Commun. math. Phys. 44, 53—72 (1975) © by Springer-Verlag 1975

Invariant States and Conditional Expectations of the Anticommutation Relations

John C. Wolfe*

Departments of Physics and of Mathematics, University of British Columbia, Vancouver, B. C., Canada

Received June 11, 1974; in revised form March 27, 1975

Abstract. The group G of unitary elements of a maximal abelian von Neumann algebra on a separable, complex Hilbert space H acts as a group of automorphisms on the CAR algebra $\mathscr{A}(H)$ over H. It is shown that the set of G-invariant states is a simplex, isomorphic to the set of regular probability measures on a w*-compact set S of G-invariant generalized free states. The GNS Hilbert space induced by an arbitrary G-invariant state on $\mathscr{A}(H)$ supports a *-representation of C(S); the canonical map of $\mathscr{A}(H)$ into C(S) can then be locally implemented by a normal, G-invariant conditional expectation.

In this paper we shall define observable Fermion number densities on the spectra of complete one particle observables and study the classical fields which they generate.

Let $\mathscr{A}(H)$ denote the C*-algebra of the Canonical Anticommutation Relations (CAR) over a complex, separable Hilbert space H. H will be fixed throughout and $\mathscr{A}(H)$ denoted by \mathscr{A} . \mathscr{A} is generated algebraically by the range of an antilinear map $f \rightarrow a(f)$ of H into \mathscr{A} obeying the CAR:

a(f)a(g) + a(g)a(f) = 0 $a^{*}(f)a(g) + a(g)a^{*}(f) = (g, f)$ $\forall f, g \in H$.

Let *u* be a unitary operator on *H*. Then the map $a(f) \rightarrow a(uf)$ extends uniquely to a *-automorphism α_u of \mathscr{A} . α_u is called the Bogoliubov automorphism induced by *u*.

Let \mathcal{O} be a self-adjoint operator on \mathcal{H} . \mathcal{O} shall be called complete if its spectral family generates a maximal abelian von Neumann algebra \mathcal{Y} on H. Let (X, B, μ) denote the spectral measure space of \mathcal{O} . By the well known isomorphism theorem (I § 7 and III § 1, Corollary 3 of Ref. [3]), completeness of \mathcal{O} leads to identification of \mathcal{H} with $\mathcal{L}^2(X, B, \mu)$ and of \mathcal{Y} with $\mathcal{L}^\infty(X, B, \mu)$.

When \mathcal{O} has discrete spectrum, the number density N on X is defined for each $x \in X$ by $N_x = a^*(\delta_x)a(\delta_x)$ where δ_x is the Kroenecker δ -function at $x \in X$. The number density N generates a classical field which is isomorphic to the lattice gas. One can also isolate the field and density by symmetry considerations (as we have remarked before [16]).

An observable in \mathscr{A} is called \mathcal{O} -diagonal if it is diagonal in the Fock representation with respect to the basis formed by anti-symmetric products of eigenvectors

^{*} Supported by National Research Council of Canada grants NRC A 3119 NRC A 6570, NRC A 126.

of \mathcal{O} . The algebra of \mathcal{O} -diagonal observables is, at once, the classical field generated by the number density and the fixed point algebra for the unitary group $G(\mathcal{Y})$ of \mathcal{Y} (which acts as Bogoliubov automorphisms): The \mathcal{O} -diagonal part of a correlation function is simply its average over $G(\mathcal{Y})$. Now, the \mathcal{O} -diagonal part of the one point functions $a^*(f)a(g)$ defines an operator-valued measure on (X, B)which is continuous with respect to μ , and whose Radon-Nikodym derivative is N. That is, if $D(a^*(f)a(g))$ denotes the diagonal part of $a^*(f)a(g)$ then

$$D(a^*(f)a(g)) = \int f(x)\overline{g}(x)N_x d\mu(x) \quad \forall f, g \in \mathcal{L}^2(X, B, \mu).$$

Thus, by focusing in the mean-values of correlation functions over $G(\mathcal{Y})$ one is naturally lead to the number density and its field. This is also the case when \mathcal{O} does not have discrete spectrum.

Since the unitary group $G(\mathscr{Y})$ of an arbitrary maximal abelian von Neumann algebra \mathscr{Y} may have poor ergodic properties even locally on \mathscr{A} , we shall, in effect, approximate $G(\mathscr{Y})$ by a net of compact subgroups, each of which has a unique invariant mean or conditional expectation on \mathscr{A} . In Section 2, we associate to each partition of the spectrum of \mathscr{Y} a conditional expectation on \mathscr{A} which destroys the off-diagonal correlations between elements of the partition. Indexed by the partially ordered set of partitions, these conditional expectations form a net. In Section 3, we prove local convergence of the net in the representations induced by $G(\mathscr{Y})$ -invariant states and isolate the local number densities and classical fields. In Section 4, we prove the set of $G(\mathscr{Y})$ -invariant states to be a simplex and characterize its extreme points. Then, using the global consistency of the approximation scheme, we obtain the C*-algebra of observables of the classical field over the spectrum of \mathscr{Y} .

The notation for von Neumann and C^* -algebras follows that of Refs. [4] and [5] with the following exceptions: If $\phi \in \mathscr{A}^*$ and $S \in \mathscr{A}$, $\langle \phi; S \rangle$ denotes the value of ϕ at S; if $f, g \in H$ (a Hilbert space), $\Lambda(f, g)$ denotes the vector form on B(H) defined by $\langle \Lambda(f, g); S \rangle = (f, Sg) \forall S \in B(H)$; the σ -topology of a von Neumann algebra is defined in Ref. [16]. The closure of a set X in topology τ is denoted by $X^{-\tau}$, the closure of the linear span of X by $[X]^{-\tau}$. The symmetric group of degree N is denoted by \mathscr{S}_N and $\operatorname{sgn}(p)$ denotes the signature of $p \in \mathscr{S}_N$.

0. Conditional Expectations

In this section we recall the definition of a conditional expectation on a C^* -algebra and reproduce, for completeness, two theorems giving sufficient conditions for its existence. These results are applied in § 2 to the definition of a net of partial diagonal part operators.

0.1. Definition [13]. Let \mathscr{A} be a C*-algebra with unit. A linear mapping \mathscr{E} on \mathscr{A} is said to be a conditional expectation if the following conditions are satisfied:

1. $\mathscr{E}(1) = 1$.

2. $S \ge 0 \Rightarrow \mathscr{E}(S) \ge 0$.

3. $\mathscr{E}(S\mathscr{E}(T)) = \mathscr{E}(\mathscr{E}(S)T) = \mathscr{E}(S)\mathscr{E}(T) \quad \forall S, T \in \mathscr{A}$.

 \mathscr{E} is said to be faithful if $\mathscr{E}(S) = 0$, $S \ge 0 \Rightarrow S = 0$.

The following theorem is a slight variant of the principle result of [16.1]. The proof is in the Appendix.

0.2. Theorem. Let \mathscr{A} be a C*-algebra with unit, and let G be an amenable discrete group of automorphisms of \mathscr{A} . Denote by \mathscr{A}^G the C*-algebra of all fixed points of \mathscr{A} and by \mathfrak{S}^G the set of all G-invariant states on \mathscr{A} . If there exists a C*-subalgebra (with unit) \mathscr{A}^M of \mathscr{A}^G which separates \mathfrak{S}^G , then

1. If $\hat{\varrho}$ is a state on \mathcal{A}^M , there exists a unique *G*-invariant state ϱ on \mathcal{A} extending $\hat{\varrho}$. 2. $\mathcal{A}^M = \mathcal{A}^G$.

- 3. If $S \in \mathcal{A}$, there exists $S^G \in \mathcal{A}$ such that $\{S^G\} = \mathcal{A}^M \cap \operatorname{Co}\{gS | g \in G\}^{-N}$.
- 4. The mapping $S \rightarrow S^G$ is a conditional expectation on \mathscr{A} satisfying,
- a) $S^G = S \quad \forall S \in \mathscr{A}^G$,
- b) $(gS)^G = S^G \quad \forall g \in G; \forall S \in \mathscr{A}$.

0.3. Definition [9]. Let \mathscr{A} be a von Neumann algebra on a Hilbert space Hand let G be a group of automorphisms of \mathscr{A} . Let $R^+(\mathscr{A}, G)$ denote the set of G-invariant, positive normal forms on \mathscr{A} . \mathscr{A} is said to be G-finite if for every $S \in \mathscr{A}^+$, $S \neq 0$ there exists $\phi \in R^+(\mathscr{A}, G)$ such that $\langle \phi; S \rangle \neq 0$.

Kovács and Szücs have obtained the following ergodic theorem.

0.4. Theorem. Let \mathscr{A} be a von Neumann algebra and let G be a group of automorphisms of \mathscr{A} . Let \mathscr{A}^G denote the set of all fixed points of \mathscr{A} . Suppose that \mathscr{A} is G-finite. Then, for every $T \in \mathscr{A}$, there exists $T^G \in \mathscr{A}$ such that $\{T^G\} = \mathscr{A}^G \cap \operatorname{Co}\{gT | g \in G\}^{-\sigma}$. The mapping $T \to T^G$ is a normal, faithful conditional expectation on \mathscr{A} such that

- 1. $(gT)^G = T^G \quad \forall \ g \in G; \forall \ T \in \mathscr{A}$.
- 2. $T = T^G \quad \forall T \in \mathscr{A}^G$.

The mapping $T \rightarrow T^G$ is called the *G*-canonical map.

1. The CAR

Let *H* be a separable, complex Hilbert space, and let $\mathscr{A}(H)$ be the *C**-algebra of the Canonical Anticommutation Relations (CAR) over *H* [7]. As stated in the introduction, $\mathscr{A}(H)$ is generated by the range of an anti-linear mapping $a: H \to \mathscr{A}(H)$ satisfying the CAR: *a* is continuous, with $||a(f)|| = ||f|| \forall f \in H$; and $\mathscr{A}(H)$ is the closed linear span of the *n*-point correlation operators defined, for $N, M \in \mathbb{Z}^+$, $\{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \subset H$ by

$$A_{NM}(f_1, ..., f_N; g_1, ..., g_M) \equiv a^*(f_N) ... a^*(f_1) a(g_1) ... a(g_M).$$

By convention, $A_{00} \equiv 1$, $A_{10}(f) \equiv a^*(f)$, $A_{01}(g) \equiv a(g)$.

