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Abstract. Properties of system of the coherent states related to representations of the class I of
principal series of the motion groups of symmetric spaces of rank 1 have been studied. It has been
proved that such states are given by horospherical kernels and are the generalization of the plane
waves for the case of symmetric spaces.

1. Introduction

This paper deals with the further study of the system of generalized coherent
states (CS). According to [1] the system of generalized CS of the type (7^ \ψ0})
is called the set of states {T(g)\xp0}} where T(g) is the unitary irreducible repre-
sentation (UIR) of the group G acting in the Hubert space Jf, g runs over all the
group G and |φo> is the fixed vector of the space Jf7. Such states are a generaliza-
tion of usual CS [2, 3] obtained in choosing the simplest nilpotent group (Heisen-
berg-Weyl group) as the group G and the so called vacuum vector as | φ 0 ) . Gen-
eralized CS, as well as usual CS, turn out to be very convenient for the solution
of a number of physical problems possessing dynamical symmetry.

Thus, for instance, in papers [4] the problems of boson and fermion pair
creation in alternating homogeneous field were solved with their help. In paper
[5] CS for rotation group (previously introduced in paper [6]) were used to
obtain estimates for the partition function of a quantum spin system. In papers
[7, 8] such states were applied in the so called Dicke model describing the inter-
action of radiation with the matter.

In the following we shall call generalized CS for brevity simply CS. Note
that the CS system is an overcomplete and nonorthogonal system of vectors
(states) of Hubert space. Under the additional assumption on square integrability
a number of properties of such systems was considered in papers [9-13].

In this paper we study some CS systems which are not square integrable.
namely the systems related to UIRs of the class I of the principal series of sym-
metric space motion groups. We recall that the representation of class I of the
real semisimple Lie group is called the representation T(g) in whose representa-
tion space there exists a vector |φo> invariant relative to action of the maximal
compact subgroup K of this group. Let us consider the CS system of the type
(T, \ψ0}). It is easy to see that the coherent state of this type is determined by the
point of symmetric space X = G/K *. In the case of the so called principal series

1 In this paper we restrict ourselves by consideration of the case of symmetric spaces of rank I.
Note that for the SO(3,1) group (the Lorenz group) such system of states coincides with that intro-
duced from another considerations in a paper by Shapiro [14]. This system proved to be very con-
venient for considering a number of problems of the Lorenz group representation theory. For the
case of the SO(w, 1) group a number of useful formulae related to the questions under consideration
may be found in book [15].
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of representations of class I we may use their standard realization [16]. Then the
coherent state is determined by the kernel which turns out to be constant on
horospheres of symmetric space X — G/K. Thereby it is seen the relation of the
coherent state method with the horosphere method developed in paper by
Gel'fand and Graev [18].

2. Coherent States Related to Representations of Class I

Let G be a connected real semisimple Lie group with finite center. It is well
known [16, 17] that such group possesses a series of representations of class I,
i.e. the series of UIRs for which there is the vector \ψ0} invariant relative to action
of maximal compact subgroup K of group G. Let us consider the set of states
{T(g)\ψ0}}. It can be easily seen that the elements g1 and g2 which belong to one
coset G on K determine one and the same state. Therefore the CS of the type
(T,\ψ0}) is given by the point of factor-space X = G/K. Just choosing some
element gxeG in the coset corresponding to the element x we get the CS system

|x> = Γ(^)|0>, |0> = |ψe>> (2.1)

For representations of class I of the so called principal series we may use their
explicit realization2. It is known (see e.g., [16]) that the group which we consider
has the Iwasawa decomposition: G = KAN where K is the maximal compact sub-
group of group G, A is Abelian noncompact and N is maximal nilpotent sub-
groups. Let M be the centralizer of A in K, i.e. the set of elements of group K
commuting with all elements of group A and B be the subgroup G equal to MAN.
According to [16] representations of the principal series of class I are called the
representations of the group G induced by representations of the subgroup B,
trivial on M.

