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Abstract. We extend methods of high temperature expansions to show that for even weakly
coupled P{φ)2 quantum field models the Bethe-Salpeter kernel has 4 particle decay. More precisely
if K denotes the Euclidean Bethe-Salpeter kernel

\K{xlf x2, x3, x4)\SOe~mo{l-ε)d2,

where x = (x°,x1), d2 = 2\x°ί+x°2-x<ϊ-xo

4\ + \xo

1-xo

2\ + \xo

3-x(l\ and ε(/l)-+0 as λ-*0. Our methods
apply to other r particle irreducible kernels.

Introduction

In this paper we estimate the decay of r-particle irreducible kernels (rrg 3) for
weakly coupled λP(φ)2 quantum field models. To obtain our estimates we extend
the techniques of Glimni, Jaffe, and the author [1] which are related to high
temperature expansions in statistical mechanics. See also [2]. A separate paper
with Zirilli will use the decay of the two particle irreducible Bethe-Salpeter kernel
to investigate the energy momentum spectrum of even λP(φ)2 models. For weak
coupling we shall establish discreteness of the mass spectrum below 2ra and
(for λφA) asymptotic completeness for states of mass less that Am — ε. Here m is the
mass gap and ε-»0 as Λ,->0. The detailed decay estimates of [3] also yield impor-
tant information about the energy momentum spectrum such as the existence of
single particle states. However such estimates do not seem to be formulated to give
sufficient decay of the Bethe-Salpeter kernel. In statistical mechanics Minlos and
Sinai [4] have made a detailed investigation of the spectral structure of the transfer
matrix for Ising type models. Their techniques are vaguely related to ours.

The free Gaussian measure for the Euclidean field Φ(x) is denoted by dΦ(C) = dΦ
where the covariance is C = (— A + MQ)~~ 1. Here A is the two dimensional Laplacian
and m0 is the bare mass. The action V(Λ) in a region ΛcR2 is defined by

V(A) = λ$Λ:P(Φ(x)):dx, x = (x°,x1), (1.1)

where P is a positive polynomial. The Wick order is always defined with respect
to dΦ. The spatially cutoff expectation
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exists for QeLp(dΦ)p>l. Moreover when P is even1 [5,6] or λ/ml<ζl [1,3]
the spatially cutoff Schwinger functions

Jim SΛ(Xl,..., xn) = Jim ([[^Φ{xd>Λ = S(xx,..., xn)

converge and are Euclidean invariant.
For Qι polynomials in Φ we define the truncated or partially connected

expectation

«2i, - , Q»y=Σβ(- i)|ρ|dβi - wΓ

where ρ ranges over partitions of {1, ...,n}. When Qi = Y[yeXiΦ{y) we identify
(1.3) with Sc(Xλ X2 ... AΓΠ). We use the semicolon to indicate how the truncation
is made. In the case of weak coupling we have an exponential cluster property
so that SC(X1 ... Xn) decays exponentially fast with the distance between Xt and
Xj. This is a result of [1, 3].

For the purpose of defining our expansion we consider the lattice Z2 = Z xZ
as a subset of the plane R2. Here Z denotes the integers and R denotes the reals.
Let Δj, j={f,j1)eZ2 be the closed unit square centered at (j°+jj1 +j). F ° r a

subset XcR2 let X^ be the set of all line segments b (bonds) joining nearest neigh-
bor lattice sites in the interior of X. Let U(X) [resp. U^XJ] be the family of sets
formed of unions of lattice squares A cX (resp. of bonds in XJ. If I CR let 1^ = IΓΛZ
correspond to the lines lt = {x e R2\x° = i} in I xR.

The coupling of the field Φ(x) at different points [in the expectation (1.2)]
comes entirely from the Gaussian measure dΦ. The idea behind our expansion
is to perturb dΦ about a decoupled measure. We break the coupling across a line
/,- by introducing (zero) Dirichlet boundary conditions along the line lt in the
covariance. For a set yCR2 let Δy be the Laplacian with Dirichlet boundary
conditions on γ and define

In general we still take γ e U^ — U^(R2).
If we express jR2~y as a union of components I j U . - . u ! ^ then Cγ is a direct

sum over the spaces L2{Xι)®. ®L2(Xn). Hence the corresponding measure
dΦ(Cy) factors over the regions Xt. Since the interaction is local the expectation
(1.2) also factors.

To interpolate between covariances C and Cγ we introduce two families of
parameters t = (ti)ieZ and s = (sb)beRι. Qur interpolating covariances C(t,s) are
convex combinations of Cy hence they are positive as bilinear forms. We shall
define and estimate these covariances using the Wiener process w( ). Let dPly(w)
be the probability that a path starting at x at time zero will end at time T at y.
We regard this expression as a density in y.

Let Jf{w) = 0 if w{σ)sΓ for some σ O ^ σ ^ T a n d let J?(w)=l otherwise. We
define

C(ί, 5, x, y) = ̂ e-^TdT\dPly(w)Yli(ti + (1 - t^JfMtih + (1 - hVl) (1-4)

For this case we replace dΦ{C) by dΦ{CdΛ) where C0Λ indicates that the Laplacian has Dirichlet
conditions on dΛ.
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From this representation we see that

and for (ti) = (sb) = {l\ C{s,t) = C = {-A+rnl)~1. When ίf = 0 (sb = 0) we use
Dirichlet boundary conditions on lt (on b). If lt separates x and y C(ί, x, y) = 0
at ij = 0. Hence ίf and sb measure the coupling across lt and b respectively. Let
dΦ(t, s) be the Gaussian measure of mean zero and covariance C(t, s). The expecta-
tion (1.2) defined with respect to dΦ(t, s) is denoted by

<>(M) or S M .