Let \mathfrak{S} be the set of all states on $\mathscr{A}(H)$. A state $\omega \in \mathfrak{S}$ is determined by linearity and by continuity from its *n*-point correlation functions defined, for $N, M \in \mathbb{Z}^+$, $\{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \subset H$, by

$$W_{NM}(f_1, ..., f_N; g_1, ..., g_M) \equiv \langle \omega; A_{NM}(f_1, ..., f_N; g_1, ..., g_M) \rangle$$

A state ω is said to be a gauge invariant generalized free state if its *n*-point correlation functions have the form;

$$W_{NM}(f_1, ..., f_N; g_1, ..., g_M) = \delta_{M,N} \det\{W_{11}(f_n, g_m)\} \forall N, M \in \mathbb{Z}^+; \{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \subset H.$$

F(H) denotes the set of all gauge invariant generalized free states on \mathscr{A} . If ω is a gauge invariant generalized free state there exists a unique operator A on H such $W_{11}(f;g) = (g, Af) \forall f, g \in H$. It follows that $0 \leq A \leq 1$. Conversely, if A is an operator on H such that $0 \leq A \leq 1$, then there exists [2] a unique gauge invariant generalized free state ω_A such that

$$\langle \omega_A; a^*(f)a(g) \rangle = (g, Af) \quad \forall f, g \in H.$$

Let *u* be a unitary operator on *H*. Then, there exists a unique *-automorphism α_u of $\mathscr{A}(H)$ such that $\alpha_u(a(f)) = a(uf) \forall f \in H$. The mapping $\alpha: U(H) \rightarrow \operatorname{Aut}\mathscr{A}(H)$ of the unitary group U(H) of *H* into the automorphisms group of $\mathscr{A}(H)$ is a strongly continuous homomorphism, when the former is equipped with its strong operator topology.

If H' is a closed subspace of H, we shall denote by $\mathscr{A}(H')$ the C*-subalgebra of $\mathscr{A}(H)$ generated by

 $\{A_{NM}(f_1, ..., f_N; g_1, ..., g_M) | N, M \in \mathbb{Z}^+; \{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \subset H'\}.$

2. A Net of Conditional Expectations

Let \mathscr{Y} be a maximal abelian von Neumann algebra on H, and let $G(\mathscr{Y})$ denote the unitary group of \mathscr{Y} .

2.0. Definition. Let $\tilde{E} = \{E_{\alpha}\}_{\alpha \in I}$ be a family of non-null, mutually orthogonal projectors in \mathscr{Y} such that $\Sigma E_{\alpha} = \mathbb{1}_{H}$. \tilde{E} is called a \mathscr{Y} -partition of H. Let $\Gamma(\mathscr{Y})$ denote the set of all \mathscr{Y} -partitions of H.

The set $\Gamma(\mathscr{Y})$ is partially ordered by refinement. That is, \tilde{E} is said to refine \tilde{F} if, for each $E \in \tilde{E}$ and $F \in \tilde{F}$, we have EF = 0 or E. We write $\tilde{E} \ge \tilde{F}$. One readily verifies that $(\Gamma(\mathscr{Y}), \ge)$ is a partially ordered and directed set with $\tilde{E} \lor \tilde{F} \equiv \{E_k F_j\}$.

The directed set $(\Gamma(\mathscr{Y}), \geq)$ will serve to index *a* net of conditional expectations. The remainder of this section is aimed at defining a conditional expectation for each partition $\tilde{E} \in \Gamma(\mathscr{Y})$.

Let \tilde{E} be a \mathscr{Y} -partition of H. We shall denote by $G(\tilde{E})$ the unitary group of the abelian von Neumann algebra $\mathscr{Y}(\tilde{E})$ generated by \tilde{E} . $G(\tilde{E})$ is represented in Aut \mathscr{A} by α (see above). We denote the set of $G(\tilde{E})$ -invariant elements of \mathscr{A} (resp. \mathfrak{S}) by $\mathscr{A}^{G(\tilde{E})}$ (resp. $\mathfrak{S}^{G(\tilde{E})}$). If $\tilde{E} = \{1\}$, then $G(\tilde{E})$ is the gauge group θ .

2.1. Lemma. Let $\tilde{E} = \{E_j\}_{j \in J}$ be a \mathscr{Y} -partition of H; let, for each $j \in J$, $\mathscr{A}(E_jH)^{\theta}$ be the C*-subalgebra of \mathscr{A} generated by

 $\{A_{NM}(f_1, ..., f_N; g_1, ..., g_M) | N = M \in \mathbb{Z}^+; \{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \subset E_j H\};$

and, let $\bigotimes_j \mathscr{A}(E_jH)^{\theta}$ denote the C*-subalgebra of \mathscr{A} generated by $\bigcup_j \mathscr{A}(E_jH)^{\theta}$. Then, $\bigotimes_j \mathscr{A}(E_iH)^{\theta}$ separates $\mathfrak{S}^{G(\tilde{E})}$.

Proof. Let ϕ and $\phi^1 \in \mathfrak{S}^{G(E)}$ with $\phi \neq \phi^1$. There exists $N, M \in \mathbb{Z}^+$, $\{f_n\}_{n=1}^N$, $\{g_m\}_{m=1}^M \subset H$ such that $\langle \phi - \phi^1; A_{NM}(f_1, ..., f_N; g_1, ..., g_M) \rangle \neq 0$. By linearity, and by continuity, there exists $\{j_n\}_{n=1}^N$, $\{i_m\}_{m=1}^M \subset J$ such that

$$\langle \phi - \phi^1; A_{NM}(E_{j_1}f_1, ..., E_{j_N}f_N; E_{i_1}g_1, ..., E_{i_M}g_M) \rangle \neq 0.$$

Let, for each $j \in J$, $N_j \equiv \operatorname{Card} \{n|j=j_n\}$ and $M_j \equiv \operatorname{Card} \{m|j=i_m\}$. Now, if $N_{j_0} \neq M_{j_0}$ for some $j_0 \in J$, $G(\tilde{E})$ -invariance of $\phi - \phi^1$ implies, with the choice $\mathbb{1} + [\exp(i\Pi/|N_{j_0} - M_{j_0}|) - 1] E_{j_0} \in G(\tilde{E})$, that the LHS of preceding expression vanishes. Thus, $N_j = M_j \forall j \in J$. But this implies

$$A_{NM}(E_{j_1}f_1, \dots, E_{j_N}f_N; E_{i_1}g_1, \dots, E_{i_M}g_M) \subset \bigotimes_j \mathscr{A}(E_jH)^{\theta} . \quad \Box$$

Since $G(\tilde{E})$ is amenable, and since $\bigotimes_j \mathscr{A}(E_jH)^{\theta} \subseteq \mathscr{A}^{G(\tilde{E})}$, Lemma 2.1 fulfills the remaining hypothesis of Theorem 0.2. We have therefore the following:

2.2. Theorem. Let \tilde{E} be a \mathscr{Y} -partition of H. There exists a unique $G(\tilde{E})$ -invariant conditional expectation $\mathscr{E}(|\tilde{E})$ on \mathscr{A} whose range is $\bigotimes \mathscr{A}(E_jH)^{\theta} = \mathscr{A}^{G(\tilde{E})}$.

2.3. Corollary. $\mathscr{E}(a^*(f)a(g)|\tilde{E}) = \sum_j a^*(E_j f) a(E_j g) \quad \forall f, g \in H.$

2.4. Corollary. Let $\tilde{E} \ge \tilde{F}$ be two \mathscr{Y} -partitions of H. Then,

 $\mathscr{E}(\mathscr{E}(S|\tilde{F})|\tilde{E}) = \mathscr{E}(S|\tilde{E}) \quad \forall \ S \in \mathscr{A} \ .$

Proof. Since $G(\tilde{E}) \supseteq G(\tilde{F})$ the result is immediate from Theorem 0.2 (3).

2.5. Corollary. Let $\tilde{E} \geq \tilde{F}$ be two \mathscr{Y} -partitions of H. Then, $\mathscr{E}(\mathscr{A}|\tilde{E}) \subseteq \mathscr{E}(\mathscr{A}|\tilde{F})$. We have therefore defined a net $\{\mathscr{E}(|\tilde{E})\}_{\tilde{E} \in \Gamma(\mathscr{Y})}$ of conditional expectations on \mathscr{A} with decreasing range (2.5) and the lattice property 2.4.

We now turn to the implementation of this net on some representations of \mathscr{A} . Let \tilde{E} be a \mathscr{Y} -partition of H; let ϕ be a $G(\tilde{E})$ -invariant state on \mathscr{A} ; let $(\pi_{\phi}, U_{\phi}, H_{\phi}, \Phi)$ be the cyclic, covariant representation of $(\mathscr{A}, G(\tilde{E}))$ associated to \mathscr{A} via the Gelfand-Naimark-Segal construction [12, 6.22]. Since \mathscr{A} is simple [15], it follows that π_{ϕ} is invertible. We can therefore define $\mathscr{E}_{\phi}(|\tilde{E}) \equiv \pi_{\phi}\mathscr{E}(\pi_{\phi}^{-1}|\tilde{E}):\pi_{\phi}(\mathscr{A}) \rightarrow \pi_{\phi}(\mathscr{A}^{G(\tilde{E})})$. For each $g \in G(\tilde{E})$ define the automorphism $\hat{\alpha}_g:\pi_{\phi}(\mathscr{A})'' \to \pi_{\phi}(\mathscr{A})''$ by $\hat{\alpha}_g S = U_{\phi}(g) SU_{\phi}(g)^* \forall S \in \pi_{\phi}(\mathscr{A})''$. The mapping $\hat{\alpha}: G(\tilde{E}) \to \operatorname{Aut}\pi_{\phi}(\mathscr{A})''$ is a homomorphism such that $\hat{\alpha}_g \pi_{\phi}(S) = \pi_{\phi}(\alpha_g S) \forall S \in \mathscr{A}$. Accordingly, if we can prove that $\pi_{\phi}(\mathscr{A})''$ is $G(\tilde{E})$ -finite (0.3), the $G(\tilde{E})$ -canonical map (0.4) will be a normal, $G(\tilde{E})$ -invariant conditional expectation on $\pi_{\phi}(\mathscr{A})''$ whose restriction to $\pi_{\phi}(\mathscr{A})$ is $\mathscr{E}_{\phi}(|\tilde{E})$.

By continuity, it will be the unique normal extension of $\mathscr{E}_{\phi}(|\tilde{E})$ to $\pi_{\phi}(\mathscr{A})''$. In that event we shall denote the $G(\tilde{E})$ -canonical map by $\mathscr{E}_{\phi}(|\tilde{E})$.

2.6. Lemma. Let $\tilde{E} = \{E_j\}_{j \in J}$ be a \mathscr{Y} -partition of H, and let ϕ be a $G(\tilde{E})$ -invariant state. Then with the above notation, $\pi_{\phi}(\mathscr{A})''$ is $G(\tilde{E})$ -finite.

Proof. It suffices to exhibit a complete orthonormal set of simultaneous eigenfunctions for $U_{\phi}(G(\tilde{E}))$. To this end, let $\mathcal{M} = \bigcup_{i \in I} \{E_i f | f \in H\}$, and let

$$\mathscr{M}_{\phi} \equiv \bigcup_{N,M} \{ \pi_{\phi}(A_{NM}(f_1, \dots, f_N; g_1, \dots, g_M)) \Phi | \{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \subset \mathscr{M} \} .$$

Clearly, the linear span of \mathcal{M}_{ϕ} is dense in H_{ϕ} . Since $U_{\phi}(g)\Phi = \Phi \forall g \in G(\tilde{E})$, there exists, for $g \in G(\tilde{E})$ and $\Psi \in \mathcal{M}_{\phi}$, a unique $\theta(g, \Psi) \in [0, 2\Pi)$ such that $U_{\phi}(g)\Psi = \exp[i\theta(g, \Psi)]\Psi$. Two vectors Ψ and $\Psi^{1} \in \mathcal{M}_{\phi}$ are said to be equivalent (a) if $\theta(g, \Psi) = \theta(g, \Psi^{1}) \forall g \in G(\tilde{E})$. \mathcal{M}_{ϕ} is thus divided into disjoint equivalence classes \mathcal{M}_{ϕ}^{*} .