We recall the construction of induced representation. Let us consider the
homogeneous space Ξ = B\G = M\K. On this space naturally and transitively
act both the group G and its subgroup K. Up to a normalization factor there
exists a unique X-invariant measure dμ(ξ) which is normalized so that J dμ(ξ)=ί.
Let us consider the space of square integrable functions, i.e. those satisfying the
condition

\\f\\2 = ί\f(ξ)\2dμ(ξ)<oo. (2.2)

Let us choose in each coset corresponding to element ξeΞ = B\G some element
gξ. Then arbitrary element of the group G may be written as g = bgξ, beB and the
action of the group G on the space Ξ(g:ξ^ξg) is determined by expansion

9ξ'9 = bgη, η = ξg, b = man. (2.3)

Let us define the action of operator T(g) by the formula

) = a(ξ,g)f(ξg) (2-4)

2 As is shown in paper [17] the representations of the principal and complementary series of
class I for the symmetric space motion groups exhaust all UIRs of class I.
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where α(ξ, g) is the function called multiplier and ξg is determined from re-
lation (2.3).

It can be easily seen that for the operators T(g) to form representation of the
group G it is necessary for the multiplier a(ξ, g) to satisfy functional equation

α(& 9iβi) = °ί(ζ> θiMξg* ΰi) ( 2 5)

Equation (2.5) is fulfilled if a(ξ,g) = τ , /. κ(a) where κ(a) is the character
[dμ(ξ)\

of the group A and element aeA is determined by Eq. (2.3). Here if κ(a) is the
unitary character of the group A, then the representation T(g) is unitary and
irreducible [17]. Such representation is the representation of class I. This means
that a K-invariant function exists in the representation space, i.e. a function
satisfying functional equation

T(k)fo(ξ) = a(ξ, k)fo(ξk) = fo(ξ). (2.6)

Let us now turn from function f(ξ) to new function f(ξ) according to formula

f(ξ) = fo(ξ)f(ξ)- (2-7)

Relation (2.4) takes now the form

T(g)f(ξ) = a(ξ,g)f(ξg) (2.4')

where the multiplier δί(ξ, g) is given by formula

s{ξ,g)=^fi«iξ,9) (2-8)
JolCJ

It can be easily seen that for all oϊkeK

α(£fc)=l. (2.9)

Hence it follows α(£, gk) = a(ξ, g\ i.e. function α(£, g) depends only on the coset
xeX = G\K corresponding to element g:

&(ξ9g) = β(ξ,x(g)). (2.10)

From relations (2.4;), (2.9) it follows that the function fo(ξ)=ί is invariant
relative to transformations of group K. Acting on it by the operator T(g) we get
the system of coherent states

T(g)fo(ξ) = &(ξ, g) = β(ξ, x(g)), x(g) = π g. (2.11)

Here π:g~+x(g) is a mapping from elements g to corresponding cosets x. Thus the
coherent state is determined by kernel β(ξ, x) where xeX and ξeΞΛt can be shown
(see Section 4) that at fixed ξ the function β(ξ, x) is constant on horospheres of
symmetric space X = G/K 3, i.e. on the orbits Nξ x of the nilpotent subgroup Nξ

conjugated to N and remaining the point ξ to be fixed. Thus the kernel β(ξ, x)
may be called horospherical kernel and the coherent state method is in this case

3 This statement is valid not only for symmetric spaces of the rank I but also for arbitrary
symmetric space.



200 A. M. Perelomov

in close connection with the horosphere method developed in paper by GeΓfand
and Graev [18].

Let us consider in more detail the case of symmetric spaces of rank I.

3. Symmetric Spaces of Rank I

The rank of symmetric space G/K is called the number of independent metric
invariants of a pair of its points. This number equals the dimension of subgroup A
of group G. As it is well known (see, e.g. [19]) there exist three series of spaces
of rank I and one special space:

I. The real hyperbolic space (Lobachevsky space) of dimension n:
Xι

n = SO(n, l)/SO(n) where SO{n, 1) and SO(ή) are the groups of real unimodular
matrices leaving invariant the form x\ + . . . + x2 — x2

+ ί and x\ + . . . + x2, respec-
tively.

