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Abstract. The equations of the formalism developed in part I are simplified by specialisation of
the basic pair of null directions. The auxiliary vectors previously introduced are shown to have intrinsic
geometric properties which are directly related to the complexity of the differential operators of the
formalism. An Ansatz based on these properties is introduced and the calculation of the metric so
defined is used to display the connection between the coordinate-free and coordinate-dependent
solutions.

Introduction

In this first paper [1] of this series a new technique for the investigation of
empty space algebraically special solutions of the Einstein equations was intro-
duced. In this work we develop the method further. We show that certain quantities
which appear naturally in the course of calculation have a deeper significance and
contain information about the intrinsic geometric structure of the space. We also
demonstrate the efficacy of the method, showing how elementary arguments
lead to simplifying Ansatze and how easily calculations may be done.

The first part of the paper contains a review of the method and a compact
statement of the equations governing this type of metric. We show that for a
particular choice of tetrad these equations may be partially integrated in a co-
ordinate free sense and the problem thereby reduced to a set of eight linear equa-
tions, all of which are extremely simple in form.

The problem of simplifying specializations suggested by the previously derived
equations are considered. This leads us to investigate the auxilliary vectors
α and β which were introduced in Ref. [1]. These vectors contain the information
inherent in the Newman-Penrose (N.P.) spin coefficients [2] α,/}, y, and ε, and
are an essential part of the differential operators of the formalism. They are not of
good weight [3] transforming inhomogeneously under the gauge transformations
(cf. below), but despite this they contain important information concerning the
intrinsic structure of the space and the solubility of the resulting equations is
highly dependent on their properties.

The next part of the paper is devoted to a discussion of some properties common
to all algebraically special empty-space metrics with special reference to a family
of two surface metrics inherent in such solutions. Finally we derive the metric
determined by a special Ansatz.
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Section 2. Review of the Technique

We deal with an algebra of objects and differential operators all of which are
of good spin and boost weight in the sense of Ref. [3]. That is, given a standard
null tetrad la,na,ma,ma (the bar represents complex conjugation) such that

lana=-mama = l (2.1)

and all other scalar products vanish, an object is said to be of weight (p, q) if,
under the tetrad gauge transformation
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The fundamental objects of the formalism are those elements of the N.P. spin
coefficient formalism [2] which possess good weight. Following the practise
initiated in Ref. [3], some of these will be designated differently than is customary.
Those spin coefficients differing from the notation of Ref. [2] are (the original
notation appears in brackets)

ρ\-μ);κ\-v);σ\-λ);τ\-π).

The differential operators are essentially those of Ref. [3], modified to take
advantage of the simplified properties of algebraically special empty space metrics.
To define the new operators we first introduce the auxilliary vectors

Jr — Tfna-\—ττwα (2.4)
\Q Q) \Q: Q i\ Q Q

and

where

Ω° = - — . (2.5a)
Q Q

The derivative operators P, P\ ό, ό' are then defined by

Va - taa + spa = laφ' + τδ + τδ) + naP - ρmβf - ρmβ . (2.6)

The vectors oca and βa are not of good weight, transforming inhomogeneously
under (2.2). However the combination of terms appearing on the L.H.S. of (2.6)
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does have weight (0,0) so that the weights of P, P\ δ, and ό' are (1,1), (— 1, — 1),
(0, — 2), and (— 2,0) respectively.
These operators have the properties that

P>, PW = P>, ό]f,° = p>, ό']f/° = 0, (2.7)

if

iy = 0. (2.8)

(A degree sign ° will be used to mark any quantity annihilated by I>.) In addition

β'+jy, δ = δ ' . (2.9)

For a more detailed treatment of the operators, including symmetry properties
and the technique of integration without coordinates the reader is referred to
Refs. [1, 3].

Section 3. The Equations for a Particular Choice of Null Directions

In Ref. [1] the N.P. equations [2] were rewritten for the algebraically special
case using the operators £>, P\ ό, and ό'. We display these equations again, but for
a choice of tetrad which simplifies their form considerably. As usual the vector la

is chosen parallel to the degenerate principal null direction of the Weyl tensor.
The vector rf is chosen so that τ = 0. This is always possible in the algebraically
special case since under the null rotation (A is an arbitrary complex function)

na^na + Ama + Anf + AAla,

τ transforms as

(3.2)

ρ φ 0 is assumed throughout. This choice fixes the null directions uniquely.
From the field equations [1] it follows that τ' — σ' = 0. Taking this into account,

the equations of Ref. [1] reduce to:
Field Equations

I>ρ = ρ 2 , (3.3a)

pκ'=-ψ39 (3.3b)

Pρ' = ρfρ-ψ2, (3.3c)

δρ = 0, (3.4a)

ρόfρ' = (ρ-ρ)κ'-ψ3, (3.4b)

\ (3.4c)

δ'κ?=-φjρ, (3.4d)

(3.4e)
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Bianchi Identities
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•4=-3κ'ψ2 + |4ρ / - —

Commutators

Q Q

(3.5a)

(3.5b)

(3.5c)

(3.6a)

(3.6b)

(3.6c)

(3.7a)

(3.7b)

(3.7c)

(3.7d)

The remaining two commutators are obtained by complex conjugation of
(3.7b) and (3.7d).