Let $\theta(g, \alpha) \equiv \theta(g, \Psi)$ for $\Psi \in \mathscr{M}_{\phi}^{\alpha}$, $g \in G(\tilde{E})$, and let P_{ϕ}^{α} denote the projector upon

the closed linear span H^{α}_{ϕ} of $\mathcal{M}^{\alpha}_{\phi}$. One readily sees that $P^{\alpha}_{\phi}P^{\alpha'}_{\phi} = 0 \forall \alpha \neq \alpha', \Sigma P^{\alpha}_{\phi} = \mathbb{1}$, and

 $U_{\phi}(g) = \Sigma_{\alpha} \exp(i\theta(g, \alpha)) P_{\phi}^{\alpha} \forall g \in G(\tilde{E}) . \square$

From Lemma 2.6 and the preceding discussion we have the following.

2.7. Theorem. Let ϕ be a $G(\mathscr{Y})$ -invariant state on \mathscr{A} . Then, with the above notation and definitions, there exists a net $\{\widehat{\mathscr{E}}_{\phi}(|\widetilde{E})\}_{\widetilde{E}\in\Gamma(\mathscr{Y})}$ of normal conditional expectations on $\pi_{\phi}(\mathscr{A})''$ such that

1. For each $\tilde{E} \in \Gamma(\mathcal{Y})$, $\hat{\mathscr{E}}_{\phi}(|\tilde{E})$ is a normal, $G(\tilde{E})$ -invariant conditional expectation on $\pi_{\phi}(\mathcal{A})''$ whose range is $(\pi_{\phi}(\mathcal{A})'')^{G(\tilde{E})}$.

2. $\mathscr{E}_{\phi}(|E)$ is the unique normal extension of $\mathscr{E}_{\phi}(|E)$.

3. If $\tilde{E} \ge \tilde{F}$, then

$$\hat{\mathscr{E}}_{\phi}(\hat{\mathscr{E}}_{\phi}(S|\tilde{F})|\tilde{E}) = \hat{\mathscr{E}}_{\phi}(S|\tilde{E}) \ \forall \ S \in \pi_{\phi}(\mathscr{A})'' \ .$$

4. If $\tilde{E} \ge \tilde{F}$, then

$$\hat{\mathscr{E}}_{\phi}(\pi_{\phi}(\mathscr{A})''|\tilde{E}) \subseteq \hat{\mathscr{E}}_{\phi}(\pi_{\phi}(\mathscr{A})''|\tilde{F}).$$

Remark. In the remainder of the paper we suppress the "...

3. A Local Theory

In this section we investigate the convergence of the net $\{\mathscr{E}_{\phi}(|\tilde{E})\}_{\tilde{E}\in\Gamma(\mathscr{Y})}$ of normal conditional expectations on $\pi_{\phi}(\mathscr{A})''$ defined in Theorem 2.7 for a maximal abelian von Neumann algebra \mathscr{Y} on H and $G(\mathscr{Y})$ -invariant state on \mathscr{A} .

Due to the totally dissimilar behavior of the net for the atomic and nonatomic parts of \mathcal{Y} we make the following:

3.0. Definition. Let \mathscr{Y} be an abelian von Neumann algebra on H. A non-null projector $A \in \mathscr{Y}$ is said to be an atom of \mathscr{Y} if for every projector P of \mathscr{Y} we have AP=0 or A. Denote the set of all atoms of \mathscr{Y} by $A(\mathscr{Y}) = \{A_i\}_{i \in I}$; let $Y_A = \lor A(\mathscr{Y})$ and $Y_N = 1 - Y_A$.

We remark that (1) since distinct atoms are mutually orthogonal, $Y_A = \Sigma A_i$, and (2) since H is separable, Card $I \leq \aleph_0$.

Let $\Omega \in H$ be a separating vector for the maximal abelian von Neumann algebra \mathscr{Y} on H [4, 1 § 7]. For each element F of \mathscr{Y} we define the vector $f = F\Omega \in H$. The mapping $F \to f$ is an injection of \mathscr{Y} onto a dense subset of H. Throughout the remainder of this section Ω will denote a fixed separating vector for \mathscr{Y} .

Let P_N denote the set of all projectors P of \mathscr{Y} such that $PY_N = P$. Clearly P_N is a Boolean σ -algebra; the mapping $P \rightarrow \omega(P) \equiv (\Omega, P\Omega)$ is a finite positive measure on P_N ; and (P_N, ω) is a finite, separable, non-atomic measure algebra. Therefore, (P_N, ω) is isomorphic to $([0, \omega(Y_N)], dx)$ [8, 41 C].

3.1. Definition. Let $\tilde{E}^0 \equiv \{Y_N\} \cup A(\mathscr{Y})$.

An increasing sequence $\{\tilde{E}^n\}_{n=1}^{\infty}$ of \mathscr{Y} -partitions of H is said to be dense if 1) $\tilde{E}^1 \ge \tilde{E}^0$, and if 2) to every projector $F \in P_N$, and to every $\varepsilon > 0$, there corresponds a positive integer n_0 and a projector E which is a union of projectors of \tilde{E}^{n_0} and is such that

$$\omega(F(1-E)+E(1-F))<\varepsilon.$$

Theorems 41 B and 41 C of Ref. [8] assure the existence of an abundance of dense, increasing \mathscr{Y} -partitions of H.

3.a A Local Convergence Theorem

3.2. Theorem. Let \mathscr{Y} be a maximal abelian von Neumann algebra on H; let ϕ be a $G(\mathscr{Y})$ -invariant state on \mathscr{A} ; let $\{\mathscr{E}_{\phi}(|\tilde{E})\}_{\tilde{E}\in\Gamma(\mathscr{Y})}$ be the net of conditional expectations on $\pi_{\phi}(\mathscr{A})''$ defined in Theorem 2.7. Then, there exists a unique normal conditional expectation $\mathscr{E}_{\phi}(|\mathscr{Y})$ on $\pi_{\phi}(\mathscr{A})''$ such that

$$\sigma - \lim_{\Gamma(\mathscr{Y})} \mathscr{E}_{\phi}(\pi_{\phi}(S)|E) = \mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \qquad \forall S \in \mathscr{A}.$$

Further, 0) $\mathscr{E}_{\phi}(|\mathscr{Y})$ has abelian range.

- 1) $\mathscr{E}_{\phi}(U_{\phi}(g)SU_{\phi}(g)^{*}|\mathscr{Y}) = \mathscr{E}_{\phi}(S|\mathscr{Y}) \quad \forall g \in G(\mathscr{Y}).$
- 2) $U_{\phi}(g) \mathscr{E}_{\phi}(S|\mathscr{Y}) U_{\phi}(g)^* = \mathscr{E}_{\phi}(S|\mathscr{Y}) \quad \forall S \in \pi_{\phi}(\mathscr{A})''.$
- $\begin{aligned} 3) & \mathscr{E}_{\phi}(\pi_{\phi}(A_{NM}(f_{1},...,f_{N};g_{1},...,g_{M}))|\mathscr{Y}) \\ &= \delta_{M,N} \sum_{p \in \mathscr{S}_{N}} \operatorname{sgn}(p) \prod_{n=1}^{N} \mathscr{E}_{\phi}(\pi_{\phi}(A_{11}(f_{n};g_{p(n)}))|\mathscr{Y}) \\ &\equiv \delta_{M,N} \operatorname{Det}\{\mathscr{E}_{\phi}(\pi_{\phi}(A_{11}(f_{n};g_{m}))|\mathscr{Y})\} \; \forall \; N, M \in \mathbb{Z}^{+} \; ; \\ & \forall \; \{f_{n}\}_{n=1}^{N}, \; \{g_{m}\}_{m=1}^{M} \subset H \; . \end{aligned}$

4)
$$\mathscr{E}_{\phi}(\pi_{\phi}(\mathscr{A})''|\mathscr{Y}) = \{\mathscr{E}_{\phi}(\pi_{\phi}(A_{11}(f;g))|\mathscr{Y})|f, g \in H\}''$$
.

The proof of this result is punctuated with several lemmas and propositions.

3.3. Remark. The proof of σ -convergence of the nets of operators $\{\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E})\}_{\tilde{E}\in\Gamma(\mathscr{Y})}$, which results in Proposition 3.11, employs the following artifice. Since, for each $S \in \mathscr{A}$ and \mathscr{Y} -partition \tilde{E} , $\|\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E})\| \leq \|S\|$ there exists, by σ -compactness of bounded spheres of $\pi_{\phi}(\mathscr{A})''$, a σ -convergent subnet: We chose one and denote its limit point by $\mathscr{E}_{\phi}^{0}(\pi_{\phi}(S)|\mathscr{Y})$, finally proving that

$$\mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) = \sigma - \lim_{\Gamma(\mathscr{Y})} \mathscr{E}_{\phi}(\pi_{\phi}(S)|E)$$
.

This method of proof has the advantage that if P is a projector on H_{ϕ} , and if the net $\{P\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E})P\}_{\tilde{E}\in\Gamma(\mathscr{Y})}$ can be shown to be ultra-weakly convergent, then its limit point is $P\mathscr{E}_{\phi}^{0}(\pi_{\phi}(S)|\mathscr{Y})P$. We remark further that since the weak-operator and ultra-weak operator topologies on $B(H_{\phi})$ coincide on bounded spheres, weak operator convergence of the required nets is sufficient to ensure σ -convergence.

The following argument appears often enough to warrant abbreviation: If two vectors $\Psi, \Psi^1 \in H_{\phi}$ are eigenvectors of a unitary operator g with different eigenvalues, then they are orthogonal. We shall say " $(\Psi, \Psi^1)=0$ due to g-invariance", leaving the task of verifying that Ψ and Ψ^1 belong to different eigensubspaces of g to the reader.

Preparatory to proving Proposition 3.11, we make the following definitions and remarks. Let $D \in \mathscr{Y}$ be a projector; let $G(D) = \{\mathbb{1} + (g-1)D | g \in G(\mathscr{Y})\} \subseteq G(\mathscr{Y});$ and if ϕ is a $G(\mathscr{Y})$ -invariant state on \mathscr{A} , let $H_{\phi}(D) = \{\Psi \in H_{\phi} | U_{\phi}(g)\Psi = \Psi \forall g \in G(D)\}.$ Define the family of projectors $\{Q_{\phi}(D)_i\}_{i=1}^4$ as follows (recall that $d \equiv D\Omega$ where Ω is a fixed cyclic vector for \mathscr{Y} in H).

$$\begin{aligned} Q_{\phi}(D)_{1}H_{\phi} &\equiv \left[\pi_{\phi}(a(d))H_{\phi}(D)\right]^{-} \\ Q_{\phi}(D)_{2}H_{\phi} &\equiv \left[\pi_{\phi}(a^{*}(d))H_{\phi}(D)\right]^{-} \\ Q_{\phi}(D)_{3}H_{\phi} &\equiv \left[\pi_{\phi}(a(d)a^{*}(d))H_{\phi}(D)\right]^{-} \\ Q_{\phi}(D)_{4}H_{\phi} &\equiv \left[\pi_{\phi}(a^{*}(d)a(d))H_{\phi}(D)\right]^{-}. \end{aligned}$$

From the CAR and $U_{\phi}(1-2D)$ -invariance it follows that these projectors are pairwise orthogonal. Let $Q_{\phi}(D) \equiv \Sigma Q_{\phi}(D)_i$.