To illustrate a key aspect of our expansion consider a two particle irreducible
kernel fc(ί, x, y) formed with covariance C(ί). A precise definition of k(ί) appears
in the next section. We expand /c(ί, x, y) in a Taylor series in each tt to third order
about ίf = 0. In lowest order perturbation theory (for λφ4) k(t, x, y) equals

x θ ^ l 2 C ( ί , x , y ) 3 .

Notice if lt separates x and y

= 0 0^r^2. (1.5)

As we shall see in Section 2 this identity holds with k(t) replacing C(t)3. Hence
we can write

where i ranges over the interval (x°, y°). This representation enables us to obtain
a 3 particle decay for fc(x, y). Similar methods are used to estimate the Bethe-
Salpeter kernel.

The remainder of this paper is organized as follows. Section 2 defines the
r-particle irreducible kernels and shows that their first r derivatives in t{ vanish
at t{ = 0 as in (1.5). In the next section we extend analyticity methods of Frohlich [7]
to obtain bounds on the t{ derivatives. We shall obtain the desired analyticity
via an expansion in the 5 parameters. This expansion is called the cluster expansion
[1]. We shall review it in Section 4. The final section establishes the convergence
of the cluster expansion by obtaining bounds on the s derivatives.

2. The Bethe-Salpeter Kernel

We express our r-particle irreducible kernels [e.g. fc(ί, x, 3;)] as a Neumann
series of Schwinger functions. This will enable us to reduce estimates on irreducible
kernels to estimates on Schwinger functions.

We shall define Γt(x, y) to be the inverse of Sf(x; y) so that

δ{x-y). (2.1)
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Using integration by parts (see [1, 8,9]) we have

C{t)-\Φ{x) Φ(y)y(t) = δ(x-y)-λ(:P(Φ(x)):; Φ(y)y(t)

= I-λAx(t), (2.2)

where the second equality identifies the kernel with the corresponding operator.
Another application of integration by parts yields

{A±(t)C-\t))(x, y) = (:P"(Φ(x)):}(ήδ(x-y)

^Bx{t). (2.3)

F and F' denote the first and second derivatives respectively of the polynomial P.
For weak coupling Aγ is a bounded operator on L2 since its kernel decays

exponentially for large \x — y\. Local regularity is assured by the fact that Schwinger
functions for λP(φ)2 models have at worst log singularities at coinciding argu-
ments. Hence for small λ we can define

= C(ty1+λ(l-λA1)~1Bί. (2.4)

The one particle irreducible kernel is then

= A(l-A^ 1(ί))- 1B 1(ί). (2.5)

Let β i , β 2 be polynomials in Φ. We define the one particle irreducible expecta-
tion by

<Gi Q2y(t)=<Qi QiY-KQi φ(z1)y(t)rt(zί,z2χΦ(z2); Q2y(t)dz. (2.6)

To define the Bethe-Salpeter kernel we restrict our attention to the case where
P is even and define

Dt(xί9 x2 x3, x4) = St(xί, x2 x3, x4)

DOt(x1,x2;x3, x4) = St{x1,x3)St(x2, x4) + St(xu x4)St(x2, x3)

Gt(x) = (Dt-DOt)(x).

The Bethe-Salpeter kernel K is defined to be the solution of the equation

Dt = DOt + DOtKtDt. (2.7)

We regard Do and D as operators on L2{R2)®SL
2(R2) where ®s is the symmetric

tensor product. Hence formally

K ^ D O V - D Γ M Γ ^ - D Γ 1 . (2.8)

Let H±1 be the Sobolev space defined by the inner product
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Glimm and Jaffe [9] have shown that in any P(φ)2 theory with a positive mass,
the Bethe-Salpeter kernel (ί = (l)) is defined and is a bounded operator from
® s

2 i ί + 1 to ® 2 i / _ x . We shall define Dt~ * for weak coupling by a Neumann series

Hence

-K = ( l + V G t ) - 1 ( D o f

1 G t D i t

1 ) . (2.9)

We isolate the singularities of Dό/G, using integration by parts

and

C ( 0 ; / C ( ί ) ; / G ( * H A 2 < : ^ ^

-λδ(x1-x2K:F\Φ(x1)):;Φ(x3);Φ(x4)y(t).

See [1] and [9] for similar calculations. Using (2.5) we can write

Dot 1 Gt = λA2{t) = λδ(xί - x2)Λ'2t(xί, x3, x4) + A 2 ^ * ! , x2, x3, x

also

where δ(fc) is a product of (3 functions of (xf —x^). The kernels τ42ί, i42ί, B ^ are of
the form

(2.10)

where σf(xf, xf) = fe(ί5 xί9 3;̂  or δ(xf — yf). By the cluster expansion [1] the function
(2.10) is exponentially decreasing in |xf — Xj\, i φ j and is locally in L4. We say that
(2.10) is in DL4. By definition we have

A2t(xl9 ...x4) = 2fβ2 f(x1, x2, y3, y4)St(y3, x3)Sf(j;4, x^dy

so that ^ j t ί^ iJ X3? ^4) a n d ^2t(χiy X2? X3? ^3) a r e w e ^ defined functions in DL2.
Thus for small λ we can define

X(ί) = λ(l + λ^2(ί))-1B2(ί) (2.11)

as a distribution by a convergent Neumann series. When ί = (l) it is easy to see
that K is a bounded function in momentum space [apart from a factor

In the case of λφ4 we can write B2 as

λB2 = 242(5(x1 - x2)(5(x2 - x3)δ(x3 - x4) + A2 X'5

so that

K(ί)= - 242(5 + A 2 K 1 ? (2.12)

where B2

k) is again of the form (2.10)
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If δi? Qi a r e Polynomials in Φ and P is even we define the two particle irre-
ducible expectation by

, Φ(χ)>Γ{χ, y)<Φ(y\ Q2>dχdy

2, x3, x4KΦ(x1)Φ(x2);Q2Y(t)dx. (2.13)

We can again use previous methods to show the last term is well defined but we
omit details.