II. The complex hyperbolic space of the real dimension 2n: X^ι = SU(n, 1)/
SU(ή)x (7(1) where SU(n, 1) and SU(n) are the groups of complex unimodular
matrices leaving invariant the forms |z 1 | 2 + ... + | z j 2 — | z n + 1 | 2 and |z 1 | 2 + . . . + |z j 2 .

III. The quaternion hyperbolic space of the real dimension An: X"I =

Sp(n, l)/Sp(n)xSp(l) where Sp(n, 1) and Sp(n) are the groups of quaternion uni-
modular matrices leaving invariant the forms |<?il2 + ... + |gJ2 — l<Zw+il2 and
|gil2 + ... + |<?J2, respectively. Here \q\ is the norm of quaternion q.

Remind that the quaternion algebra is associative but non-commutative. This
is the algebra over the field of real numbers whose basic elements e0, ex, e2, and
e3 satisfy the following multiplication law:

e% = e0, ef=-e0, eoe. = e.eo = e i5 z = l , 2 , 3

eie2=-e2eί=e3,

Thus, arbitrary quaternion q is of the form of q = q°e0 + qe where q = {qι, q2, q\

Let q = q°eo — qe be the quaternion conjugated to quaternion q. Then the
norm of quaternion is \q\2 = qq = (q°) + q2.

IV. Two-dimensional hyperbolic space over the algebra (non-associative) of
the Cayley numbers (octonions) of the real dimension 16:

Xιγ = F*/S0(9) where Ff is the certain real form of special simple group F 4 ,
SO(9) is the group of orthogonal unimodular matrices of order 9 4 .

Note that all three series of symmetric spaces may be realized in a unified way,
namely in all three cases one may assume that the group G = {g} is a group of

matrices g=[r ) , where A is the n x n matrix, B is the n x 1 matrix, C is the
\C Dj

lxn matrix and D is the 1 x 1 matrix and the elements of matrices are real num-
bers, complex numbers or quaternions, respectively. In this case the matrix g
must leave invariant the form |Xi | 2 + ... + | x J 2 - | x π + 1 | 2 where xt is the real num-

4 A number of useful information on the algebra of the Cayley numbers and on geometry of
this space may be found in paper [20].
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ber, complex number or quaternion, respectively. This implies definite con-
ditions on the matrices Λ, B, C, and D, in particular

Correspondingly, the symmetric space X = G/K in all of three cases may be
regarded as the set of vectors x = (x l5...,xw) satisfying the condition

| x 1 | 2 + . . . + | x J 2 < l , (3.2)

and the space Ξ = B\G as a set of vectors ξ — (ξu...ξn) such that

2 2 = l. (3.20

The group G acts in the space X (correspondingly in the space Ξ) as the group
of "linear fractional transformations"

0:x->x' = x,, x[ = μ i Λ + β ί ) ( C Λ + D ) - 1 . (3.3)

As for the space XIV, it represents the hyperbolic Cayley plane, i.e. it may be
considered as a set of vectors x = (x1? x2) where x1 and x2 are the Cayley numbers
(octonions).

Remind that the octonion algebra is noncommutative and nonassociative but
alternative. This means that any two of its elements generate an associative sub-
algebra. The basis of the Cayley algebra consists of eight elements e0, eu...eΊ.
The norm of the element x = x°eo + Σ]=i χlei *s given by formula \x\2 =x x =
x-x = (x°)2 + YJ=i (χί)2 where x = x°e0 — γ]=i χίeί ^s ^ e element conjugated to
element x. The elements of the Cayley algebra may be also represented as pairs
of quaternions x = (ql9 q2) In this case the multiplication law is given by formula

( 3 4 )

It may be easily seen that function <x(ξ, g) =
dμ(ξg)]

ίλ'

where X is the real
[dμ(ξ)\

number satisfies the functional equation (2.5) and consequently, is the multiplier
for representation of the class I of principal series.