If *D* and *D'* be two orthogonal projectors of \mathscr{Y} , then $[Q_{\phi}(D), Q_{\phi}(D')] = 0$. In fact, let $O_{\phi}(D)$ [resp. $O_{\phi}(D')$] denote the projector upon $H_{\phi}(D)$ [resp. $H_{\phi}(D')$]. Since $O_{\phi}(D) \in U_{\phi}(G(D))''$ and $O_{\phi}(D') \in U_{\phi}(G(D'))''$ it follows that $[O_{\phi}(D), O_{\phi}(D')] = 0$. From this, and the fact that $O_{\phi}(D') \in \pi_{\phi}(\mathscr{A}(\mathbb{C}d))', O_{\phi}(D')Q_{\phi}(D)H_{\phi} \subseteq Q_{\phi}(D)H_{\phi}$. Hence $[O_{\phi}(D'), Q_{\phi}(D)] = 0$ and $Q_{\phi}(D)O_{\phi}(D')H_{\phi} \subseteq O_{\phi}(D')H_{\phi}$. Consequently,

 $Q_{\phi}(D)Q_{\phi}(D')H_{\phi}\subseteq Q_{\phi}(D')H_{\phi},$

proving the assertion.

3.4. Lemma. Let D be a projector of \mathcal{Y} . Then, with the above definitions and notation,

strong $\lim_{\Gamma(\mathscr{Y})} Q_{\phi}(D) \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E}) Q_{\phi}(D) = Q_{\phi}(D) \mathscr{E}_{\phi}^{0}(\pi_{\phi}(N(d))|\mathscr{Y}) Q_{\phi}(D)$

 $(N(d) \equiv a^*(d)a(d)).$

Proof. We prove, for i, i' = 1, ..., 4, that each of the nets $(*)_{ii'} \equiv \{Q_{\phi}(D)_i \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})Q_{\phi}(D)_{i'}\}_{\bar{E} \in \Gamma(\mathscr{Y})}$ is strong-operator convergent. However, by $U_{\phi}((1-D)+iD)$ -invariance, the (i, i')-net vanishes for

i=1; i'=2, 3, 4i=3; i'=1, 2i=2; i'=1, 3, 4i=4; i'=1, 2.

Thus, the proof reduces to six cases:

Case 1. i=i'=1. We prove the bounded net of positive operators to be increasing and therefore [4, Appendix 1] strong operator convergent. Let $\tilde{E} \ge \tilde{F}$, and let $F_k = \sum_{j \in J(k)} E_j$, with the obvious notation. Let $\Psi = \pi_{\phi}(a(d))\chi$ with $\chi \in H_{\phi}(D)$. Then

$$\begin{split} & (\Psi, \{\mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{F}) - \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})\}\Psi) \\ &= \Sigma_{k}(\chi, \pi_{\phi}[a^{*}(d)\{a^{*}(F_{k}d)a(F_{k}d) - \Sigma_{j\in J(k)}a^{*}(E_{j}d)a(E_{j}d)\}a(d)]\chi) \\ &= \Sigma_{k}(\chi, \pi_{\phi}[a^{*}((\mathbb{1}-F_{k})d)\{-\}a((\mathbb{1}-F_{k})d)]\chi) \\ &+ \Sigma_{k}(\chi, \pi_{\phi}[a^{*}(F_{k}d)\{-\}a(F_{k}d)]\chi) \\ &+ \Sigma_{k}(\chi, \pi_{\phi}[a^{*}((\mathbb{1}-F_{k})d)\{-\}a(F_{k}d)]\chi) + \text{c.c.} \end{split}$$

Now, (1) the first term on the *RHS* vanishes by $U_{\phi}(\mathbb{1}-2DE_{j})$ -invariance for $j \in J(k)$ and all k; (2) the third and fourth terms vanish by $U_{\phi}(\mathbb{1}-2D(\mathbb{1}-F_{k}))$ -invariance for all k; (3) since $a(F_{k}d)^{2}=0$, we are left with

$$-\Sigma_k(\chi, \pi_{\phi}[a^*(F_kd)\{\Sigma_{j\in J(k)}a^*(E_jd)a(E_jd)\}a(F_kd)]\chi) \leq 0.$$

Since $\Psi \in \pi_{\phi}(a(d))H_{\phi}(D)$ was arbitrary, we have by continuity $\tilde{E} \ge \tilde{F} \Rightarrow Q_{\phi}(D)_{1} \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})Q_{\phi}(D)_{1} \ge Q_{\phi}(D)_{1} \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{F})Q_{\phi}(D)_{1}.$

Case 2. i=i'=2. We prove the net $(*)_{22}$ of positive operators to be decreasing and therefore strong-operator convergent. Let $\tilde{E} \ge \tilde{F}$ and let $F_k = \sum_{j \in J(k)} E_j$. Let $\Psi = \pi_{\phi}(a^*(d))\chi$ with $\chi \in H_{\phi}(D)$. Then, by an argument similar to that of Case 1, we have;

$$\begin{split} & (\Psi, \left[\mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{F}) - \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})\right]\Psi) \\ &= \Sigma_{k}(\chi, \pi_{\phi}\left[a(F_{k}d)\{\|F_{k}d\|^{2} - \Sigma_{j\in J(k)}a^{*}(E_{j}d)a(E_{j}d)\}a^{*}(F_{k}d)]\chi) \geqq 0 \end{split}$$

since

$$\Sigma_{j \in J(k)} \|a^*(E_j d)a(E_j d)\| \leq \Sigma_{j \in J(k)} \|E_j d\|^2 = \|F_k d\|^2.$$

Since $\Psi \in \pi_{\phi}(a^*(d))H_{\phi}(D)$ was arbitrary, we have, by continuity,

$$E \ge F \Rightarrow Q_{\phi}(D)_2 \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|E) Q_{\phi}(D)_2 \le Q_{\phi}(D)_2 \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|F) Q_{\phi}(D)_2 .$$

Case 3. i = i' = 3. We have (CAR),

$$a(d)a^*(d)\mathscr{E}(N(d)|\widetilde{E})a(d)a^*(d) = ||d||^2 a(d)\mathscr{E}(N(d)|\widetilde{E})a^*(d)$$

$$-a(d)a^{*}(d)\Sigma_{i}||E_{i}d||^{4}$$

Therefore,

$$\begin{aligned} Q_{\phi}(D)_{3}\mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})Q_{\phi}(D)_{3} \\ &= \|d\|^{-2}Q_{\phi}(D)_{3}\pi_{\phi}(a(d))\mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})\pi_{\phi}(a^{*}(d))Q_{\phi}(D)_{3} \\ &- \|d\|^{-4}Q_{\phi}(D)_{3}\pi_{\phi}(a(d)a^{*}(d))Q_{\phi}(D)_{3}[\Sigma_{i}\|E_{i}d\|^{4}] \,. \end{aligned}$$

Now, (1) since $\pi_{\phi}(a^*(d))Q_{\phi}(D)_3 = Q_{\phi}(D)_2\pi_{\phi}(a^*(d))$, strong-operator convergence of the net of first term on the *RHS* follows from Case 2; and since the net in \mathbb{C} , $\{\Sigma_j \| E_j d \|^4\}_{\overline{E} \in \Gamma(\mathcal{Y})}$ is positive and decreasing, the net of second terms is norm and, a fortiori, strong-operator convergent.

Case 4. i = i' = 4. By an argument similar to that of Case 3, we have

$$\begin{aligned} Q_{\phi}(D)_{4} \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})Q_{\phi}(D)_{4} \\ &= \|d\|^{-4}Q_{\phi}(D)_{4}\pi_{\phi}(N(d))Q_{\phi}(D)_{4}(\Sigma_{j}\|E_{j}d\|^{4}) \\ &+ \|d\|^{-2}Q_{\phi}(D)_{4}\pi_{\phi}(a^{*}(d))\mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})\pi_{\phi}(a(d))Q_{\phi}(D)_{4} \,. \end{aligned}$$

Now, since $\pi_{\phi}(a(d))Q_{\phi}(D)_4 = Q_{\phi}(D)_1\pi_{\phi}(a(d))$, strong-operator convergence of the net of second terms on the *RHS* follows from Case 1; (2) Convergence of the net of first terms follows as in Case 3.

Case 5. i=3, i'=4. We have (CAR) $Q_{\phi}(D)_{3}\mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E})Q_{\phi}(D)_{4}$ $= \|d\|^{-2}Q_{\phi}(D)_{3}\pi_{\phi}[a^{*}(\Sigma \|E_{j}d\|^{2}E_{j}d)a(d)]Q_{\phi}(D)_{4}$.

Now let, for each \mathscr{Y} -partition \tilde{E} of H,

 $f(d, \tilde{E}) = \sum_{j} ||E_{j}d||^{2} E_{j}d$. Let $f(d, \mathscr{Y}) = \sum ||A_{i}d||^{2} A_{i}d$.

Let, for each $M \in \mathbb{Z}^+$, \tilde{E}^M be a \mathscr{Y} -partition of H such that 1) $\tilde{E}^M \ge \tilde{E}^0 \equiv A(\mathscr{Y}) \cup \{Y_N\}$, and 2) $(\Omega, DY_N E_j^M \Omega) = 0$ or $(\Omega, DY_N \Omega)/M \ \forall j$. Let $\tilde{F} \ge \tilde{E}^M$ for fixed, but arbitrary, $M: E_j^M = \sum_{k \in K(j)} F_k$.

We have, $||f(d, \mathscr{Y}) - f(d, \tilde{F})||^2 = \Sigma_k ||F_k Y_N d||^4 = \Sigma_j \Sigma_{K(j)} ||F_k Y_N d||^4 \leq \Sigma_j ||E_j^M Y_N d||^4 = (\Omega, DY_N \Omega)^2 / M$. Thus $\lim_{\Gamma(\mathscr{Y})} f(d, \tilde{E}) = f(d, \mathscr{Y})$, and consequently

$$\begin{split} \lim_{\Gamma(\mathscr{Y})} Q_{\phi}(D)_{3} \mathscr{E}_{\phi}(\pi_{\phi}(N(d))|\tilde{E}) Q_{\phi}(D)_{4} \\ &= \|d\|^{-2} Q_{\phi}(D)_{3} \pi_{\phi} [a^{*}(f(d,\mathscr{Y}))a(d)] Q_{\phi}(D)_{4} \,. \end{split}$$

Case 6. i = 4, i' = 3. Case 6 follows from Case 5 by virtue of *norm* convergence.