Next we state our main theorems in momentum space. We let q, p, z be the
(Euclidean) momentum conjugate to the variables

X-^ — X2 X4.— X% -^3 ~r X4. X± r X2

2~~' 2~~' 2 ΐ~
respectively and we express K in these variables. The one particle irreducible
kernel k(x— y) is expressed using u as the momentum conjugate to x — y.

Theorem 1. Let k, Ku and K be defined as above [with ί = (l)] and suppose P is
even and ε > 0 is given. Then for m0 sufficiently large and λ>0 sufficiently small
k(u), Ki(p, q, z) and K(p, q, z) are analytic and bounded by a constant {depending
on ra0) in the region

l e )

l^ε, | I m z ° | ^ 4 m o ( l - ε ) .

Remark. The analyticity properties of K follow formally from a bound of
the form

where

and O(x) is the kernel of a finite positive measure.
For our next theorem suppose Qγ and Q2 are polynomials in Φ localized at

times ^ — 772 and at times ^ T/2 respectively.

Theorem 2. Let <( y be the i particle irreducible expectation defined above,
i= l, 2. Suppose P is even and ε > 0 is given. Then for m0 sufficiently large and λ>0
sufficiently small (independent of QJ

| < ρ 1 ? ρ 2 y i ^ M ( ρ 1 ? ρ 2 ? m o ^ ^ 1 + ι > o ( 1 - ε ) τ . (2.15)

Now we show that for the r-particle irreducible kernels defined above the
first r derivatives in ίf vanish at t{ — 0. We remark that this result is obviously valid
in every order of perturbation theory. Moreover using Theorem B of [2] it is
possible to show perturbation theory actually establishes these identities in the
case of λφA for weak coupling.

For ieZlet R2

±={xeR2:±x°±ί}. Let P+ (resp. P ± ) be the projection onto
L2(R2

±) (resp. onto L2(R2

± xR2+). To compute the derivatives in t we shall use the
formula

Sc

t(X1;...;Xn)=-^Sc

t(X1;...;Xn;zuz2)C-1(zuz2)dz, (2.16)
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where the superscript denotes a derivative with respect to ίf. Recall that the semi-
colon indicates which subtractions are made in the truncation (1.3). The right hand
side of (2.16) is well defined using integration by parts as above and the identity

See [1, 8].
The proofs of the following lemmas are complete except for minor technicalities

about the domains of various kernels. These technicalities may be dealt with either
by using a lattice approximation or by a more indirect method using integration
by parts.

Lemma 2.1. Let /f separate x and y. Then

= 0 r = 0 , l . (2.17)
fχ = O

When P is even (2.17) also holds for r = 2.

Proof First note that since Sc

t(x;y) = 0 when ίf = 0 Sc

t commutes with P+.
Hence Γt commutes with P+ and therefore (2.17) holds when r = 0. By (2.16) we have

When ίf = 0 and x°, z°^i^x2, z2

Sc(x ' x ' z z ) = Sc(x ' z )Sc(z ' x ) (2 18)

Combining the above identities we obtain

— kit, x, v) = — (Γ(t) — C in)
πt fit
Uiί tt = 0 u ι i tτ = 0

= ΓtS
c

tC~xSc

tΓt-C'1=0.

The factor of \ in (2.16) is eliminated by interchanging zγ and z2 above. Now
suppose P is even. Then

C _ I f θ C / v v . „ 7 \Γ~1('7 Ύ W-7

" ί — 2 1 *^ί\"^Ί ? ^ ' 2 ' l ? 2 / ^ - / v^l5 -̂ 2/M-Z

4j4k^ί\-^Ί? -* 2 ? 1? ̂ 2? 3 ' 4/ \ 1? 2/ \ 3? ^ 4 / ^

When ί ~ 0 and x°l9 z\^i<,x°2, z°2, z°3, z°4

St\xl> '-Z4J = St\Xl? Zl)St\X2> X2? Z 3 ' Z4)

There are eight terms of this form obtained by reordering the positions of the zf.
Hence

2
αί,2

ί, x, y) = - ΓAΛ + 2ΓtStΓtStΓ, - C - \t)\ti=
0

fi = 0

+ 2jC~1(x?z2)5J(z2,x2;z3,:

- 0 .



150 T. Spencer

Lemma 2.2. Let P be even. If lt separates xux2 from x3, x4,

= 0 for 0 ^ r ^ 3 . (2.19)

// lt separates xx from x2, x3, X4, (2.19) ZioẐ s

Proo/. First suppose x°, x ° ^ 1^X35X4, and let r = 2. Then from (2.18)

d2

at]
DZ1

Since Kt = DOt

ι — Dt

 ί we have

= C ~x C"1 + DΓ ̂ . D Γ x - 2D t-
1 D A " ^ A " 1 \tι = o (2.20)

It is easy to show Dt and D;1 commute with P+,P~ and P° = l — P+ — P~
when ί—0. Note that at t~0

DΓ \yi ,y2 y^ y*)=irt(y\, y3)rt{y2, y4)+ir^!, y4)rt(y2, y3), (2.21)

on the range P°. Since

ΰ = -i ίSJ(x l 9 x 2; x3, x4; z1 ? z2)C~x(z1 ? z2)dz,

one can check that P+DtP~ = P~DtP
+ =0 for ίf = 0. This implies that the third

term on the right of (2.20) can be written

If y\ύiύy°i and tt = 0 then

p-DtP° = -$Dt(xu x2;yuzx)C-1{zl9 z2)St(z2, y2)dz.