Using the integration techniques of Ref. [1] it is a simple matter to integrate
these equations. The results are

[ρ 2ρ \ρ ρ

ρ 2ρ \ρ ρ

κ' = κ'°-ρψ3°~

Ψ3 =

Ψ4 =

° j _ l

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

'δΏ°] + f ρ5ψ2

o(S'Ωo)2,

where ρ, ρ'°, κ'°, ψ2

o, ψ3

o, and ψ4

o are as yet undetermined functions.
The preceding expressions for the φ's display Sachs' peeling theorem for

algebraically special spacetimes.
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These functions are subject to the relations:

6V°=-(>3 O + &VO], (3.14)

P'ρ'° = όκ'°9 (3.15)

6 V ° - - φ 4

o , (3.16)

δy>4

o=£'V>3°, (3-17)

6ψ3

o=P'ψ2°9 (3.18)

δψ2° = 0, (3.19)

6δΏ° = 2Ω°ρίO + ψ2

o - ψ2

o, (3.20)

β'Ωo = ρ / o -ρ / o . (3.21)

The derivative operators acting on ρ are
pρ = ρi p>ρ = ρ 2 Γ _ i ^ o

6ρ = 0 δ'ρ = ρ2δ'Ω° ( '

and the commutators reduce to

P ) ^ / ]--i te 2 tP2° + ̂ 2 ° ) ϊ )

5 (3.23a)
[Ί>,δ] = 0, (3.23b)

P>,ό'] = 0, (3.23c)
•/o /o

(3.23d)

P + qic'o9 (3.23e)

(3.230

Equations (3.14)—(3.23) form the basis for the work to follow. We emphasize
that the commutators are not identities, and in any solution they must be checked
for consistency.

Section 4. Specialisations

A complete solution of the Eqs. (3.14)—(3.21) would represent the most general
possible empty space algebraically special metric. To date this problem has proved
intractable. Talbot [4] using the N.P. formalism has reduced the problem to a
minimal set of differential equations (MDE) which while simpler than the original
Einstein equations are still sufficiently frightening in appearance to quail even the
stoutest of hearts. Various people have pushed the problem further through the
use of simplifying Ansatze. The most useful of these were those which led Kerr
to the metric which bears his name [5]. He assumed type D plus further simplifica-
tions to arrive at a unique metric. A simple Ansatz will in general produce a
"class" of metrics. The assumption that the metric be of type D leads to a problem
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which was completely solved by Kinnersley [6]. A partially successful Ansatz was
that of Robinson and Trautman [7], namely that the degenerate principle null
vector should be hypersurface orthogonal (Equivalent to the assumption ρ = ρ.)
This enabled them to reduce the MDE of a class of solutions to a single one.
Unfortunately it is of such a nature that ten years after its appearance only simple
stationary solutions have been found.

Further successful Ansatze have been associated with the curvature of a two
surface metric " P " which invariably appears in the description of an algebraically
special metric (cf. Section 6).

We will argue that to be reasonable, an Ansatz must be a gauge invariant
statement. For example the Ansatz that a quantity η shall be real (imaginary)
can only have a non-trivial meaning iϊη is type (p, p), i.e., under the transformation
(2.2)

so that the condition that η is real (imaginary) is maintained. Note that ρ is a (1,1)
quantity. Statements of the reality of objects not conforming to this rule or of the
equality of quantities not of equal spin and boost weights are not genuine Ansatze
but rather conditions imposed on the gauge. For example the Ansatz κ/o = ιp4°
is not really an Ansatz since this can always be satisfied by a particular choice of
gauge. The Eqs. (3.14)—(3.21) represent a source of Ansatze. Aside from the obvious
possibility of setting any of the fundamental variables equal to zero we could also
choose to set terms involving the derivative operators equal to zero or even to
equate two of them, always providing the wgts. agree. For example, a useful
satz, which will be used in a subsequent paper, is i>'ψ2° = 0.

There remains one further source of Ansatz, the auxiliary vectors aa and βa.
It was mentioned previously that under gauge transformations these transform
inhomogeneously. It is natural then to ask whether there exists a gauge in which
they can be made to vanish. This is the problem with which the balance of this
paper will be concerned. We will assume as our Ansatz that there exists a choice
of gauge such that both αα and βa vanish. This is a gauge invariant statement and
so is a valid Ansatz according to the rule established above. To understand the
ramifications of this assumption, the next section is devoted to an analysis of the
transformation properties of άa and βa.

