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Abstract. This paper contains an account of the interaction of a quantized
massive scalar field with the classical c number gravitational field of a plane
sandwich wave of arbitrary profile and polarization. It is shown that the time
varying gravitational field of the wave produces no particles and the Feynman
propagator for the problem is calculated exactly. This is used to show that
any reasonable regularization of the vacuum expectation value of the energy
momentum tensor of the field must vanish. This means that a gravitational
wave far from its source will propagate without hindrance by quantum
effects.

Introduction

Recently there has been some interest in a class of problems in which one treats
a quantized field propagating on a classical, onumber, background gravitational
field [1-4]. This work has encountered two sorts of difficulties:

(1) The definition of no particle states.
(2) The definition of a suitable energy momentum tensor operator Tμv.
The first difficulty can be circumverted to some extent when the spacetime

is asymptotically flat in some sense and interesting results have been obtained
[1-3]. The second difficulty remains and becomes especially urgent if one seeks
to determine the back reaction of the quantum field on the geometry in a Hartree-
Fock approximation of the form

where \ψ} is some constant Heisenberg state vector - for example the initial
no particle or vacuum state |0_>. An especially interesting question is will
<0_|7JJ0_> obey the various energy conditions used in the Singularity Theorems
or other global results in classical general relativity [6]. The generally expected
answer seems to be "no" but no exact calculations have been performed.

This paper contains an exact calculation of <0_|Γμv|0_> for the case of a
plane sandwich wave of arbitrary profile and polarization in the case that the
quantum field is spinless. The main result is that in such a spacetime no particles
are produced by the time varying gravitational field and all reasonable suggestions
for regularizing the divergent <0_|7^v |0_> give a vanishing result. This shows
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that a gravitational wave far from its source will propagate without hindrance
from quantum effects and is analogous to the corresponding result for electro-
magnetic waves proved by Schwinger [7]. It unfortunately gives no information
on the energy conditions but it seems to be of interest as an illustration of the
general formalism and it may provide some ideas for the general problem.

The paper is divided into four sections. In 1 the general formalism developed
in a previous paper [3] is slightly extended, various propagators are defined and
it is shown how they may be used to obtain Γμv and various approaches to its
regularization are described. Section 2 contains an outline of the properties of
plane sandwich waves which are required. Section 3 contains a proof that the
wave creates no particles and the exact calculation of the (unique) Feynmann
propagator. The relationship of these results to the problem of back scattering
is discussed. In Section 4 a comparison is made with some results of deWitt
and the paper finishes with a short conclusion.

1. General Formalism

In this section we wish to outline some methods for obtaining the vacuum
expectation value of the energy momentum tensor Tμv of a quantum field φ
propagating on a classical c number gravitational background. For simplicity
we restrict attention to a scalar (not necessarily hermitian) field. The gravitational
field is described by a spacetime manifold {Jί, gμv} which, in view of the general
discussion in [3], we assume to possess a Cauchy surface. This will ensure that
there is a well defined time ordering T of events x, x', ..., x"... such that for position
dependent operators A(x), A(x').. .Ά(x")... which commute at spacelike seperations
T{A(x)A'(x')...A"(x")...} is the product of these operatiors arranged in chronolo-
gical order, the latest occurring on the left. In general the product diverges if any
two arguments can be joined by a null geodesic or coincide and so we shall not
define T in that case. Time ordering merely requires the chronology (no closed
timelike lines) but this is guaranteed if a Cauchy surface exists. In the detailed
case we consider later (plane waves) Cauchy surfaces do not exist but the chrono-
logy condition does hold. We shall use an heuristic argument to include it in the
general formulation.

We shall also assume that Jί contains two regions one to the past and one
to the future Jt~ and Ji^ which are sufficiently flat that one can define ingoing
and outgoing vacuum states |0_> and |0+> associated with them. These will be
defined using bases {pb wj = B_ and {p , n'i} = B+ of solutions of the wave equation
satisfield by φ — the Klein Gordon equation. Some of our calculations could be
carried out in any basis and the result will be referred to as Bogoliubov or basis
independent. We shall say that two bases B and E are connected by a non-mixing
Bogoliubov transformation if the scalar products:

(ph rij) and (nh p'3) vanish for all the indicated elements of B and B'. The
condition for no particle creation is that £_ and B+ to be connected by a non-
mixing Bogoliubov transformation.