Calculating g with the help of Eq. (3.3) we get

' . , (3.5,

«({,„), ICjίj + OΓ * " , i - - W (3.6)

where

2ρ = dimX + q'-l, (3.7)

0 for X\

1 for X%

3 for * - • 0 8 )

7 for X IV
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The number ρ entering formulae (3.5) and (3.6) may be expressed via internal
characteristics of symmetric space. Let for this consider the structure of the
space X in more detail. It follows from the Iwasawa decomposition that the Lie
algebra ^ of the group G has the form oϊ(S = Jf + si + J^ where Jf, si, and Jί
are the Lie algebras of the subgroups X, A, and N, respectively. In our case si
is onedimensional: A = JRH. It is well known that in the nilpotent subalgebra Jί
one may choose the basis Xι

a and XJ

2a so that

[ J ί X ί ] = α X j i = l , 2 , . . . p

j=l,2,...q.

The elements of algebra X{ form a root subspace ^a corresponding to the
root α, respectively ^2a

 = {^J2o} The numbers p=dim$a and q = άim^2a
 a r e

called the multiplicities of roots a and 2α. The comparison of (3.8) with the num-
bers q for spaces Xι

n, X", X"1, and Xιy shows that q' = q. Note more that Eq. (3.7)
may be rewritten as

Q = \+q (3.10)

Concluding this section let us give the table of some characteristics of sym-
metric spaces of rank I

Table 1

G

SO(n, 1)

SU(n,l)

Spin, 1)

Fi

dimG

φ+1)
2

φ + 2)

(w+l)(2n + 3

52

K

SO(n)

SU{n)x (7(1)

\) Sp(n)xSp(l)

S0(9)

άimK

φ-1)
2

n(2n+l)
+ 3

36

M

SO(n-l)

SU(n-l)

xU(l)

Sp(n-1)

x Sp(l)

SOiΊ)

dimM

(n-\)(n-2)

2

(n-1)2

(n-l)(2w-l)
+ 3

21

dimX

n

2n

4n

16

P

n-\

2n-2

4n-4

8

Q

0

1

3

7

ί?

n - 1

2

n

2?ι+l

11

4. Properties of the Coherent State System

Acting with the operating T{g) on the function fo(ξ)=ί with the help of (3.6)
we get the explicit expression for CS in the ̂ -representation

Q-iλ

(4-1)

where x ξ = X?=i X/ ξi
In a number of cases another form is more convenient

Ψλ

x{ξ) = Hλ

x{ξ) = \x0-x ξΓ°+iλ (4.2)

where

xo = ( l - | x | 2 ) " 1 / 2 , x - ( l - | x | 2 ) - 1 / 2 x . (4.3)
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Thus in this form CS is determined by a point of hyperboloid |xo |2 — \x\2 = 1 and the
function Hx(ξ) is the kernel of integral transform mapping the function f{x0, x)
on hyperboloid |x0i

2 —I*I2 = 1 t o t n e function on the cone | £ 0 | 2 —|£l2 —0 5.
The CS system is overcomplete and nonorthogonal and possesses a number

of remarkable properties which we now consider6.
1. The state |x> is normalized to unity

/ Y I Y > — ^V II — I ^Jf i ΓI π i lί r i — 1 (Δ. A\
\Λ/1 -A// — ii -I x\\ — I I -i xv =/1 r^\S/ — \ /

This follows from the unitarity of representation Tλ(g).
2. The system {|x>} is complete. This follows from irreducibility of Tλ(g)

representation.
3. The operator Tλ(g) transforms one CS into another

Tλ(flf)|x> = |x'>, x' = xg-!. (4.5)

Equation (4.5) may be easily checked by direct calculation.
4. At fixed ξ function Ψx(ξ) is constant on horospheres

\l-xξ\2

 0

-——2- = const or |x0 —x^|2 = const. (4.6)

Thus the kernel (ξ, λ\x} may be called horospherical and the CS method in this
case is closely connected with the horosphere method developed in the paper by
Gel'fand and Graev [18].