Section 5. The Auxilliary Vectors

We return now to the case of an arbitrary tetrad (τ φ 0) and consider the vector
oίa(βa) as defined by (2.4). We first investigate its transformation properties under
the three transformations associated with a null tetrad, one null direction of which
remains fixed (in this case Γ). They are the transformations (2.2) and the null
rotation (3.1). We find that the null rotation (3.1) leaves aa(βa) invariant so that
modulo the transformations (2.2) the vector oca(βa) is uniquely determined.

Turning to the gauge transformations we see that under (2.2b) άa is invariant,
but under (2.2a),

α ^ + r 1 ^ . (5.1)
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Hence the condition that άa can be made to vanish by choice of gauge is equivalent
to άa being a gradient - a property invariant under (2.2a). If the vector άa is "dispo-
sable" by choice of gauge, this property is totally independent of choice of tetrad
(always provided that the direction of la is that of the degenerate principle null
direction) and so an intrinsic property of the space.

The necessary and sufficient conditions that άa be "disposable" may be found
through the direct and somewhat brutal calculation

δ [ β f 6 ] = 0. (5.2)

The conditions arrived at in this manner are

Σ° = Σ° and Γ° = 0, (5.3)

where

£fi(iiW(i) (5.4)
ρ ρ)

-^-^-iφU^. (5.5)
Q1 QQ Q \Q 1 Q

The expressions Σ° and Γ° were introduced in Ref. [1] where they appeared in
the commutators

{ ρ Q p p q Σ o , (5.6)
QQ

- &', # ] = [ 4 (ρ' - ρ') - -1P + pΓ°. (5.7)
Lρρ Q\

From these considerations we would expect conditions (5.3) to be maintained
under the null rotation (3.1). In fact, under (3.1)

Σ°^Σ° and Γ°->Γ, (5.8)

so that both Σ° and Γ° are scalar fields defined to within a gauge transformation
by the geometry of the metric. Their geometrical interpretation in terms of the
tetrad chosen is not however invariant. For example the scalar field Σ° can be
related to the asymptotic expansion properties of the congruence associated with
rf for the choice of tetrad in Section 3, i.e. it is equivalent to ρ'°. But this does not
obtain for all choices of tetrad, and as yet no general geometric interpretation of
either Γ° or Σ° has been found.

There is however a more elegant and useful way looking at the problem of the
necessary and sufficient conditions (5.3). This alternative approach is summed up
in the following assertion.

The following three statements are equivalent.
a) 3 a gauge in which αα = 0,
b) 3 an object η (p = q + 0) s.t.

c) Σ°-Σ° =
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Consider a) and b). For a (p, p) object, Eq. (2.6) reads

VcΆ ~ PKn = K\P' + τό 4- τδ'~\η + naPη - ρmβ'η - ρmβη . (5.9)

Suppose that a) holds. Then in that gauge choose η — constant and the L.H.S. of
(5.9) vanishes. It follows that in that gauge (and hence in all gauges) b) holds.
Similarly if b) holds for η it also holds for

λ = η + iη. (5.10)

But λ is real and of wgt (p, p). Therefore it may be set equal to a constant by the
transformation

la->λ Π\ na-+λpna (5.11)

In this gauge (2.6) reduces to

-pάaλ = 0 (5.12)

and assertion a) holds.
Next we consider b) and c). If we assume b) and apply the commutation

relationships of Ref. [1] to η we find that they are automatically fulfilled with the
exception of [ό,ό r]^, \P\&'~\η and \P\6f~\η. [Eqs. (5.6) and (5.7) of this article].
The requirement that they be fulfilled leads to c).

In Ref. [8] it was shown that if any two of the operators P, P\ ό, ό' of Ref. [3]
form an involutive system for a given p, q, then there exists a non-trival object η
with wgt (p, q) which is annihilated by both operators. It is a simple matter to extend
this result to the operators of this paper and to more than two operators. If we
assume c), then for p — q objects the operators ί>, P', 6,6r form an involutive system
and by the extension of the lemma of Ref. [8] there exists a (p, p) object such that b)
is fulfilled.

This completes the proof of the assertion.
If we turn our attention to the vector βa we see that three equivalent conditions

are
a) 3 a gauge in which βa = 0,
b) 3 an object η (p = — q φ 0) s.t.

pη =P'η = Sη =δ'η = 0,

c)
If b) holds, the gauge in which a) obtains is the one in which η = η.