The commutation relations of the field φ with its hermitian congugate φ f

are defined by

V ) ] = ̂ (x ,* ' ) , (1.1)
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where ^(x, x') is a certain (Bogoliυbov invariant) solution of the homogeneous
Klein-Gordon equation, which was defined in [3].

In terms of an arbitrary basis it has the form:

&{x, x') = Σi PiMPiW-nfaMx'). (1.2)

From 0(x,x') we may define the advanced and retarded Green's functions
^ a d v(x, x') and Ψ*\x, x') which obey the inhomogeneous equation:

( D 2 + m2)Ψe\x, x') = δ{x, xf) = {Π2 + m2)^a d v(x, x') (1.3)

by

^(x, x') = ̂ a d v(x, x ')-^ r e t (x, x') (1.4)

and the condition that ^ a d v(x, x') (ΨQ\x, x')) vanish if x' chronologically precedes
(antedates) x. <5(x, x') is a four dimensional delta function. Strictly speaking we
are now regarding φ(x) as an operator valued distribution. A third Bogoliubov
invariant Green's function is

#(x, x') = i{^ re t(x, x') +^ a d v (x, x')} (1.5)

Now given a "vacuum state" |0> defined by a basis B it is possible to define a
Feynman Propagator as

<0\T{φ(x)φ\x>)}\0}= -&F(x,x') (1.6)

= ΣίPi(χ)Pί(χ)= — i^ ( + \x>χf) if x> precedes x

= Yji ni(x)ήi(xf)= + i&-\x, x') if x precedes x'. (1.7)

^ F , ^ ( - ) and ^ ( + ) are basis dependent but they are invariant under non-
mixing Bogoliubov transformations. &F - which obeys the inhomogeneous
Klein-Gordon Eq. (1.3) has the property of propagating "particles" to the future
and "antiparticles" to the past where particles are the excitations corresponding
to the pt and need not be "real" particles which are only defined in the asymptotic
regions. Given two such asymptotic regions there is an alternative and in general
inequivalent definition of a Feynman Propagater, which we shall write as ̂ ( x , x')
by the equation

O_> (1.8)

Some properties of these propagatiors are tabulated in Table 1.
It now remains to note that

(1.9)

may be written as

Tμv(x)=Uχ/ FμV ^{φ{x)φ\x!)-rφ\x) + φ\x)φ{x')}, (1.10)

where

Vμ = d/dxμ; Fv, = δ/cbc'v '

and gμv (x, x') is the 2 point vector of parallel transport [11].
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Table 1

Name Symbol Bogohubov Satisfy what Support Symmetries
invariant? equation (for fixed x)

Jordan-Pauh
function

Retarded

Green's
function

Advanced
Green's
function

Feynman
Propagator

x, x') Yes

Yes

Yes

+)(x,x') No

~\x,x') No

(x, x') No
(x, x') No

Homogeneous Interior and closure ^(x, x')= — &(x\ x)

of light cone

Inhomogeneous Interior and closure ^ a d v(x, x') = 0ret(x', x)
of past light cone

Inhomogeneous Interior and closure
of future light cone

Homogeneous M

Homogeneous M

Inhomogeneous #
Inhomogeneous .M

If no electromagnetic field is present we may set nι = p1 • $(x, x') becomes real, ^(x, x') is pure

imaginary and hence %F(x, x') = <gF(x', x). ^"(x,x') = rif( + )(x, x') and ^ ( + )(x,x')= ~^{'\x,x').

Thus

<0|Γμv|0> = - ί/2 , x')} (1.12)

(1.13)

Where to ensure the validity of the transition from (1.12) to (1.13) we must take
the average of the limits going from the future and the past [8]. Similar expressions
may be written for the vacuum current. Thus we see that ^F(x, xf) contains all
the information we need and since it is a scalar quantity we expect that it will be
easier to calculate <0_ | Tμv\ 0_ > using it than to perform a mode by mode addition
which involves calculating 10 quantities for each mode and then adding. This idea
is due to Schwinger [7,8]. The difficulty is that the resultant limit diverges, and may
still depend upon the direction in which it is taken within the light cone. Indeed
(1.9) may not be equivalent to (1.12). However, since in any case (1.9) is poorly
defined we prefer to work with (1.13) as our basic "definition" of Tμv. In order to
extract a finite result a number of approaches suggest themselves.