Note that there are four configurations of the j/° which contribute to the D's of
(2.20). Moreover for each such configuration only one term on the right of (2.21)
contributed to P°D;1P°. Hence the third term on the right of (2.20) is

The second term equals

P~DtP
+ = -ifSfrCi, x2; x3, x4; zuz2)C-\zuz2)dz

+ ifSf(x l9 x2; x3, x^;zuz2;z3, z4)C~1{zuz2)C'1(z3, z4)dz . (2.22)

For ίf = 0 the first term on the right of (2.22) vanishes as above. When
Zi,Z3^i^Z2,z4 and ίt. = 0 the second integrand equals

Sc

t(xu x2\ z 1 ; z3)Sc

t(z2, z4; x3, x^)C~1{zu z2)C~1(z3, z 4).

There are four such configurations of z{ which contribute to (2.22). Now (2.19)
follows easily when r = 2. The remaining cases are similar.
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Lemma 2.3. Let Qx and Q2 be as in Theorem 2. Then for — T/2^i ^ T/2 we have

The proof is similar to that of Lemmas 2.1 and 2.2.

3. Analyticity

Let f(t) be one of the r-particle irreducible kernels of Theorems 1 or 2. By
Lemmas 2.1 and 2.3 the Taylor expansion consists of only one remainder term

(3.1)

when / is rt particle irreducible across lt. More precisely if f = k(t, x, y), i ranges
over x° ^ ί ̂  y° and we take rf = 1 (or 2 if P is even). In the case of the Bethe-Salpeter
kernel (Peven) suppose x j ^ x ° 2 ^ x ° S * 2 Then i ranges over x^ί^x^. We take
η = 3 for X2^i^^3 and r~2 otherwise. When f{t) = (Q1;Q2}

i(t\ ί ranges over
the interval ( - T/2, T/2) and r~j for P even, j = 1, 2.

In this section we show how to estimate the tt derivatives by "globalizing"
analyticity techniques of Frohlich [7]. Frόhlich obtained "local" estimates on
connected Schwinger functions Sc by getting bounds on the logarithm of the
generating functional J(hg(-)) for small complex h and g in local test function.
By the Cauchy formula for derivatives these bounds yield estimates on Sc. In
general J(hg) can vanish for global g and thus destroy the analyticity of the
logarithm. However for weak coupling and small \h\, J does not vanish even for
global g because the cluster expansion converges [1]. This fact will be extremely
useful as a tool in obtaining bounds for nonlocal t derivatives.

In order to motivate how we use analyticity methods to bound t derivatives
suppose we want to bound J^-δ/dί^ΦMXί) for ielcZ. From (2.16) we see that
multiple derivatives yield generalized connected Schwinger functions, with nume-
rical kernels C~x = —C~1CC~ί localized along the lines Zf. There are two basic
problems we encounter in attempting to estimate the t derivatives.

The first problem is that when we take |/| derivatives we get |/|! (unconnected)

terms. Furthermore the kernels — C are not localized about a lattice line segment
dtt

b as in [1] but along an entire line and it seems that one needs tree graph decay to
control the dz integration in (2.16). Eckmann, Magnen and Seneor [2] have
established such a decay but with an |/|! coefficient.

The analyticity methods avoid both of these problems. To illustrate this
consider a perturbation of V (1.1) by

Let <Φ(x)>(/ι) denote the expectation of Φ(x) with respect to the perturbed action
(3.2). The derivatives of this expression with respect to ht are analogous to the tt

derivatives (2.16).
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The cluster expansion [1] shows that for λ/ml <̂  1 the expectation is an analytic
function of ht and that |<Φ(x)>(Λ)|^M for I Λ ^ ε " 1 . We can choose ε small for
large m0 by scaling. Then

§U (3.3)
h = 0

where the contour is |/

<*(*)>(*) (3.4)

These methods may be used to give new bounds on Sc(xί...xn) of the form

^ Π (3.5)

where N(A) is the number of xf localized in the lattice square A. This bound
depends on weak coupling. In statistical mechanics such bounds appear in [10].

Suppose that we wish to extend a bound of the form (3.4) to
(:Φ(xί)

6:;...;:Φ(xn)
6:y. In general the perturbation htΦf is not analytic in h since

exp( — hΦ6) becomes unbounded for negative h. So we consider the new inter-
action density

W+hiQlΔi\Φ\xy.dx)e-λV. (3.6)

One can show for weak coupling that the corresponding expectation is analytic
in h{ for l/ijrgε"1 and the bound (3.4) follows. Since it seems clear that < >(£) is
not analytic in t we shall form an expression similar to (3.6) which is analytic
in the h parameter and whose derivatives in h at h = 0 yield the t derivatives.

Let us compute the tt derivatives using integration by parts. The basic formula
is [1, 8]

- Je-"QdΦ(t) = S ( A C

where

For / C Z let /(r) be the r fold disjoint union of / with itself. We order I{r) by defining
i ( m )<k { m > ) if either i<k or i = k and m<rri. Here m and nί denote the copy index
for i and k respectively. For α C I(r) let

where rt is the number of copies of i which are in α. Let β C I{r) and let 3P(β) be the
partitions of β. Then by Leibnitz rule we have

δξ K Λ F e r f Φ ( r ) = Σ π e W > ί Γ U W C Δφ-]e-*vQdΦ(t). (3.7)

For each ad{r) we introduce a complex variable h(a).
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Let j=0Ί Ji) e Z 4 be a localization index and define

Cj(xi, x2) = χΔjί (x1)C(x1, X2)XAJ2 fe),

where χA is the characteristic function of A. By (3.7) we have

(3.8)

Note that if more than one copy of an integer appears in α then 5JC = 0 because
C(t) is only linear in the ίf. The next two lemmas enable us to make a connection
with t derivatives and derivatives in the parameter h(ot) introduced above.