As stated in Section 4, we are concerned with the case where both άa and βa

are disposable through choice of gauge. From the above we see that with our
choice of tetrad, this is equivalent to

e'° = K'° = 0m (5.13)

Section 6. Calculation of the Metric

We begin by considering (in an arbitrary tetrad) the vector

ma--la (6.1)
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under the action of the null rotation (4.1). The behaviours of ma, la and τ are given
by (3.1) and (3.2), and ρ is invariant. Combining these results we find that the
vector (6.1) is invariant. Moreover it is hypersurface orthogonal. To see this,
choose a tetrad such that τ = 0. Then (6.1) is simply ma, and the conditions that it
be proportional to a gradient are

σ = σ' = τ _ τ ' = 0. (6.2)

But with this choice of tetrad, these conditions are fulfilled (cf. Section 3). Therefore
we may write

ζ,a. (6.3)

For the choice of tetrad with which we will work (τ = 0) this reduces to

- P m a = ζ9a (6.3a)

which defines P modulo the redefinition of ζ by

£-+£' = ί '(0. (6.4)

Since

gab = 2l{anb)-2m(amb) (6.5)

for this choice of tetrad, no matter what the co-ordinate system, the term

(6.6)
PP

must necessarily appear in the co-variant form of the metric. Therefore P deter-
mines a 2-parameter family of two dimensional positive define metrics although
a family of 2-surfaces with these metrics as induced metrics appears naturally
only in the Robinson-Trautman [7] case.

If we apply the commutators involving ό to the (0,0) function ζ (all other
commutators vanish identically) we derive equations [9] governing the "2-
metric" P.

P>,ό]C = O =>P = ρP°, (6.5)

βy ?6]ζ = 0 =>P'P° = O9 (6.6)

[δ',δ]ζ = O =>ό'P° = O. (6.7)

We choose x3 = ζ, x4 = ζ. With this choice of co-ordinate system la and rf are

confined to a subspace of the tangent space spanned by •^-τ, and -r-^. If the gauge
(JX OX

be chosen so that ota = βa = 0, we have from (2.6) the equivalences

~ πf ~ ma
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It follows then that

ϊ>ίί°=βV = 0=>f,° = ι/o(ζ,ζ). (6.9)

Turning now to the Eqs. (3.14)—(3.21), we see that the Ansatz ρ'° = fc'o = 0
implies

Ψ°3=ψl = 0 (6.10)

and the conditions

8 0. (6.11)

ψ°2, Ω°, and P° obey the requirements (6.9), so that they are functions of ζ and ζ
only. When acting on such a function, the operator maVa(maVa) reduces to

P — I P - = | . Using (6.7) and (6.11), P° and ψ°2 are then further restricted to

P° = P°(ζ), Ψ°2 = ψ°2(ζ). (6.12)

Finally, using the freedom of (6.4) we can set P° = 1. There remains now only the
differential Eq. (3.20) to be satisfied. This takes the form

d2Ω°
O(ζ)

Peeking ahead, we set

Ψl = G"(ζ)9 (6.14)

then

ξ (6.15)

where G and F are arbitrary analytic functions of ζ.
The solution is complete. We now have to choose the two co-ordinates x1

and x2 and determine the associated tetrad components. For x2 we choose

(6.16)
e Qi

Using Eqs. (3.22) and (2.6), we arrive at

^Ω°ma (6.17)
dζ

an equation which gives I2, n2, m2, m2 without further effort (cf. Ref. [1] for a more
detailed treatment).
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We choose x1 in the usual manner [10], i.e. we start with a coordinate surface
x such that n1 = 1 and I1 = 0. Then

p>5 S']x1=0=>m1=ρmίo, (6.18)

[P'9S']x1=O^Φfmlo = 09 (6.18b)

[696
f2x1 = ΩoP/x^>6mi0-6/ml0 = Ω°. (6.18c)

We see that a general solution is

where M° is a solution of the homogeneous part of Eq. (6.18c). We remove this
ambiguity in the coordinate system by a transformation of the form

x^x^x'-^dζ-i^dζ. (6.20)

(The term P° is included in this last transformation even though in this particular
case it is identically 1. This renders the method of choosing a unique x1 completely
general. (The final form of the tetrad is then

/a={0, 1, 0, 0}

"), 0, 0} (6.20)

n" = \ρ(F-ζG), -^ρ^Ωa, ρ, Ok

where F(ζ) and G(ζ) are arbitrary analytic functions.

Conclusions

In this paper we have continued our analysis of the method proposed in Ref. [1]
for the investigation of empty space solutions of Einsteins equation with degenerate
Weyl tensor. Attention was focused on the auxiliary vectors αα and βa and some
of their more important properties were identified. As a vehicle for further
display of the technique a metric was derived based on the Ansatz that these
vectors were "gauge disposable". This particular metric while not explicitly
displayed is inherent in Ref. [11] where it would be characterized as being sta-
tionary and having a constant Gaussian curvature associated with its attendant
two space metric P°, along with a particular imposed co-ordinate condition.
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