5. Note that the kernel

ί ~ M 2 γ (4.7)

is the Poisson kernel for symmetric space X = G/K. Thus

Ψλ

x{ξ) = P{x,ξ)*+iλ'. (4.8)

6. At fixed ξ function Ψx(ξ) is the eigenfunction of the Laplace-Beltrami
operator Δx for symmetric space X = {x:\x\2<l}

-ΔxΨ
λ

x(ξ) = (ρ2 + λ2)Ψλ

x(ξ). (4.9)

Besides, such functions are constants on horospheres which are the analogues of
hyperplanes in Euclidean space. Thus the CS are a natural generalization of
"plane waves" <n, k\r} = eikni", \n\ = ί for the case of Euclidean space.

7. The CS are nonorthogonal to each other. Their scalar product is given by
the formula

(gx)T(gy)\θy = <0| T(h) |0> = Φλ(τ) (4.10)

5 It should be however taken into account that in cases II and III the action of groups SU(n, 1)
and Sp(n, 1) on corresponding hyperboloids and cones is not transitive. Let us more note that for
/l-»oo, τ-»0, and λτ = const we get the case of flat space. In this case the coherent states go into plane
waves for spaces of the type I-IV, respectively.

6 Note that though a number of properties of the coherent state system having been checked
only for symmetric spaces of the type Xι

ni X", X"1 all of them seem to remain valid for space Xιγ also.
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where

(4.11)

and the τ = τ(x, y) determines the distance between points x and y of the space X.
From (4.11) it is easy to get the expression for the metrics of symmetric space

X = G/K:

ds2 = dτ2 + s h 2 τ [ ^ - (ξidξ^dξyξjf] + ish22τ(ξidξi)(dξjξj)

x = thτ-ξ, \ξ\2 = l.

8. The function

(4.13)

determines the scalar product of two CS. It is called zonal spherical function
and plays an important role in the theory of symmetric spaces [19]. It may be
also determined by the equation

ΦA(τ) = <0|x> = f Ψλ

x(ξ)dμ(ξ)9 |x| = t h τ . (4.14)

From Eq. (4.14) the integral representations for zonal spherical functions are
obtained. For the space X\

% (4.15)

where

rl
2

dμ(θ)= v Usinθγ-'dθ. (4.15')

f
In other cases

Ξ. - ρ + iλ

Φλ(τ)= Jo Jo [(chτ — shτcos0cosφ)2-fsh2τcos2(9sin2φ] 2 dμ(θ,φ) (4.16)

where

2
dμ(θ, φ)= — v ({siaθf-^cosθfisiaφy-1 dθdφ. (4.16')

These functions are even Φλ( — τ) = Φλ(τ) and are normalized by a condition
Φλ(0)=U besides Φ_λ(τ) = Φλ(τ).

9. The zonal spherical function Φλ(τ) is an eigenfunction of the radial part of
the Laplace-Beltrami operator for the symmetric space

^ + p c t h τ ^ +2qcth2τ £\ Φλ(τ) = (ρ2 + λ2)Φλ(τ). (4.17)
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Solving this equation we get the expression for zonal spherical function in
terms of hyper geometric function [21]

) = F(a,b,c;-sh2τ)

where

(4.18)

(4.19)

10. The Laplace-Beltrami operator is a selfadjoint operator. Hence it follows
that zonal spherical functions satisfy the orthogonality relation (at λ>0 and λ'>0)

ί ? Φλ(τ)ΦAτ)dμ(τ) = N(λ)δ(λ - λ) ,

dμ{τ) = (2shτ)p(2sh2τ)qdτ.

Hence it also follows that j j |ΦA(τ)|2dμ(τ)==oo, i.e. the considered CS system is
not square-integrable.

11. Here the normalizing coefficient N(λ) is determined by the asymptotics
of function Φλ(τ) at τ-*oo

(4.21)

(4.22)

) = c{-λ)9 τ->oo.