Define

p.
cβ V-1 T~T V
°h - Lne^{β) 1 lαeπ

Lemma 3.1. Let Fί and F2 be smooth functions of h. Then

Proof

FTΓί —1— F Vv FT
πie^(α)llαieπi ^ / ^ 1 II Lπ2e^(β/oc) [ U2eπ2 gw x

Lemma 3.2. Lei /7-(ί, ft) be smooth functions of t and ft such that

then

3fΠ/jl*=o = ̂ ΠΛI*=o (3 9a)

and

\ = 0 . (3.9b)

Proof (3.9a) follows from Lemma 3.1. We establish (3.9b) by induction on \β\,
the number of elements oϊ β. By Lemma 3.1

Hence by induction at ft = 0 we have

^-f-'ΣtcβKf-'δtf

— ~ 7 2^oLcβ°tJ °t J —°tJ
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Let Q be a polynomial in Φ. We define the expectation

and set

C(ί,fc,x,y) = <Φ(x)Φ(y)>(ί,Λ) at 1-0.

Similarly using (2.4)-(2.6), (2.12), and (2.13) we can define

k{t,h\K{Uh\O%h).

Let/(ί, h) denote one of the above kernels. Then (3.8) and Lemma 3.2 imply that

)\h = o = δ«hf(t, h)\h = 0 , α C J ( I | ) . (3.11)

Notice that f(t, h) is formally analytic in h.
Let w(x1...xn)eL4'l3(Yln

j=1Ai). For αC/ ( r ) let d(α)=oo if α contains more
than one copy of any integer. Otherwise we define

φ ) = 0 loc| = 1
(3.12)

φ ) = max{|i-j | :ί,;eα}.

The following theorem estimates S(t,h) as a function of h, where /ι =

Theorem3. Let ε>0, r e Z + and IcZ be given. Then for mo(r,ε) sufficiently
large and λ(m0, r, ε) sufficiently small

frW-Xί, h)dx=<ρw>(ί, ft)

ί5 analytic in h, for h in the region

| / z ( α ) | ^ e + m o ( 1 - ε ) ( d ( α ) + 1 ) . (3.13)

Let wί-\v2 = w and T = dist. (supp w1? supp w2) Then for h in (3.13) there is a
constant a such that

\<QWί;QWl>% h)\Se-τem°ad^M(\\w\\L4n, degβ). (3.14)

The proof of this theorem is given in the following sections. The idea behind
the proof is this: We shall show in Section 5 that

This estimate comes from the fact that the Weiner path [see (1.4)] must hit each
line /., iea so that it must traverse a distance of at last d(a). When α has more than
one copy of the same integer δ*C vanishes so we can take d(<x)=co. If α contains
only a single element we do not gain a convergence factor from the covariance.
However for every h(a\ aeπ there is a derivative Δφ which differentiates the
exponent giving us effectively a factor of λ2/p where p is the degree of the interaction.
This is because
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as one can easily check. By choosing λ^e'mop/2 and m0 large we can see that

is small compared to 1 when h lies in the region (3.13). Hence the cluster expansion
in the new parameters (sb) can be applied as in [1] to show

IΓLc i,> Γ W
is analytic for h satisfying (3.13).

Next we state a lemma which will be useful for establishing Theorem 1.
Let ζj(x\ (j e Z2) be a continuous partition of unity with ζj supported in the

region \j— x|:g 1.

Lemma 3.3. Let f(x) and #(x l5 ...,x4) be continuous functions. Under the
hypothesis of Theorem 3 the expressions

Jfc(ί, ή, 0, x)f(x)ζj(x)dx; JK(ί, ft, x)Πΐ=itii(xMx)dx (3.15)

are analytic and uniformly bounded by I/CL? Î CL / o r ^ belonging to (3.13). Here 11̂
is ί/ie sup norm and K may be replaced by Kί.

We now turn to the proof of Theorem 1 using Theorem 3 and the above
lemma. The proof of Theorem 2 is similar. It suffices to show that for ί = l and
h = 0, (3.15) is bounded by

| y | g-3mo(l--f)(|j°|-Const). I I ^-m o ( l -f)(d2(Ji , j§)-Const.) (3.16)

respectively. The analyticity of the spatial momenta (p1,^1...) is obtained from
the above bound using the Euclidean in variance of k, K, and Kί.

Let j81 = [0,j°—1](

#

3) be the three fold disjoint union of the integers in the
interval [ 0 , / - l ] . From (3.1) and (3.11) we have

k(0, x)ζjf(x) = Sh(Πtf/2)dξ>ktt9 0, x)dtζjf(x)

« t , ft, 0, x)\h = odtζjf(x)

Wi) ^ ^' 0> x)Uaenh(~^dhdtζjf(x) (3.17)

where the contour is given by |ft(α)| = emo(1~ε)(d(α) + 1). After integrating over x and
applying Lemma 3.3 we see that each term in the sum over π is bounded by
Oexp [-mo(l-ε)£α(<i(α)+l)]. It is important to note that for

For the Bethe-Salpeter kernel we shall suppose 1 ̂  jf + 1 ̂ j9+ 1 — 1 for i = 1,..., 4,
and set

(Other configurations of j? can be treated similarly.) As above we have an equation
entirely analogous to (3.17) and

\\K(xί,...,xΛ)g{x)]\Uxζji{xi)dx\

^Const. l ό f L Σ ^ ^ e x p [-mo(l-£)£«,(<*(«)+ 1)] . (3.18)
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We note that for π e 0>(β2)

Σ « 6 « ( Φ ) + 1) ̂  3[/°2 -ft - 2| + 4[/° - j°2 - 2| + 3lfi - j ° - 2|

We now estimate the sum over πe0> = ̂ {β^ or ^(j82). Consider all partitions π
having n elements αί5 i ^ n ordered so that m i n α f ^ m i n α ί + 1 . Given a sequence
of positive integers ct we count the number of partitions for which d(αf) + 1 = ct

1 ^ i ̂  n. If we fix c and min α then there are at most 24 c α C Z ( 4 ) such that d(a) +ί = c
because a is in fact a subset of J ( 4 ) where / = Z n [min α, minα + c]. Given the
sequence cf, we can choose min αf in at most 4q_ 1 ways or else the αf would not
form a partition. Thus the sum (3.17), (3.18) is bounded by

V V TΊ ArΊ^ί ~mo(ί-ε)Cι

Ln Lcί^l,ΣnCi^c0 1 l / 4 C i Z e

ύCoΣc^Co2
ce-mQ{1-2ε)c Se~mo{l~^)c\ (3.19)

where c 0 = 3[/° — 1 | or (d2 — 20). We have used the fact that πe^ has at most
c0 elements and that there are less than 2C sequences cf ^ 1 such that ^ q = c. Note
that K may be replaced by K1 in the above argument.