(1) "Normal ordering" using some arbitrary basis. If we use |0_> we get
identically zero. If we use |0+> we shall have some incoming energy flux (possibly
infinite) in the infinite past. Related to this idea is that of using <0+ |Γμv |0 + > —
<0_|Γμv|0_> which suffers from the same problems.

(2) "Adiabatic Regularization" [4] in which one performs a mode by mode
subtraction of the value of Tμv in the limit that the gravitational field does not
change with time — this is not covariant nor very well defined for more general
contexts than the specific example in which it has been used.

(3) Pauli-Villars type regularization [9,10]. This was introduced into
gravitational problems by ZeΓdovich and Starobinsky [10]. In their sense it
consists of subtracting from Tμv the Tμv of some auxiliary fields with masses Mf

and amplitudes \/ct and choosing Mi and ct such that the divergences disappear
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and then taking the limit as Mf->oo. From the above this is entirely equivalent to
regularization of the propagater @F(x, xf) in the Pauli-Villars fashion [9] and then
taking the limit in (1.13). A simple version of this would be to subtract from
&F(x, x') its value in field free flat space expressed in some invariant way. In flat
space (SF is given by

DF= -{lβπ2)-1^ eίm2/seίΩsl2ds , (1.14)

where Ω = jημvx
μxv. If we replace Ω by Ω(x, x') the "world function" [11] we have

an invariantly defined biscalar to subtract from &F(x, x') before we take the limit
in (1.13). It will turn out to be more convenient and equally valid to subtract
from &F(x, x') the quantity:

-(\6π2)'ι\/Δ Jg> expί{rn2/s + Ωs/2}ds, (1.15)

where

H Ώ \ (1.16)

is the Van Vleck determinant which occurs in problems involving two point
tensors and Green's Functions [11].

In the plane wave spacetimes it is shown in Section 3 that @F(x, x') is precisely
of this form and so the regularized propagator vanishes and <0_|Tμv|0_> = 0.
However, in a more general spacetime there might be further divergences and
indeed deWitt and Utiyama [12,13] have argued that this is the case. This would
mean that more than one auxiliary mass is needed to perform the Pauli-Villars
regularization. DeWitt's approach is described in more detail in Section 4.

2. The Spacetime

We wish to consider the spacetime {Ji, gμv} with the following structure: -
(1) The manifold is R4.
(2) An atlas for is provided by the single co-ordinate chart consisting of

co-ordinates {17, F, X \ X 2 } which run over the reals.
(3) In these co-ordinates the metric is given by:

ds2 = dUdV + H^tyXWdU2 - dX'dX1 (2.1)

i= 1,2 and Hi3{U) are C 1 functions of U.
{Jί, gμv} is geodesically complete and satisfies the chronology condition. In

these co-ordinates the only non vanishing components of the Rieman tensor are:

(2.2)

{Jί, gμv} also has the property that all scalar invariants formed from gμv and
Rμvσρ and its covariant derivatives vanish identically.

Although it is not obvious from (2.1) gμv is invariant under a five parameter
group of diffeomorphisms G5 which contains an Abelian subgroup G3 which act
transitively on the null surfaces U = constant, a one dimensional subgroup of
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which acts along the null generators [14]. In order to exhibit the G3 explicitly
we introduce new co-ordinate charts {u,υ,xι,x2} related to the old ones by:

U = u
ί j (2.3)

where

J j (2.4)

(u, v, x1, x2)
a

and which takes the metric to the form:

ds2 = dudv - a^uWdxJ. (2.5)

It is clear that there are many such charts, each specified by giving aVj and a'tj
for some value of u. However, each one becomes singular for some value of u
as may be seen as follows. By manipulating (2.4) one may obtain

^^VaH^. (2.6)

This is sufficient to show that a vanishes for at least one value of u since by the weak
energy condition H m m ^ 0 (strictly speaking if Hmm = 0 we cannot use (2.6) directly
to prove this but it remains true). Thus if we are to use the group co-ordinates we
shall need at least two charts.