From Eqs. (4.20), (4.21) we get

N(λ) = 2π\c(λ)\2

and from explicit expression (4.18) for Φλ(τ) we get7

Γ

2 /

2 (4.24)

\4 2 2,

12. Let us consider the space of functions /(τ) satisfying the condition

|? |/(τ) | 2 r fμ(τ)<oo. (4.25)

The functions ΦΛ(τ) form the complete system in this space, and the com-
pleteness condition has the form

13. The relations (4.20) and (4.26) enable one to expand arbitrary function
satisfying condition (4.25) in zonal spherical functions:

f(τ)=$f(λ)Φλ(τ)dμ(λ) (4.27)

7 The formula (4.23) for the function c(λ) is a particular case of the general formula by Gindikin

and Karpelevic [22].
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where the coefficient f(λ) is determined by the formula

f(λ)=$Φλ(τ)f(τ)dμ(τ). (4.28)

14. Here the Plancherel formula is valid

J? \f(τ)\2dμ(τ)= J? \f(λ)\2dμ(λ). (4.29)

15. Analogous relations of orthogonality are valid for the functions de-
scribing the coherent states. Namely

J Ψλ

x(ξ)Ψλ

x'(ζ')dμ(x) = N(λ)δ(λ-λ')δ(ξ, ξ') (4.30)

where

x = thτ x, |x| = 1, dμ(x) = dμ(τ)dμ(x), J dμ(x) = 1. (4.31)

Besides

^ δ(x, x'). (4.32)

Here delta-functions δ(ξ9 ξ') and <5(x, x) are different from zero only for ξ' = ξ and
x' = x and satisfy the relations

1, ί δ{x, x'Wix') = 1. (4.33)

Relation (4.32) follows immediately from identity

f Ψλ

x(ξ)ΨλAξ)dμ(ξ) = Φλ(τ(x, xΊ) (4.34)

and from the condition of completeness of zonal spherical functions (4.26).
Relations of completeness (4.30) follow from the Schur lemma. Let us remark

that after integration relations (4.30) on dμ(ξf) we get the relations of ortho-
gonality (4.20).

16. Relations (4.30) and (4.32) allow one to expand an arbitrary function
f(x) satisfying the condition

|2rfμ(x)<oo (4.35)

in the coherent states

f{x) = J f(ξ, λ)Ψλ

x(ξ)dμ(ξ)dμ(λ), (4.36)

f(ξ,λ) = $Ψλ

x(ξ)f(x)dμ(x) (4.37)

and the Plancherel formula holds

j \f(x)\2dμ(x)=\ \f(ξ, λ)\2dμ(ξ)dμ(λ). (4.38)

17. The zonal spherical functions are closely connected with quantum-
mechanical scattering problem in the certain potential V{τ). To see this fact sub-
stitute into Eq. (4.17) new function

ΦA(τ) = (2shτ)ί'/2(2sh2τ)«/2ΦΛ(τ). (4.39)
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For the function Φλ(τ) we get the equation which has the form of the Schrόdinger
equation with potential V(τ)

— x + Viτ) \Φ2(τ) = λ Φ2(τ) (4.40)
dτ2 j

where

sh2τ sh 2 2τ '
(4.41)

λ 2

The result is that asymptotic behaviour at τ->αo the function Φλ(τ) has the
form

Φλ{τ)~(c{λ)eiλτ + c(-λ)e~iλτ). (4.42)

18. The scattering in the potential V(τ) is determined by the so called scat-
tering matrix (see, for example, book [23]) which in this case has the form

S(λ)=-c(λ)/c(-λ). (4.43)

Using the expression (4.23) for c(λ) we get

Let us remark that functions c(λ) and S(λ) are meromorphic functions and that
function c(λ) have no zeroes (and no poles) in the lower semiplane λ, and this
fact corresponds to the absence of bound states (discrete spectrum) in this problem.
In the upper semiplane the function c(λ) [and correspondingly the function S(λj]
has zeroes and poles on imaginary semiaxis λ — iκ, κ>0. These poles are related
to the fact that potential V(τ) decreases at τ-κx) too slowly (only exponentially)
and no bound states correspond to them. As for zeroes of the function c(λ) in the
upper semiplane in all cases except for SO(n, 1) group for odd n they correspond
to bound states (discrete spectrum) in the problem of symmetric space of the
compact type which is dual according to Cartan to the space X.

Representation Tλ(g) being restricted on the maximal compact subgroup K
is decomposed into irreducible representations of this group.