3.5. Lemma. Let \tilde{D} be a \mathscr{Y} -partition of H; let $\{F_n\}_{n=1}^N$ be a finite set of mutually orthogonal projectors of $\mathscr{Y}(\tilde{D})$ (i.e. $F_n = \sum_{j \in J(n)} D_j$); and let $P_{\phi}(\tilde{D})H_{\phi} \equiv [\pi_{\phi}(\mathscr{A}([\tilde{D}\Omega]^-))\Phi]^-$.

Then

$$\begin{split} &\mathrm{S\text{-lim}}_{\Gamma(\mathscr{Y})^N} P_{\phi}(\tilde{D}) \prod_{n=1}^N \mathscr{E}_{\phi}(\pi_{\phi}(N(f_n)) | \tilde{E}^n) P_{\phi}(\tilde{D}) \\ &= P_{\phi}(\tilde{D}) \prod_{n=1}^N \mathscr{E}_{\phi}^0(\pi_{\phi}(N(f_n)) | \mathscr{Y}) P_{\phi}(\tilde{D}) \,. \end{split}$$

Proof. Let $Q_{\phi}(n) \equiv \prod_{j \in J(n)} Q_{\phi}(D_j)$. It follows from Lemma 3.4 that, for each finite subset $J_0(n) \subseteq J(n)$,

$$\begin{split} & \operatorname{S-lim}_{\Gamma(\mathscr{Y})} Q_{\phi}(n) \mathscr{E}_{\phi}(\pi_{\phi}(N(\Sigma_{j \in J_{0}(n)} D_{j} f_{n})) | \dot{E}) Q_{\phi}(n) \\ &= Q_{\phi}(n) \mathscr{E}_{\phi}^{0}(\pi_{\phi}(N(\Sigma_{j \in J_{0}(n)} D_{j} f_{n})) | \mathscr{Y}) Q_{\phi}(n) \,. \end{split}$$

Since, for $\tilde{E} \ge \tilde{D}$, we have

$$\begin{split} \|Q_{\phi}(n) \left\{ \mathscr{E}_{\phi}(\pi_{\phi}(N(f_n))|\tilde{E}) - \mathscr{E}_{\phi}(\pi_{\phi}(N(\Sigma_{j \in J_0(n)}D_jf_n))|\tilde{E}) \right\} Q_{\phi}(n) \| \\ & \leq \|(\mathbb{1} - \Sigma_{j \in J_0(n)}D_j)f_n\|^2 \,, \end{split}$$

it follows that

$$\begin{aligned} \|Q_{\phi}(n) \left\{ \mathscr{E}^{0}_{\phi}(\pi_{\phi}(N(f_{n}))|\mathscr{Y}) - \mathscr{E}^{0}_{\phi}(\pi_{\phi}(N(\Sigma_{j \in J_{0}(n)}D_{j}f_{n}))|\mathscr{Y}) \right\} Q_{\phi}(n) \| \\ \leq \|(1 - \Sigma_{j \in J_{0}(n)}D_{j})f_{n}\|^{2} . \end{aligned}$$

It then follows, by the triangle and Schwartz inequalities, from the above remarks that

$$\operatorname{S-lim}_{\Gamma(\mathscr{Y})} Q_{\phi}(n) \mathscr{E}_{\phi}(\pi_{\phi}(N(f_n))|E) Q_{\phi}(n) = Q_{\phi}(n) \mathscr{E}_{\phi}^{0}(\pi_{\phi}(N(f_n))|\mathscr{Y}) Q_{\phi}(n) .$$

62

By joint strong-operator continuity of products on bounded sets, and by virtue of the fact that, for $n \neq n'$,

$$0 = [Q_{\phi}(n), Q_{\phi}(n')] = [\mathscr{E}_{\phi}(\pi_{\phi}(N(f_n))|\tilde{E}), Q_{\phi}(n')]$$
$$= [\mathscr{E}_{\phi}(\pi_{\phi}(N(f_n))|\tilde{E}), \mathscr{E}_{\phi}(\pi_{\phi}(N(f_{n'}))|\tilde{F})],$$

we have

$$\begin{aligned} \operatorname{S-lim}_{\Gamma(\mathscr{Y})^{N}} \prod_{n=1}^{N} Q_{\phi}(n) \prod_{n=1}^{N} \mathscr{E}_{\phi}(\pi_{\phi}(N(f_{n}))|\tilde{E}^{n}) \prod_{n=1}^{N} Q_{\phi}(n) \\ = \prod_{n=1}^{N} Q_{\phi}(n) \prod_{n=1}^{N} \mathscr{E}_{\phi}^{0}(\pi_{\phi}(N(f_{n}))|\mathscr{Y}) \prod_{n=1}^{N} Q_{\phi}(n) \,. \end{aligned}$$

However, since $P_{\phi}(\tilde{D}) \leq Q_{\phi}(D_j) \forall j$; it follows that $\prod_{n=1}^{N} Q_{\phi}(n) \geq P_{\phi}(\tilde{D})$: This, and the preceding statement, proves the lemma. \Box

3.6. Lemma. Let $\{F_n\}_{n=1}^N$ be a finite family of mutually orthogonal projectors of \mathscr{Y} . Then,

$$\operatorname{S-lim}_{\Gamma(\mathscr{Y})^N} \prod_{n=1}^N \mathscr{E}_{\phi}(\pi_{\phi}(N(f_n))|\tilde{E}^n) = \prod_{n=1}^N \mathscr{E}_{\phi}^0(\pi_{\phi}(N(f_n))|\mathscr{Y}) .$$

Proof. Let $\Gamma(\mathscr{Y}|\{F_n\}) \equiv \{\tilde{D} \in \Gamma(\mathscr{Y})|F_n \in \tilde{D}'' \forall n\}$. Clearly, $\Gamma(\mathscr{Y}|\{F_n\})$ is a directed set and cofinal with $\Gamma(\mathscr{Y})$: thus, since [13, 1.3.1 and Remark, p. 46] the linear span of the projectors of \mathscr{Y} is norm-dense in \mathscr{Y} , since Ω is cyclic for \mathscr{Y} in H, since Φ is cyclic for $\pi_{\phi}(\mathscr{A})$ in H_{ϕ} and since the *n*-point correlation operators $\{A_{NM}\}$ are continuous and multilinear, it follows that

S-lim_{$\Gamma(\mathscr{Y}|\{F_n\})} P_{\phi}(\tilde{D}) = \mathbb{1}$.</sub>

The result then follows from Lemma 3.5 via the inequality, valid for

$$\begin{split} &D \in \Gamma(\mathscr{Y}|\{F_n\}), \\ &|(\Psi, [\prod_{n=1}^N \mathscr{E}_{\phi}(\pi_{\phi}(N(f_n))|\tilde{E}^n) - \prod_{n=1}^N \mathscr{E}_{\phi}^0(\pi_{\phi}(N(f_n))|\mathscr{Y})]\Psi)| \\ &\leq |(P_{\phi}(\tilde{D})\Psi, [-]P_{\phi}(\tilde{D})\Psi)| + 2\prod_{n=1}^N ||f_n||^2 ||(\mathbb{1} - P_{\phi}(\tilde{D}))\Psi|| \\ &\cdot (2||\Psi|| + ||(\mathbb{1} - P_{\phi}(\tilde{D}))\Psi||). \quad \Box \end{split}$$

3.7. Lemma. Let $\{S_n\}$ be a Cauchy Sequence in \mathscr{A} such that w-lim $_{\Gamma(\mathscr{A})}\mathscr{E}_{\phi}(\pi_{\phi}(S_n)|\tilde{E}) = \mathscr{E}_{\phi}^0(\pi_{\phi}(S_n)|\mathscr{Y})$

for each $n \in \mathbb{Z}^+$. Then, if $S = n - \lim S_n$,

$$\operatorname{w-lim}_{\Gamma(\mathscr{Y})}\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}) = \mathscr{E}_{\phi}^{0}(\pi_{\phi}(S)|\mathscr{Y}) = \operatorname{n-lim}_{n \to \infty}\mathscr{E}_{\phi}^{0}(\pi_{\phi}(S_{n})|\mathscr{Y}) .$$

The proof is immediate from linearity and uniform boundedness (i.e. $\|\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E})\| \leq \|S\| \forall \tilde{E} \in \Gamma(\mathscr{Y})$) of the maps $\{\mathscr{E}_{\phi}(|\tilde{E})\}_{\tilde{E} \in \Gamma(\mathscr{Y})}$).

3.8. Lemma. Let
$$N, M \in \mathbb{Z}^+$$
, and let $\{f_n\}_{n=1}^N, \{g_m\}_{m=1}^M \in H$. Then,

$$\begin{aligned} &\text{w-lim}_{\Gamma(\mathscr{Y})} \mathscr{E}_{\phi}(\pi_{\phi}(A_{NM}(f_{1},\ldots,f_{N};g_{1},\ldots,g_{M}))|\tilde{E}) \\ &= \mathscr{E}_{\phi}^{0}(\pi_{\phi}(A_{NM}(f_{1},\ldots,f_{N};g_{1},\ldots,g_{M}))|\mathscr{Y}) \\ &= \delta_{MN} \sum_{p \in \mathscr{P}_{N}} \operatorname{sgn}(p) \prod_{n=1}^{N} \mathscr{E}_{\phi}^{0}(\pi_{\phi}(A_{11}(f_{n};g_{p(n)}))|\mathscr{Y}) \end{aligned}$$

As implied by the notation, the order of the product is unimportant.

Proof. Let $\tilde{D} = \{D_k\}$ be a \mathscr{Y} -partition of H. Let, for each $1 \leq n \leq N$ (resp. $1 \leq m \leq M$), D_{k_n} (resp. D_{k_m}) be chosen from \tilde{D} ; let $f_n = d_{k_n} \forall 1 \leq n \leq N$ (resp. $g_m = d_{k_m} \forall 1 \leq m \leq M$). By the familiar invariance argument (e.g. Proof of 2.1) we have $\mathscr{E}_{\phi}(\pi_{\phi}(A_{NM}(f_1, \dots, f_N; g_1, \dots, g_M))|\tilde{D})$

$$= \begin{cases} 0 & \text{if } (1) \ k_n = k_{n'} \text{ for } n \neq n' \\ \text{ or } (2) \ \kappa_m = \kappa_{m'} \text{ for } m \neq m' \\ \text{ or } (3) \ \{k_n\}_{n=1}^N \neq \{\kappa_m\}_{m=1}^M \\ \text{ sgn}(p) \prod_{n=1}^N E_{\phi}(\pi_{\phi}(A_{11}(d_{k_n}; d_{k_n}))|\tilde{D}), \text{ where} \\ p \text{ is the unique permutation such that } k_n = \kappa_{p(n)} \forall n \\ = \delta_{M,N} \sum_{n \in \mathcal{L}_N} \text{ sgn}(p) \prod_{n=1}^N \mathcal{E}_{\phi}(\pi_{\phi}(A_{11}(f_n; g_{n(n)}))|\tilde{D}). \end{cases}$$

Taking into account the orthogality of the $\{D_k\}$, one has, by operating on both sides by $\mathscr{E}_{\phi}(|\tilde{E})$, the above equality for \tilde{D} replaced by $\tilde{E} \ge \tilde{D}$. The result then follows for this special case from Lemma 3.6. Clearly, the order of the product is irrelevant. Since the linear span of the set of all projectors of \mathscr{Y} is norm dense in \mathscr{Y} [13, 1.3.1], and since Ω is cyclic for \mathscr{Y} in H, the general case follows from linearity and continuity (3.7). \Box

3.9. Definition. Let $D_{\phi}(\mathscr{Y})$ [resp. $D_{\phi}(\mathscr{Y}_A)$, $D_{\phi}(\mathscr{Y}_N)$] denote the C*-algebra on H_{ϕ} generated by

 $\left\{ \mathscr{E}^{0}_{\phi}(\pi_{\phi}(a^{*}(f)a(g))|\mathscr{Y}) | f, g \in H \text{ (resp. } Y_{A}H, Y_{N}H) \right\} \cup \{\mathbb{1}\}.$

We remark that (2.3) $D_{\phi}(\mathscr{Y})$ is generated by $D_{\phi}(\mathscr{Y}_{A}) \cup D_{\phi}(\mathscr{Y}_{N})$.