We now turn to the proof of Lemma 3.3 which follows the first part of Section 2.
Proof of Lemma 33. We express k, K using (2.5) and (2.11)

k(t9h) = λ(l+λA1(t9h))-1B1{t9h)

By Theorem 3 A^uh.x^y) is in DL4 i.e. decays exponentially in \x — y\ and is
locally in L 4. Thus the Neumann series for (1 + λΛ^)'1 converges for small λ and

is in DL4. This establishes the lemma for k. Since

is in DL2, where σt (x, y) = k(t, h, x, y) or δ(x — y), B2

k\ Λf

2, Λ2 are in DL2. From the
identity

A2{t, h,xu...,x4) = 2jβ2(ί, ft, xί, x2, ^3, y4)S(ί, ft, y3, x3)S(ί, ft, y4, x4)d}^

we see that y42(ί, ft, x1 ? x2, x3, x4) and A2(t, ft, x l 5 x2, x3, x3) are in DL2. Thus the
Neumann series for (1 +λA2)~ * converges as well and we see that the lemma holds
for K. A similar argument works for Kγ.

Remark. The continuous function g(xl9 ...x4) is introduced to control the δ
function singularities which arise in the Bethe-Salpeter kernel. By choosing λ
sufficiently small we can bound (3.15) by an arbitrarily small constant times
I/CLJI^CIOO Thi s is not so for Kx since we have already factored out the
coefficient λ2.
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4. The Cluster Expansion

To obtain Theorem 3 we apply the cluster expansion (see [1]) in the parameters
sb. This section reviews the cluster expansion in a slightly different form.

Fix a region A whose boundary dΛ is a union of lattice line segments. A serves
as a space cutoff. We define s = (sb) for beA^. and we fix sb = 0 for bedA which
imposes Dirichlet boundary conditions on dΛ in the covariance C(s, ί). See
Section 1 for notation. If Γ is a union of line segments [i.e. Γ e U^{A)~\ let Γc denote
the complementary set Λ^~Γ. Since we shall expand about 5 = 0 i.e. a decoupled
theory, it is convenient to introduce the notation

Hence C(s(Γ), t) has Dirichlet boundary conditions on Γc and the corresponding
Gaussian measure dΦ{s(Γ), t) factors over the components X\ of Λ~ΓC so that

(4.1)

Let Xt be the closure of X[. Note that Xt e U(A).
For each Y e U(A) and each π e ^(I{r)) we define

= J Γ U Y\jez< [1 + Λ(α)3?CJ(t, s(YJ) • Λφ] ίΓ'™β ydΦ(t, 5(7,)), (4.2)

where Qγ is the product of those fields of the monomial <2 which are localized in Y.
Let Aί C l/(/ί) and ΓC U^A^. We define 7f to be the closure of the components

Lemma 4.1. Let the family {Fx{s(XJ)} be defined by (4.2). If Γ e U^{AX) then

FΛί(s(n) = UiFγM(Γ^Yi)) (4.3)

with Yt defined above.

Proof Note that

dΐCj(t,s(Γ)).Aφe-v^QYi = 0 (4.4)

unless both JΊ and j 2 are in Y,-. Hence

The lemma now follows by taking a product over α and j by the factorization
property for the measure dΦ(s(Γ)).

We say that a family of functions {^(^(X^))} decouples at 5 = 0 if (4.3) holds
for each Λ^ e U(Λ) and each Γ e JJJ^Λy).

The cluster expansion is derived as follows. By the fundamental theorem of
calpulus for any C 1 function F(s) we have

F(s) = ΣreUAΛ) ίo ( Γ ) dΓ

σF(σ(Γ))dσ(Γ), (4.5)

where dζ = Y\bcΓd/dσb. The integral does not appear when Γ = 0. Let XOCΛ.
If F decouples at 5 = 0 then each term of (4.5) is a product of the Xt defined via (4.1).
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Let W be the union of all X{ which meet Xo. We hold W and WnΓ fixed and resum
over all Γ e U^(Λ~W). This yields

FΛ(s) = ΣxiXo (ΣΓ\X0 JO dΓ

σFx(σ(Π)dσ(Γ)) FΛ^x(s). (4.6)

Here X ranges over elements of U(Λ) and Γ ranges over elements of U%(X)
(including Γ = 0) such that:

Each component of X ~ Γc meets Xo . (4.7)

If no such Γ exists for a given X the term is defined to be zero. Note that (4.7)
implies each component of X must meet Xo.

Theorem 4. Suppose F is a C 1 function of s = (sb),{beΛ%) which satisfies the
following conditions

A. F(s) decouples at s = 0

B.

C.

Then for K sufficiently large (independent of Λ)

IFΛ-ASWΛSΓ1^*™' (4-8)

Proof. Let b1eΛ:¥ and define

δFx(s) = Fx(s(X^))-Fx(s(X^b1)); if bxCX

= Fx(s(Xϊ|ί)) otherwise.

It is easy to check that δF decouples at s = 0. Note that

FΛ(s(Γn(Λ~X)J = YlAcx FA{sW)FΛ~x(s{Γn{Λ~X)j). (4.9)

We reexpress (4.6) in the form

δFMΠ) = Σxcbl cΓ(X)FΛ(s(Γn(Λ~X)J), (4.10)

where

cΛX) = HcxFA ' ίo(Γ) Σnx dΓ

σ'δFMΠ)dσ(Γ).

