Methods of Quantum Field Theory, Marseille, June 1975

Communicated by K. Hepp

(Received June 29, 1975)