3.10. Lemma. Let $\mathscr{Z}_{\phi} = \pi_{\phi}(\mathscr{A})'' \cap \pi_{\phi}(\mathscr{A})'$. Then $D_{\phi}(\mathscr{Y}_N) \subseteq \mathscr{Z}_{\phi}$ and $D_{\phi}(\mathscr{Y})$ is abelian.

Proof. Since, by Lemma 3.8, $D_{\phi}(\mathscr{Y}_N) \subseteq \pi_{\phi}(\mathscr{A})''$, it remains to prove that $D_{\phi}(\mathscr{Y}_N) \subseteq \pi_{\phi}(\mathscr{A})'$. It suffices to prove that $[\pi_{\phi}(a(f)), \mathscr{E}^0_{\phi}(\pi_{\phi}(a^*(g)a(l))|\mathscr{Y})] = 0 \forall f \in H; \forall g, l \in Y_N H$. Since Ω is clearly cyclic for $Y_N \mathscr{Y}$ in $Y_N H$ it suffices by linearity and continuity to prove that, if F, G, K be projectors of \mathscr{Y} , then $[\pi_{\phi}(a(f)), \mathscr{E}^0_{\phi}(\pi_{\phi}(A_{11}(Y_N g; Y_N k))|\mathscr{Y})] = 0$; or,

w-lim_{$\Gamma(\mathscr{Y})$} $[\pi_{\phi}(a(f)), \mathscr{E}_{\phi}(\pi_{\phi}(A_{1,1}(Y_Ng;Y_Nk))|\tilde{E})] = 0.$

In fact, let $\tilde{F} \geq \tilde{E}^N$ with the notation of Lemma 3.4, Case 5 but with $D = Y_N$. It then follows, by an elementary calculation, that $\|[\pi_{\phi}(a(f)), \mathscr{E}_{\phi}(\pi_{\phi}(A_{11}(Y_Ng; Y_Nk))|\tilde{F})]\|^2 \leq (\Omega, Y_N\Omega)^3/N$. This proves the first assertion. To prove that $D_{\phi}(\mathscr{Y})$ is abelian, it remains only to show that $D_{\phi}(\mathscr{Y}_A)$ is abelian. But, since $\mathscr{E}^0_{\phi}(\pi_{\phi}(A_{11}(Y_Af; Y_Ag))|\mathscr{Y}) = \Sigma \pi_{\phi}(a^*(A_if)a(A_ig))$, it follows that $D_{\phi}(\mathscr{Y}_A)$ is generated by $\{\pi_{\phi}(N(a_i))\} \cup \{1\}$ and these clearly commute. \Box

We now put together the results obtained so far.

3.11. Proposition. There exists a unique linear, continuous mapping $\mathscr{E}^0_{\phi}(|\mathscr{Y})$: $\pi_{\phi}(\mathscr{A}) \rightarrow \pi_{\phi}(\mathscr{A})''$ such that

 $\mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) = \sigma - \lim_{\Gamma(\mathscr{Y})} \mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}) \quad \forall S \in \mathscr{A}.$

Further,

 $\begin{array}{l} 0) \ \ \mathscr{E}^{0}_{\phi}(1|\mathscr{Y}) = 1. \\ 1) \ \ \|\mathscr{E}^{0}_{\phi}(|\mathscr{Y})\| = 1 \\ 2) \ \ S \ge 0 \Rightarrow \mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \ge 0. \\ 3) \ \ \mathscr{E}^{0}_{\phi}(\pi_{\phi}(S^{*})|\mathscr{Y}) = \mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y})^{*} \ \ \forall \ S \in \mathscr{A} \\ 4) \ \ \mathscr{E}^{0}_{\phi}(\mathscr{U}_{\phi}(g)\pi_{\phi}(S)\mathscr{U}_{\phi}(g)^{*}|\mathscr{Y}) = \mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \\ = \mathscr{U}_{\phi}(g)\mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y})\mathscr{U}_{\phi}(g)^{*} \ \ \forall \ S \in \mathscr{A} ; \forall \ g \in G(\mathscr{Y}) \\ 5) \ \ For \ N, \ M \in \mathbb{Z}^{+}, \ \{f_{n}\}_{n=1}^{N}, \ \{g_{m}\}_{m=1}^{M} \subset H, \ we \ have \\ \ \ \mathscr{E}^{0}_{\phi}(\pi_{\phi}(A_{NM}(f_{1}, ..., f_{N}; g_{1}, ..., g_{M}))|\mathscr{Y}) = \delta_{MN} \det\{\mathscr{E}^{0}_{\phi}(\pi_{\phi}(A_{11}(f_{n}; g_{m}))|\mathscr{Y})\} \\ . \end{array}$

Proof. Since \mathscr{A} is the closed linear span of the *n*-point operators $\{A_{NM}\}$, existence of $\mathscr{E}^{0}_{\phi}(|\mathscr{Y})$ follows by linearity and by continuity (3.7) from Lemma 3.8: uniqueness is immediate. 0), 1), 2), and 3) follow from the properties of the conditional expectations $\{\mathscr{E}_{\phi}(|\tilde{E})\}$. It follows from the $G(\tilde{E})$ -invariance of $\mathscr{E}_{\phi}(|\tilde{E})$ for $\tilde{E} \in \Gamma(\mathscr{Y})$ that 4), holds for $g \in G^{0}(\mathscr{Y}) \equiv \bigcup_{\Gamma(\mathscr{Y})} G(\tilde{E})$. Since $G^{0}(\mathscr{Y})$ is norm-dense in $G(\mathscr{Y})$ (by trivial modification of the proof of [13, 1.3.1]), and since α and \mathscr{U}_{ϕ} are strongly continuous, 4) holds for all $g \in G(\mathscr{Y})$. 5) follows from 3.8, and 6) from 5).

3.12. Proposition. There exists a unique normal conditional expectation $\mathscr{E}_{\phi}(|\mathscr{Y})$ on $\pi_{\phi}(\mathscr{A})''$ which extends $E_{\phi}^{0}(|\mathscr{Y})$. Further, $\mathscr{E}_{\phi}(\pi_{\phi}(\mathscr{A})''|\mathscr{Y}) = D_{\phi}(\mathscr{Y})''$.

Proof. We first prove existence of *a*, necessarily unique, normal linear map extending $\mathscr{E}^{0}_{\phi}(|\mathscr{Y})$. To this end, let $H^{A}_{\phi} \equiv \{\pi_{\phi}(\mathscr{A}(Y_{A}H))\Phi\}^{-}$, and let $M_{\phi}H_{\phi} \equiv [D_{\phi}(\mathscr{Y}_{N})H^{A}_{\phi}]^{-}$. Since $M_{\phi} \in D_{\phi}(\mathscr{Y})'$, and since $\pi_{\phi}(\mathscr{A}(Y_{N}H)) \subset D_{\phi}(\mathscr{Y})'$ [recalling that $G_{\phi}(\mathscr{Y}_{N}) \subseteq \mathscr{L}_{\phi}$], the central support of M_{ϕ} in $G_{\phi}(\mathscr{Y})''$ is 1 (i.e. $[D_{\phi}(\mathscr{Y})'M_{\phi}H_{\phi}]^{-} \supseteq [\pi_{\phi}(\mathscr{A}(Y_{N}H))D_{\phi}(\mathscr{Y}_{N})\pi_{\phi}(\mathscr{A}(Y_{A}H))\Phi]^{-} \supseteq [\pi_{\phi}(\mathscr{A}(H)\Phi]^{-} = H_{\phi})$. Therefore, the restriction map

 $R: D_{\phi}(\mathscr{Y})'' \to D_{\phi}(\mathscr{Y})''M_{\phi}$ is an isomorphism [4; 1, § 2, Proposition 2]. On the other hand, if $S \in \mathscr{A}$, we have

$$\begin{aligned} \mathscr{U}_{\phi}(g)\mathscr{E}_{\phi}(\pi_{\phi}(S)|\check{E}^{0})\mathscr{U}_{\phi}(g)^{*} &= \mathscr{U}_{\phi}(1+Y_{N}(g-1))\mathscr{E}_{\phi}(\pi_{\phi}(S))|\check{E}^{0})\mathscr{U}_{\phi}(1+Y_{N}(g-1))^{*} \\ \forall \ g \in G \ . \end{aligned}$$

Further, since $\mathscr{U}_{\phi}(G(Y_N)) \subseteq \{D_{\phi}(\mathscr{Y}_N)\pi_{\phi}(\mathscr{A}(Y_AH))\}'$, it follows that $\mathscr{U}_{\phi}(g)M_{\phi} = M_{\phi} \forall g \in G(Y_N)$. Combining these two observations, we have

$$M_{\phi}\mathcal{U}_{\phi}(g)\mathcal{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}^{0})\mathcal{U}_{\phi}(g)^{*}M_{\phi} = M_{\phi}\mathcal{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}^{0})M_{\phi} \;\forall\; g \in G(\mathcal{Y})\;.$$

Recalling 0.2(3), it follows from linearity and continuity that

$$M_{\phi}\mathscr{E}_{\phi}(\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}^{0})|\tilde{C})M_{\phi} = M_{\phi}\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}^{0})M_{\phi} \ \forall \ \tilde{C} \in \Gamma(\mathscr{Y}) .$$

Therefore (2.7(4)),

$$M_{\phi} \mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y})M_{\phi} = M_{\phi} \mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}^{0})M_{\phi} \ \forall \ S \in \mathscr{A} .$$