A sandwich wave is of the form (2.1) with Hίj(U) = 0 for U<>U1 and U^U2.
It thus consists of two flat regions Jί~ and Jί^ separated from a non flat region
Jί° by two null surfaces. Ji^ and Jt~ have associated with them two charts
such that α^u) = (5y and atJ{u) = 0 for U^U1 and U^U2 respectively.

The value of the group co-ordinates is that solving for geodesies and solutions
of the Klein-Gordon equation is especially simple using them. In particular the
world function and the VanVleck determinant are easily seen to be given by

Ω = {u-u)(v-v)-Bijiu, ttf)(xl-xfi){xj-xfj), (2.7)

A = {a(u)a(u')Γ-det\Bij(u,u')\, (2.8)

where

{u-uT1BiJYuldu"a^') = δ\

aίj(u)ajk(u) = δΐ

{Jί, gμv} possesses the remarkable property of containing no Cauchy surface [15].
However, an examination of the geodesies shows that only those geodesies travel-
ling along lines of constant U fail to meet the null surface U = constant. As far as
particle creation is concerned we are interested in the effect of the wave on "virtual"



Quantized Fields in Plane-Waves 197

Fig. la. A sandwich wave. The diagram

represents the U, V plane for fixed X1 and X2.

The dotted line is a typical null geodisic which

does not intersect all U = constant surfaces

Fig. lb. Schematic Penrose diagram of an
asymptotically flat spacetime with a bounded
source which radiates for a finite time (ignoring
tails). Near J>+ the geometry may be
approximated by a plane wave. The dotted
line represents a null geodesic from J>+ passing
through the origin and intersecting J~.
J>~VJI~ form a Cauchy surface for the problem.
To calculate particle production by the wave
the details of the source need not be known
and one may use the geometry of Fig. la
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particles which pass through the wavefront. In a realistic example information
travelling parallel to the wavefront would come from a source (see Fig. 1). Thus
for finding the behaviour in Ji^ due to data on M~ it is sufficient to take as
substitute Cauchy surfaces the null surfaces U = constant.

3. Calculation of Bogoliubov Coefficients and Propagators

In order to define a basis of solutions in Jt~ or Jί* we introduce in each a chart
of group co-ordinates using the initial conditions a^b^, alj = 0 in Ji~ or Jί +

respectively and consider the functions, which are solutions of the Klein-Gordon
equation

Pi = a(u)~^Qxpi{aίx
ί + cv + ψ(u)}

o O ; aua2eR (3.1)

Πi = a(u) ~ * expi {aμ1 + cυ + ψ(u)}

c<0; aua2eR (3.2)

with

ψ(u)= (3.3)
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Then

(PbPJ) = δ(c-c/)δ(a1-a\)δ(a2-a'2)(2π)3

(Pi,nj) = 0 (3.4)

{nb ΐij) = cδ{c - c ' ) Φ i - af

1)δ{a2 - a'2) (2π)3 .

Thus if, on making the transition from a discrete to a continuous basis we interpret

Σ* a s

Σt = ft ΛcfΐΞ da2^Z da2{2πy*c-' (3.5)

then for each chart the set {Pb nt} from a basis which is clearly complete since it
reduces to simple exponentials on surfaces of constant [/.-Note that the basis
breaks down when the chart breaks down. This is due to the same focussing effect
which acts on timelike and null geodesies and the elementary waves making
up the basis. These begin in Jί~ or Jέ^ as ordinary plane waves in Minkowski
space (they thus describe real particles in Jί~ ΆnάJί+) but as β(w)->0 they become
focussed, the phase runs through an infinite amount and their amplitude diverges.
It is instructive to compare the wave and particle aspects of this purely classical
problem. In general if we attempt to solve the Klein-Gordon equation with the
ansatz

A, S veal

we obtain

(\J2A)/A = (VS)2-m2.