Since X0 = {b1}, (4.7) implies X is connected. If X is a single lattice square then
bxCdX and (5Fz = 0. Thus we can assume |X |^2. To bound cΓ(X) we note that
there are at most 2 2 | x | choices of Γr e U^(X). Also since X~ΓC is connected

\X\-1S2\Γ\.

Combining the above observations with B and C we have

i)l3 (4.11)

for large K. Next we state an elementary combinatorial lemma. See Proposition
5.1 of [1] for the proof.



Decay of the Bethe-Salpeter Kernel 159

Lemma 4.2. Let Xo and \X\ be given. The number of sets X e U(R2) such that
each component of X meets Xo is bounded by

We now establish (4.8) by induction on \Γ\ = n, and we set F = FΛ. Assume that

i^ |F( 5 (Γ 1 ^fe 1 )) F ( 5 ( Γ 1 ) ) - 1 | ^ 2

for IΓ^KΠ. Consequently for Γ2CΓ1, \Γt\<n we have

Γ^. (4.12)

By (4.10), (4.11), Lemma 4.2 and the induction hypothesis

\F(s(Γ)) fWΓ-fcJΓ 1 - 1| = \δF(s(Γ))

for K sufficiently large. Thus we have established (4.12). To complete the proof
of the theorem we use (4.9) with Γc = 0

1\ = \UACX

In the next section we show that if F is given by (4.2) there is a constant a such
that

\d^Fx{t,s,h)\^e~κιne + 0 { i m em o α d e g QM(||w||L 4/3,degβ) (4.13)

for h belonging to (3.13). We now prove Theorem 3 assuming that (4.13) holds
for K sufficiently large. The proof follows the lines of ([1], Section 4).

Proof of Theorem 3. Let X0 = X^κjXl where Xι

0 is the localization of Qt.
We express <2i \ QiY by introducing an independent copy of field Φ' so that

where the expectation on the right is the product expectation. Now let F be
defined by

Fx(t, s, h) = j Π α e π Πjez< C(l + K*)%Cj ΔΦ).(1 + h(a)dΐCj Δφ)~]

s, t)dΦ\s, t) (4.14)

and let the normalization Zx(ί, s, h) be defined as in (4.14) but with the β's absent.
F and Z are easily seen to satisfy (4.13) and decouple at 5 = 0. Furthermore for
small λ

hence Z satisfies the hypotheses of Theorem 4. By using the symmetry Φ-^Φ'
we observe that Fx = 0 if no component of X meets both Xj and XQ. We expand F
via (4.6)

Λ Λ '

g lim Σx\ZΛ~χZ2MlΣrix Rfχds(Γ)|.
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By Theorem 4 the first factor is bounded by 81*1. To bound the second factor we
first observe that X has at most degg components, hence 2 |F |^ |X | —degg
(see 5.1 of [1]). By (4.13) we can bound the second factor by

Since at least one component of X meets X\ and Xl we may assume that
(X)^dist(Xj, X2

0)^T. Now we have

it, h)\ S Σo

<Meam°degQe~τ.

Here again we have used Lemma (4.2) to control the sum over X.

5. Estimate of d[F

To complete the proof of Theorem 3 it suffices to establish (4.13) for K suffi-
ciently large and h belonging to (3.13). The proof of this bound relies heavily on
Sections 8-10 of [1]. The proof is identical except of course for the additional
factors

where B0(X) = π0 x(Z2nX)2 and β = (cc,j). [We make a change in notation:
π and Y are replaced by π 0 and X respectively in (4.2).] We expand the above
product in the form

To obtain (4.13) it suffices to show that for each BcB0

ItfJULei. UmC, • Δφ-\Qxe~^dΦ{t, s^DH^ e~^ , (5.1)

where

D = e0{ime-κ^eamode^w\\L4/,(2pdQgQ)2άesQ (5.2a)

and d(β) are constants to be defined such that

ΣβeB0ix)e-diβ)l2 = 0(l)\X\. (5.2b)

Here we are using the fact that by (5.2b)

LBB[[βBe -ilβB{ί+e )^[ [βBQXp(e ) — β

We compute the left hand side of (5.1) as in (3.7)

Σrι+r2=r J [ # ' Γ U * H Φ l C r Δφ-]lΣπsnr2) ΓL~ dlC • Δφ-\e-λV™QxdΦ{t, s)
(5.3a)

and again by Leibnitz rule
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The sum Σβy'β = Γί is over sequences of mutually disjoint subjects whose union
isΓί.

There are at most 2 | Γ | terms in the sum (5.3a) over Γί9Γ2. If we fix J\ and Γ2

and substitute C = YjjeZ4Cj the sum in (5.3) ranges over

π e ^ ( Γ 2 ) , {jy}yeπ {yf

β}Σv>=Γί.

For each term in the sum (5.3) let T(π, {/"}, {yf

β}) be the number of terms coming
from the differentiations Δφ. Let N(A) be the degree of a resulting monomial of Φ
in a lattice square A and let \B\ be the number of elements in B. Since there are at
least # = max(0, 2\B\/p — degg) differentiations of the exponent λP(Φ) each term
has a coefficient of |vψ. By Corollary 9.6 of [1] each term resulting from differentia-
tion is bounded by

mw'll^WYl^NWlM^ (5.4)

for all m 0 ^ 1,0^\λ\^λo and ReA^O. Here W is the w of Theorem 3 multiplied
by the kernels h(tχ)dyd}Cj arising from (5.3) hence w' is of the form

where the integral is over the contracted variables in the δ function. See Section 9
of[l] .