This proves that $\mathscr{E}^{0}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) = R^{-1}(M_{\phi}\mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}^{0})M_{\phi}) \forall S \in \mathscr{A}$. Now, since the mapping $S(\in \pi_{\phi}(\mathscr{A})'') \to M_{\phi}\mathscr{E}_{\phi}(S|\tilde{E}^{0})M_{\phi}$ is ultra-weakly continuous it follows that $M_{\phi}\mathscr{E}_{\phi}(S|\tilde{E}^{0})M_{\phi} \in D_{\phi}(\mathscr{Y})''M_{\phi} \forall S \in \pi_{\phi}(\mathscr{A})''$. We define $\mathscr{E}_{\phi}(|\mathscr{Y}) \equiv R^{-1}(M_{\phi}\mathscr{E}_{\phi}(|\tilde{E}^{0})M_{\phi})$

on $\pi_{\phi}(\mathscr{A})''$. $\mathscr{E}_{\phi}(|\mathscr{Y})$ is clearly a normal linear map extending $\mathscr{E}_{\phi}^{0}(|\mathscr{Y})$. To prove $\mathscr{E}_{\phi}(|\mathscr{Y})$ is a conditional expectation only (3) of Definition 0.1 remains. We have,

$$\begin{split} \mathscr{E}_{\phi}(S\mathscr{E}_{\phi}(T|\mathscr{Y})|\mathscr{Y}) &= R^{-1}(M_{\phi}\mathscr{E}_{\phi}(S\mathscr{E}_{\phi}(T|\mathscr{Y})|\tilde{E}^{0})M_{\phi}) \\ &= R^{-1}(M_{\phi}\mathscr{E}_{\phi}(S|\tilde{E}^{0}) M_{\phi}\mathscr{E}_{\phi}(T|\mathscr{Y})M_{\phi}) \\ &= R^{-1}(M_{\phi}\mathscr{E}_{\phi}(S|\mathscr{Y})\mathscr{E}_{\phi}(T|\mathscr{Y})M_{\phi}) \\ &= \mathscr{E}_{\phi}(S|\mathscr{Y})\mathscr{E}_{\phi}(T|\mathscr{Y}) \quad \forall \ S, \ T \in \pi_{\phi}(\mathscr{A})'', \end{split}$$

where the second equality follows from $G(E^0)$ -invariance $\mathscr{E}_{\phi}(T|\mathscr{Y})$. It is clear, from 3.11 and normality, that $E_{\phi}(\pi_{\phi}(\mathscr{A})''|\mathscr{Y}) \subseteq D_{\phi}(\mathscr{Y})''$. On the other hand, if $S \in D_{\phi}(\mathscr{Y})''$, we have

$$\mathscr{E}_{\phi}(S|\mathscr{Y}) = R^{-1}(M_{\phi}\mathscr{E}_{\phi}(S|\tilde{E}^{0})M_{\phi}) = R^{-1}(SM_{\phi}) = S.$$

Hence

 $\mathscr{E}_{\phi}(\pi_{\phi}(\mathscr{A})''|\mathscr{Y}) = D_{\phi}(\mathscr{Y})'' . \quad \Box$

The proof of Theorem 3.2 is immediate from Propositions 3.11 and 3.12. We shall need the following modification of 3.2.

3.13. Proposition. Let $\{\tilde{E}^n\}_{n=1}^{\infty}$ be a dense, increasing sequence of \mathscr{Y} -partitions of H; let ϕ be a $G(\mathscr{Y})$ -invariant state on \mathscr{A} . Then,

 $\sigma - \lim_{n \to \infty} \mathscr{E}_{\phi}(\pi_{\phi}(S) | \tilde{E}^n) = \mathscr{E}_{\phi}(\pi_{\phi}(S) | \mathscr{Y}) \quad \forall S \in \mathscr{A} .$

Proof. Let $\tilde{F} = \{F_j\}_{j=1}^{\infty} \ge E^0$ be a \mathscr{Y} -partition of H ordered so that $\{\Omega, Y_N F_j \Omega\}$ is decreasing. For every $\varepsilon_1 > 0$ there exists $J(\varepsilon_1)$ (finite) such that $(\Omega, Y_N(1 - \sum_{j=1}^J F_j)\Omega) < \varepsilon_1$. Furthermore, since $\{\tilde{E}^n\}_{n=1}^N$ is dense, we have for arbitrary ε_2 , an n_0 such that, for each $1 \le j \le J$, there exists a projector G'_j which is the sum of orthogonal projectors of \tilde{E}^{n_0} and which satisfies $(\Omega, G'_j(1 - F_j) + F_j(1 - G'_j)\Omega) < \varepsilon_2$. Let, for each $1 \le j \le J$, $G_j \equiv G'_j(1 - \bigvee_{i < j} G'_i)$; then (1) $G_j \subseteq G'_j$, (2) $G_j G_i = 0 \forall i \neq j$, (3) $\sum_j G_j = \bigvee_j G'_j$, and (4) G_j is the sum of orthogonal projectors of \tilde{E}^{n_0} . It follows directly that

$$(\Omega, F_i(\mathbb{1} - G_i) + G_i(\mathbb{1} - F_i)\Omega) < \varepsilon_2 J \qquad 1 \leq j \leq J.$$

For arbitrary $n \ge n_0$, and projector $D \in \mathscr{Y}$, we have

$$\begin{split} \|\mathscr{E}(N(d)|\tilde{F} \bigvee \tilde{E}^{n}) - \mathscr{E}(N(d)|\tilde{E}^{n})\| &= \|\sum_{j < J} \{\mathscr{E}(N(F_{j}d)|\tilde{E}^{n}) \\ - \mathscr{E}(N(G_{j}d)|\tilde{E}^{n})\} + \mathscr{E}(N((\mathbb{1} - \sum_{j \leq J}F_{j})d)|\tilde{E}^{n} \bigvee \tilde{F}) \\ - \mathscr{E}(N((\mathbb{1} - \sum_{j \leq J}G_{j})d)|\tilde{E}^{n})\| < \sum_{j \leq J} \|N(F_{j}d) - N(G_{j}d)\| + \varepsilon_{1} \\ + (\Omega, (\mathbb{1} - \sum_{j \leq J}G_{j})D\Omega) \leq 2\varepsilon_{1} + J^{2}\varepsilon_{2} + 2J^{3/2} \|\Omega\|\varepsilon_{2}^{1/2} . \end{split}$$

To sum up, if \tilde{F} is a \mathscr{Y} -partition of H, and if D is a projector of \mathscr{Y} , then for every $\varepsilon > 0$ there exists n_0 such that $n \ge n_0 \Rightarrow$

$$\|\mathscr{E}(N(d)|\tilde{F}\backslash/\tilde{E}^n) - \mathscr{E}(N(d)|\tilde{E}^n)\| < \varepsilon$$
.

The proof is then completed by simple modifications to 3.7, 3.8, and 3.11. \Box

3.b Consequences of Local Convergence

The next lemma aims at establishing (Theorem 3.15) the map $\Omega_{\phi}:\mathscr{Y}_*\to D_{\phi}(\mathscr{Y})''$.

3.14. Lemma. Let ϕ be a $G(\mathscr{Y})$ -invariant state on \mathscr{A} . Then, there exists a unique mapping $K_{\phi}:(D_{\phi}(\mathscr{Y})'')_{*} \to \mathscr{Y}$ such that

$$(g, K_{\phi}(\psi)f) = \langle \psi; \mathscr{E}_{\phi}(\pi_{\phi}(a^{*}(f)a(g))|\mathscr{Y}) \rangle \quad \forall f, g \in H.$$

Further, K_{ϕ} is positive, linear and contracting.

Proof. Since, for each $\psi \in (D_{\phi}(\mathscr{Y})'')_*$, the mapping $(g, f) \to \langle \psi; \mathscr{E}_{\phi}(\pi_{\phi}(a^*(f)a(g))|\mathscr{Y}) \rangle$ is, by Theorem 3.2, a continuous sesquilinear form over H, there exists, by Riesz's theorem, a unique bounded linear operator, $K_{\phi}(\psi)$ on H such $(g, K_{\phi}(\psi)f) =$ $\langle \psi; \mathscr{E}_{\phi}(\pi_{\phi}(a^*(f)a(g))|\mathscr{Y}) \rangle$. By (1) of Theorem 3.2, $hK_{\phi}(\psi)h^{-1} = K_{\phi}(\psi) \forall h \in G(\mathscr{Y})$. It follows that $K_{\phi}(\psi) \in \mathscr{Y}' = \mathscr{Y}$. This proves existence and uniqueness. Linearity and positivity are immediate. Finally,

$$\|K_{\phi}(\psi)\| = \sup_{\substack{f, g \in H:\\ ||f|| = ||g|| = 1}} |\langle \psi; \mathscr{E}_{\phi}(\pi_{\phi}(a^*(f)a(g))|\mathscr{Y})\rangle| \leq \|\psi\| . \quad \Box$$

To each $\Lambda \in \mathscr{Y}_*$, we can now assign a mean number operator.

3.15. Theorem. There exists a unique map $\Omega_{\phi}: \mathscr{Y}_* \to D_{\phi}(\mathscr{Y})''$ such that

 $\Omega_{\phi}(A(g,f)) = \mathscr{E}_{\phi}(\pi_{\phi}(a^{*}(f)a(g))|\mathscr{Y}) \quad \forall f, g \in H.$

Further, Ω_{ϕ} is positive, linear and norm-reducing.

Proof. Uniqueness is immediate. Existence follows from Lemma 3.14 by defining $\Omega_{\phi}(\Lambda) = K_{\phi}^*(\Lambda) \forall \Lambda \in \mathscr{Y}_*$.

We can now make contact with the discrete case.

3.16. Corollary. Let $A(\mathcal{Y}) = \{A_i\}_{i \in I}$ denote the atoms of \mathcal{Y} ; define for each $i \in I$, $\Lambda_i \in \mathcal{Y}_*$ such that $\Lambda_i(A_j) = \delta_{ij}$. Then, $\Omega_{\phi}(\Lambda_i) = \pi_{\phi}(a^*(f_i)a(f_i))$ where f_i is any normalized vector in the range of A_i . Hence $\Omega_{\phi}(\Lambda_i)$ is a projector and $D_{\phi}(\mathcal{Y}_A)$ is generated by $\mathbb{1}_{\phi}$ and $\{\Omega_{\phi}(\Lambda_i)|i \in I\}$.

We now obtain the operator-valued, number density over the spectrum of \mathscr{Y} attached to the representation π_{ϕ} (cf. 1, § 7, Theorems 1 and 2 and III, § 3, Corollary 1 of Ref. [4]).

3.17. Theorem. Let (X, B, μ) be a totally σ -finite measure space; and, in the preceding discussion, let $H = \mathcal{L}^2(X, B, \mu)$, $\mathcal{Y} = \mathcal{L}^\infty(X, B, \mu)$ and $\mathcal{Y}_* = \mathcal{L}^1(X, B, \mu)$. If ϕ is a $G(\mathcal{Y})$ -invariant state on $\mathcal{A}(H)$, there exists a μ -a.e. unique, σ -measurable mapping $N_{\phi}(|\mathcal{Y}): X \to D_{\phi}(\mathcal{Y})''$ such that

$$\langle \psi; \Omega_{\phi}(f) \rangle = \int f(x) \langle \psi; N_{\phi}(x|\mathscr{Y}) \rangle d\mu(x) \quad \forall \psi \in (D_{\phi}(\mathscr{Y})'')_{*}; \forall f \in \mathscr{L}^{1}(X, B, \mu).$$

Further, $0 \leq N_{\phi}(x|\mathscr{Y}) \leq \mathbb{1}\mu$ -a.e.