The W.K.B. approximation consists of letting S satisfy the Hamilton-Jacobi
equation (VS)2 = m2. From this is follows that A~2 is the determinant of the three
metric orthogonal to the geodesies whose normals are VS. In this case the
approximation is exact. Thus the waves, the co-ordinate system and the geodesies
associated with them all focus on the same surface.

Now if we express three solutions in harmonic co-ordinates we find the V
dependence is of the form expϊcF. Since in harmonic co-ordinates

(φ,V>) = (2ί)~* JJ(Φ Sψ/dV-ψ δΦ/δV)dVdXίdX2 (3.6)

we see that only solutions with the same c (regardless of the form of α i ; (w)) fail
to be orthogonal. Thus the coefficients β^p and β\j) connecting any two bases
(defined by their corresponding charts) vanish. In particular the /Γs relating B-
and B+ will vanish if the bases and charts have a common region of validity.
If the domains of validity do not overlap it is necessary to introduce intermediate
charts and bases and compute the /Γs in stages. This works because the Bogoliubov
transformations form a group. The final result is the same: no matter how strong
the wave-no particle creation takes place.

We now turn to the calculation of propagators. Since the various bases are
related by non-mixing Bogoliubov transformations there is no ambiguity and we
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may chose any convenient basis to work in. We begin by calculating:

(3.7)

^ (3.8)

A straight forward calculation leads to:

# ( + ) = - ( 1 6 π 2 Γ H Φ ) Φ 0 Γ * d e t | B ^ (3.9)

with s = 4c{u — u')'1.

To obtain ^ ( ~ } we must integrate over negative c but since

u>u'
_

F 0(-> u<u'. (3.10)

S remains the same. The order of the limits of integration is, however, the opposite
from that in (3.9) thus we obtain

%F= -(ίβπ2)-^* \$ expί{nι2/s + Ωs/2)ds (3.11)

= -(16π2Γ1z1±JS> Γ2Qxpi(m2t + Ω/2ήdt. (3.12)

We may set m2 = 0 in 3.9 and using the definitions in Section 2 obtain:

This shows that the massless wave equation propagates on Jί without back
scattering or tails. That is Huyghen's Principle is obeyed. That this is true for
plane-waves seems well known. McClenaghen has proved a partial converse -
the only vacuum spacetimes for which this is true are plane waves (16)]. If m2 = 0
there will be tails but they will have the same Hankel Function form as in flat
space. Friedlander [17] and Zauderer [18] have obtained an essentially equivalent
result.

We may now use the limiting values of Aμ, Aμ>, v and Ωμ which are zero and
that of ΩμV which is gμv to show that, if we take these limits before performing
the integral we obtain a divergent multiple A of gμv as <0_|Γμv|0_>. By similar
reasoning we find that using (1.14) we obtain the same answer - placing ]/A(X, X')
in front of the flat space propagator does not alter <0_|Γμv|0_>. This divergence
could be absorbed into Einstein's equations with cosmological constant.

by an infinite renormalization of the cosmological constant λ. In order to remain
a plane wave spacetime A and λ must precisely cancel. However, since these
limits are not very well defined it would seem more reasonable to adopt a Pauli-
Villars scheme and regularize the propagator by subtracting from it (1.15). This
will give zero and hence a zero answer for <Ό_|Γμv |0_).

Adiabatic regularization on the other hand could presumably be achieved by
subtracting from &F{x, x') the quantity

A(x,x')=-{16π2 2yί
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However, this would give a combination of terms some proportional to gμv and
some to ημv, the flat space metric. One would not expect them to cancel. This is
because adiabatic regularization makes use of - implicity at least - two different
light cones. For this reason we shall not use adiabatic regularization.

From these remarks it would seem that the only reasonable value for
<0_|Tμv|0_> in this spacetime is zero. This would mean that a gravitational wave
can propagate through spacetime unhindered by quantum effects - however
strong it is.

These results may be understood in three ways:
(1) The absence of scalar invariants, upon which quantum effects must

presumably depend means that on such effects must be absent.
(2) The existence of a global killing vector - in this case the null vector d/dV -

against which "frequencies" are being measured means that no mixing takes place -
just as it would if J( were globally static.