Next we turn to estimates on dy

sd^Cj. Let

(j2,b)}, (5.5a)

, ^ ( e ) ) , ί/Ί -Ji\}, (5.5b)

d(y, α) = minbc ydist (b, lm), (5.5c)

where ί(α) is the least integer in α. With this definition of i = ί(α) we define

to be the length of lmnX. Note that (5.2b) holds because

ΣβeBom e~mi2=Σj.a e-dU'°V2ύΣ«e« 0{ί)\Xa\ί0(ί)r\X\. (5.6)

Also recall the definition of d(a) given by (3.12).

Lemma 5.1. Let l^q<co, ε>0, and K2 be given. For mo(ε, K2, q) sufficiently
large there are constants M2(y9 β\ β e B and M3 such that α φ 0

\\d>%Cj\\Lq^M2(y, β)e-d(«)rno(l-e)e-K2\y\e-dU,a) ? ^j^

where for Γ1,Γ2e U#(X) we have

Σ Σ ^ ί U β , α Φ 0 . (5.8a)

For α = 0 (5.7) holds with d(j, y) replacing d(j, a) and where

^ (5.8b)

Remark. The lemma also holds where the kernel dy

sd*Cj(x, y) above is regarded
as a function of a single variable dy

sd
a

tCpc, x). The single variable kernels do not
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occur when the Wick order of the interaction is always defined to agree with the
Co variance of the Gaussian measure.

The proof of Lemma 5.1 is as in Section 8 of [1]. (See [11], Section 5 for a
correction). The case α = 0 is exactly as in Section 8, hence we suppose α + 0. We
combine two estimates. It is easy to show as in [11] and [1] that

j ; ; ε ^ e - d i a ) m o { 1 - 2 ε ) e - 2 d { j ' a ) (5.9)

By Proposition 8.1 of [1] we have

Uδ^C ll^ \\dlCJ\\iqSM2(y)e-κ^e'^ed^13, (5.10)

where M2(y) = Kε

6(y) defined in (8.5) of [1]. Multiplying (5.9) by (5.10) we have

| | δ ^ * c j L g ^ έ r d ( α ) m o ( 1 ^

Let

M2(γ, β) = M2(y)e-d{j'a)e'dU'y}.

To establish (5.8a) assume

Σ y e Λ ( x ) M 2 ( y ) e - * > ^ O ( l ) . (5.11)

Then

Σ&ί-n UβsBM2(y, β)^Uβ,B Σ.eiux) M2(y)e-d^e-^

In the last line we have used (5.6) and the fact that for fixed α there are at most
O(l)|Xα| choices of j (or of βe B) such that d(j, α):g const.

From [1], p. 230 we can bound the left side of (5.11) by

Here / ranges over linear orderings of a subset of X^ and / = J]dist(bί+ l J ί? )
By (8.11) of [1] the number of { e ̂ {X*) with |/| ̂ r and d(j, ί)^ais less than

because there are O(l)a2 choices oϊb\. Hence for large m0

Σy^iX) M 2 (y)^-^^ ) ^Σ Γ f < J 0(l)f l 2 e o < 1 ^- O T l 0 H/3 e

By Lemma 5.1 and Lemma 9.2 of [1] we have

• Y\βeB e-dU^M2(y^ β) Y\yen e'^^M2(y) (5.12)

for \λ\^e~2{mo+K). We have used the fact that

λ9Y\ h e " m o ( 1 ~ ε ) d ( α ) < e

rmodcgQe-\B\K

for h in (3.13) and \λ\^e'2^+κ\
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To bound the left side of (5.1) or (5.3) we combine (5.4) and (5.12) and use (5.8)
to estimate the sum over {yjj},πG^(Γ2). This yields the bound

-d(β)/2y τ r τ p-d(jv,y)/2Π
βεB

Let π - d e g β , k=\Γ\ + \B\ and define M(A) = M(A,B, {jy}yeπ) be the number of
derivatives δ/δφ localized in A in (5.3) i.e.

βeB\Δ3i = ΔJ=ί or 2,β = (*Jl9j2)}

+ caid.{γeπ\Δjι = Δ,ί=l or 2}.

The proof of (5.1) now follows from the following two lemmas and the inequality

Lemma 5.2. Both T and Y\AN(A)\ are bounded by

Lemma 5.3. There is a constant MΊ(q) independent ofm0,πe 0*(Γ2), Γ2 e
and BCBO(X) such that

The proof of these lemmas follows Section 10 of [1].
Proof of Lemma 52. Let N0(Δ) be deg. of Q in Δ. The number of terms resulting

from M(A) differentiations in A is bounded by

Since

(a + b)\S(a + b)abl and (ab)! g aab(b \)a

we see that

T^Y\A(N0(A) + pM(A))NoiΔ)ppM{Δ)(M(A)ψ .

Furthermore N(A)^N0(A) + pM(A) hence the above bound holds for
The lemma now follows from the bounds

Proof of Lemma 53. We first estimate the sum overjy

V Π p~dί<M)12<Y\ (Y p-dUy,v)/2
Lu{jy) 1 lyeπ ^ = 1 lyeπ \Zujγ

 e

Here we have used the fact that there are at most 2\X\ elements in π e
Hence it suffices to show there is a constant M"η such that

max ΓUB e-^ΓLe* e-^' ̂ Y\Δ{M{Δ, B, {jy})
π,{jγ}yeπ,B

Fix a lattice square A. There are at most O(\)a2 choices of yen such that
d(j, y) ̂  a and Δjι = Δ,i=lor2. Also there are at most O(l)a3 choices of β = (α, j) e B
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such that d(β)^a and Δjχ = Δ, z = l or 2 because there are less than O(\)a2 choices
of; and ra choices of α. Thus there are less than M(Δ)β choices of β, y such that

for ε sufficiently small so that there are least M(Δ)/2 choices of /?, y such that

We can now bound (5.14) by

ΓLcx e-

since \(x\γe
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