Let K be the set of all UIRs of the group K, and Ko be the set of representations
entering in decomposition of representation Tλ(g). It is known that any representa-
tion which belong to Ko enters in this decomposition only once. From the reci-
prosity theorem by Frobenius [16] it follows that Ko contains only those rep-
resentations of the group K which being restricted on the subgroup M contains
the identity representation.

It is seen from Table 1 that the problem is reduced to consideration of
restriction of groups SO(n)->SO(n-l), SU(n)-+SU(n-l), Sp(n)-+Sp(n-1) and
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S0(9)-+S0(Ί\ respectively. Remind that the representation of the compact simple
group of rank v is determined by integer nonnegative numbers Z1?.../v. Making
use of the result given in the book [24] we get the following answer:

In case I Ko = {(/, 0,... 0)}

In case II Ko = {(ll909^Al2)}

In case III Ko = {(ll9l2,0,...0)}

In case IV K0 = {{ll9 J2,0,0)}.

20. Coherent state |x> may be expanded in representations entering Ko.
Denoting the basis functions of representation Dι enteringKo through |Z,m>,
{ξ\lm} = Ylm(ξ) where I is the set of numbers characterising the representation
and m is the set of numbers enumerating functions transforming by the repre-
sentation Dι we get the analog of expansion of the "plane wave"

(4.46)

(4.47)

(4.48)

From normalization condition for |x> it follows that

YJιm\Φλιm(x)\2=l. (4.49)

21. Note that Eq. (4.48) is equivalent to integral representation for the function

ΦλlJίx)=$Ϋlm(ξ)Ψλ

x(ξ)dμ(ξ). (4.50)

It may be also shown that

Φλim(χ)= Φλi(τ)%m(x)J x = t h τ x, Φ_λl(τ) — Φλt(τ). (4.51)

Expansion (4.47) takes now the form

where x = thτ x, and dx is the dimension of the representation Dι of the group K.
The explicit expression for άx is given by the well known formulae by Weyl.

22. The functions Φλιm(x) being the matrix elements of the operator T\g) are
the eigenfunctions of the Laplace-Beltrami operator Δx on symmetric space

_ d d
(4.53)

23. The functions Φu(τ) (the so called associated spherical functions) are
orthogonal to each other

ί ΦJτjΦv iτ)dμ(τ) = N,(1)5(1 -1'). (4.54)
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24. Coefficient Nt{λ) is determined by the asymptotic of the function Φλι(τ)
at τ-κx)

ΦM ~ (Φ)eίλτ+ ct( - λ)e-ίλτ)e " ρ τ (4.55)

here cι(λ)= ]/d|c(/l), Nι(λ) = 2π\cι{λ)\2 where άx is the dimension of the representa-
tion Dz.

25. The functions Φλi{τ) form complete system. The condition of com-
pleteness in this case has the form

26. Analogous to the case of zonal spherical functions we can expand arbi-
trary function /(τ) such that

in associated spherical functions Φλl(τ):

/(τ) = j fiWΦχiiήdμ^λ) (4.57)

where

flλ) = j Φλl(τ)f(τ)dμ(τ) (4.58)

and

ί l/(τ)|2dμ(τ) = ί \fι(λ)\2dμι(λ). (4.59)

27. Note that the function

Φλl(τ) = (2 sh τ)p / 2(2 sh 2τ)g/2Φλ/(τ) (4.60)

satisfies equation of the type of Schrodinger equation with potential

y(τ)=

 aχ b ι

1 sh2τ sh 2 2τ '

a,—

Here coefficients ax and bj are eigenvalues of certain operators — A λ and — A 2

acting on the sphere |x| = const.
Hence it follows that the asymptotics of the function Φλ/(τ) has the form of

(4.55) and the functions ΦA/(τ) and ct(λ) are obtained from the functions Φλ(τ) and
c(λ) by replacing

p - p + 2(/ 1 -/ 2 ), q^q + 2l2. (4.62)

Let us note in conclusion that the results analogous to those of the present
paper may be also obtained for the case of symmetric spaces of arbitrary rank.
This problem is considered in a paper [25].

Acknowledgements. Thanks are due to M. Baker who read the manuscript of the paper and helped
to eliminate a number of miscorrections in translating into English.
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