(3) The absence of back scattering precludes particle creation. Indeed since a
"graviton" presumably in some sense carries lightlike momentum the creation
of one or more particles with timelike or lightlike momentum would violate the
conservation of momentum unless the created particles were massless and
precisely aligned with the momentum of the graviton. This is presumably also
the physical reason why back scattering does not occur in plane wave spacetimes
cf. [19].

4. The DeWitt-Schwinger Approach

DeWitt, following methods pioneered by Schwinger for quantum electrodynamics,
has obtained some general results which it is of interest to compare with the
particular discussion given above. He considers a spacetime with two flat regions
in the infinite past and infinite future as we have done. He constructs the quantity

if(x,x') = ifo ψ(x,x\t)dt, (4.1)

where ψ obeys

[J2ψ + m2ψ = idιp/δt, (4.2)

φ,x',0) = δ{x,x'). (4.3)

As a solution of (4.2) he takes

ψ=-(16πY1AiΓ2expί{nι2t + Ω/2t}Σn

nz$ an(it)n (4.4)

with α o = 1 and the an(x, x') to obey the recurrence relations:

Ω»an+Uμ + (n+l)an+1=A-HA-an)»μ (4.5)

deWitt then claims that H(x,x) which obeys the equation

can be identified as

V | O _ > ( 4 6 )
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since in the flat regions where an— >0n>0 (4.4) coincides with the flat space
Feynman propagator and so will possess the property of propagating positive
frequences to the asymptotic future and negative frequencies to the asymptotic
past. It is possible to relate the α '̂s directly to the coefficients of the Hadamard
series for the Green's functions of the massless wave equation and in particular
the vanishing of all an\ n>0 will ensure that Huyghen's principle will hold for that
Eqs. [11,13].

Then defining

<0+ |0_> = expiTy (4.7)

he obtains the equations

(4.8)

γx (4.9)
Le f f= Lt ^r^{x9x

f)dt, (4.10)
x-+x'

where δ/δgμv denotes functional differentiation.
(4.8) is a fairly straight forward consequence of the Schwinger Action Princi-

ple which can be proved from the theory we have developed so far but (4.9) appears
to make essential use of somewhat symbolic manipulations of "continuous
matrixes". The reader is referred to de Witt's article for the details.

The Le f f so obtained is of the form

where α o ,α l 5 α2 are numbers depending on m2 which if the limits in (4.9) are taken
diverge and the αn, n ̂  3 are finite numbers. In the plane wave case, since the
Lt an(x, xr) can involve only invariants of guv, Ruvσo and its derivatives, we are

left with only the first term - which would occur in flat space. Thus the results
obtained in Sections 2 and 3 are entirely consistent with de Witt's analysis.

In the more general case de Witt's arguments show that the divergent parts
of Leff are of a more complicated structure than we have found. If one seeks
to eliminate them by adding "counter terms" to the Einstein Lagrangian one will
need terms of a different form from those already present. If this is done in such
a way as to eliminate the first three terms then it is α3(x, x') which will give the
lowest order correction to <0+|Tμv|0_>. However, even if we were to calculate
this it would not give <0_|Tμv|0_> since in general |0 + >φ|0_> though it would
work in a globally static, asymptotically flat spacetime.

Conclusion

In this paper we have shown that a plane gravitational wave will propagate
without creating particles from the vacuum. This result will also be true of any
gravitational wave far from its (bounded) source. If we adopt a fairly natural
decision as to what to use for the vacuum expectation value of the energy
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momentum tensor it vanishes and the wave travels unimpeded. This analysis
is entirely consistent with the work of de Witt which indicates that in more
general cases the divergences of <0_|Γμv|0_> are more serious than we have
encountered here. This absence of particle creation effects seems to stem entirely
from the symmetry of the situation and makes no use of the Einstein equations.
It is closely analogous to the situation for plane electromagnetic waves and it
seems reasonable to suppose that the same results would hold for a combined
gravitational-electromagnetic wave. In order to investigate the properties of
<0_|Γμv|0_> in a more general context and especially the important case of black
hole explosions more work will have to be done.
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