Proof. Separability of H implies that of $\mathscr{A}(H)$, H_{ϕ} and hence of $(D_{\phi}(\mathscr{Y})'')_{*}$ and of $(D_{\phi}(\mathscr{Y})'')_{*}^{+}$ [the normal positive linear forms on $D_{\phi}(\mathscr{Y})''$]: let D^{o}_{*} be a countable dense set of $(D_{\phi}(\mathscr{Y})'')_{*}$ such that $D^{o}_{*} \cap (D_{\phi}(\mathscr{Y})'')_{*}^{+}$ in dense in $(D_{\phi}(\mathscr{Y})'')_{*}^{+}$, and let D^{o}_{*} denote the set of all finite linear combinations of elements of D^{o}_{*} with coefficients

in Q + iQ (Q = rationals). It is clear that D_{ϕ}^{o} is itself a countable dense set of $\{D_{\phi}(\mathscr{Y})'')_{*}$ such that $\{D_{*}^{o} \cap (D_{\phi}(\mathscr{Y})'')_{*}^{+}\}^{-} = (D_{\phi}(\mathscr{Y})'')_{*}^{+}$. We now prove uniqueness. Suppose that $\bar{N}_{\phi}(|\mathscr{Y}), N_{\phi}(|\mathscr{Y})$ are two such mappings. It follows from the uniqueness of Lemma 3.14 that for each $\psi \in (D_{\phi}(\mathscr{Y})'')_{*}, K_{\phi}(\psi)_{x} = \langle \psi; N_{\phi}(x|\mathscr{Y}) \rangle = \langle \psi; \bar{N}_{\phi}(x|\mathscr{Y}) \rangle \mu$ -a.e. There exists, then, a measurable set $X_{0} \subset X$ such that $\mu(X_{0}) = 0$ and such that $X \in U_{0} \Rightarrow$

$$\langle \psi; N_{\phi}(x|\mathscr{Y}) \rangle = \langle \psi; \bar{N}_{\phi}(x|\mathscr{Y}) \rangle \forall \psi \in D^{O}_{*}.$$

Since D^{O}_{*} is dense in $(D_{\phi}(\mathscr{Y})'')_{*}$, it follows that $x \in X_{0} \Rightarrow N_{\phi}(x|\mathscr{Y}) = \bar{N}_{\phi}(x|\mathscr{Y})$. This proves essential uniqueness of $N_{\phi}(|\mathscr{Y})$. We now prove existence. There exists by Lemma 3.14 for *each* $\psi \in (D_{\phi}(\mathscr{Y})'')_{*}$ a μ -*a.e.* unique essentially bounded function $K_{\phi}(\psi)$ such that

$$\langle \psi; \Omega_{\phi}(f) \rangle = \int_{X} f(x) K_{\phi}(\psi)_{x} d\mu(x) \ \forall f \in \mathscr{L}^{1}(X, B, \mu).$$

We have, for $\lambda, \gamma \in \mathbb{R}$ and $\psi, \psi' \in (D_{\phi}(\mathscr{Y})'')_{*}$.

- (1) $K(\lambda\psi + \gamma\psi')_x = \lambda K_{\phi}(\psi)_x + \gamma K_{\phi}(\psi')_x \mu$ -a.e.
- (2) $|K_{\phi}(\psi)_{x}| \leq ||\psi|| \mu$ -a.e.
- (3) $\psi \ge 0 \Rightarrow K_{\phi}(\psi)_x \ge 0 \mu$ -a.e.

There exists, then, a measurable set $X_0 \subset X$ such that $\mu(X_0) = 0$ and such that (1), (2), and (3) hold *everywhere* on $X - X_0$ for $\gamma, \lambda \in Q + iQ$ and for all $\psi, \psi' \in D^o_*$. Define $\bar{K}_{\phi}(\psi)_x = K_{\phi}(\psi)_x X(X - X_0)$ where $X(X - X_0)$ is the characteristic function of $X - X_0$. \bar{K}_{ϕ} , mapping D^o_* into the Banach space of bounded *B*-measurable functions M(X, B), extends by continuity to a complex-linear mapping \hat{K}_{ϕ} of $(D_{\phi}(\mathcal{Y})'')_*$ into M(X, B). Thus, for each $x \in X, \ \psi \to \hat{K}_{\phi}(\psi)_x$ is a positive, linear mapping of $(D_{\phi}(\mathcal{Y})'')_*$ into \mathbb{C} bounded by 1. There exists therefore, for each $x \in X$, a unique operator $N_{\phi}(x|\mathcal{Y}) \in D_{\phi}(\mathcal{Y})''$ such that $\langle \psi; N_{\phi}(x|\mathcal{Y}) \rangle = \hat{K}_{\phi}(\psi)_x \forall \psi \in (D_{\phi}(\mathcal{Y})'')_*$. One easily verifies that $N_{\phi}(|\mathcal{Y})$ satisfies the requirements of the theorem. \Box

3.18. Theorem. Let ϕ be a $G(\mathscr{Y})$ -invariant state on \mathscr{A} , and let $P_{\phi}^{G(\mathscr{Y})}$ denote the cone of $G(\mathscr{Y})$ -invariant normal positive linear forms on $\pi_{\phi}(\mathscr{A})''$. Then, with the above notation and definitions, the restriction map $R: P_{\phi}^{G(\mathscr{Y})} \to (D_{\phi}(\mathscr{Y})'')_{*}^{*}$ of $P_{\phi}^{G(\mathscr{Y})}$ into the cone of normal positive linear forms on $D_{\phi}(\mathscr{Y})''$ is a bijection.

Proof. Let $\tilde{\psi}$ be a normal positive linear form on $D_{\phi}(\mathscr{Y})''$. The form ψ defined for each $S \in \pi_{\phi}(\mathscr{A})''$ by $\langle \psi; S \rangle = \langle \tilde{\psi}; \mathscr{E}_{\phi}(S|\mathscr{Y}) \rangle$ is clearly a $G(\mathscr{Y})$ -invariant normal positive linear form on $\pi_{\phi}(\mathscr{A})''$ extending $\tilde{\psi}$. R is therefore surjective. Now let $\psi = \psi' \in P_{\phi}^{G(\mathscr{Y})}$ with $R_{\psi} = R_{\psi'}$. Then, there exists $S \in \mathscr{A}$ such that $0 \neq \langle \psi - \psi'; \pi_{\phi}(S) \rangle$. This, however, results in the contradiction:

$$\begin{split} 0 &= \langle R_{\psi} - R_{\psi'}; \, \mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \rangle = \langle \psi - \psi'; \, \mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \rangle \\ &= \lim_{\Gamma(\mathscr{Y})} \langle \psi - \psi'; \, \mathscr{E}_{\phi}(\pi_{\phi}(S)|\tilde{E}) \rangle = \langle \psi - \psi'; \, \pi_{\phi}(S) \rangle \;. \end{split}$$

R is therefore injective. \Box

3.19. Remark. It follows from the proof of 3.18 that if ϕ is a $G(\mathscr{Y})$ -invariant state on \mathscr{A} , and if ψ is a $G(\mathscr{Y})$ -invariant normal positive linear form on $\pi_{\phi}(\mathscr{A})''$, then $\langle \psi; \mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \rangle = \langle \psi; \pi_{\phi}(S) \rangle \forall S \in \mathscr{A}$.

4. Global Theory

In the present section, we focus on the global consistency of the local results obtained in the preceding section. We first show (4.2) that the set of all $G(\mathcal{Y})$ -invariant states on \mathscr{A} is a simplex and give a characterization of the set of extreme points, showing it to be weak* compact. The set $S(\mathscr{Y})$ of extremal $G(\mathscr{Y})$ -invariant states supports the global extension we are looking for (4.3–4.5).

The next lemma follows easily from Moore's theorem.

4.0. Lemma. Let $A \in B(H)$ be such that $0 \leq A \leq 1$. Let ω_A denote the unique gauge invariant generalized free state on \mathscr{A} such that $\langle \omega_A; a^*(f)a(g) \rangle = (g, Af) \forall f, g \in H$. Then, the map $\omega: B(H)_1^+ \to F(H)$ is a homeomorphism when the former is equipped with the σ -topology, and the latter with the weak*-topology.

4.1. Definition. Let \mathscr{Y} be a maximal abelian von Neumann algebra on H. Let $\overline{S}(\mathscr{Y})$ denote the set of all $A \in \mathscr{Y}$ satisfying $0 \leq A \leq 1$ and $A^2 Y_A = A Y_A$. Let $S(\mathscr{Y}) \equiv \omega(\overline{S}(\mathscr{Y}))$. We remark that $\overline{S}(\mathscr{Y})$ is a σ -compact subset of \mathscr{Y} ; therefore $S(\mathscr{Y})$ is w*-compact.

4.2. Theorem. The set $\mathfrak{S}^{G(\mathscr{Y})}$ of all $G(\mathscr{Y})$ -invariant states on \mathscr{A} is a (Choquet) simplex, and $S(\mathscr{Y})$ is the set of extremal $G(\mathscr{Y})$ -invariant states on \mathscr{A} . For each $G(\mathscr{Y})$ -invariant state ϕ on \mathscr{A} , there exists, by Choquet's theorem [cf. 12, A.5], a unique regular probability measure μ_{ϕ} on $\mathfrak{S}^{G(\mathscr{Y})}$ (or \mathfrak{S}) such that

(1)
$$\mu_{\phi}(S(\mathscr{Y})) = 1.$$

(2)
$$\langle \phi; A \rangle = \int \langle \sigma; A \rangle d\mu_{\phi}(\sigma) \quad \forall A \in \mathscr{A}.$$

Proof. We show that the cone $P^{G(\mathscr{Y})}$ of $G(\mathscr{Y})$ -invariant positive linear forms on \mathscr{A} is a lattice. For this it is sufficient to show that, for each $G(\mathscr{Y})$ -invariant state ϕ , the cone $P_{\phi}^{G(\mathscr{Y})}$ of all $G(\mathscr{Y})$ -invariant normal positive linear forms on $\pi_{\phi}(\mathscr{A})''$ is a lattice. Indeed, if $\psi, \psi' \in P^{G(\mathscr{Y})}$, then $\psi, \psi' \in P_{\phi}^{G(\mathscr{Y})}$ for $\phi = (\psi + \psi')/\langle \psi + \psi'; 1 \rangle$. Since $P_{\phi}^{G(\mathscr{Y})}$ is, by Theorem 3.18, order isomorphic to the set of normal positive linear forms on the abelian von Neumann algebra $D_{\phi}(\mathscr{Y})''$, and since this last set is a lattice, it follows that $P_{\phi}^{G(\mathscr{Y})}$ is a lattice. Hence, $\mathfrak{S}^{G(\mathscr{Y})}$ is a simplex. We now characterize the set of extremal $G(\mathscr{Y})$ -invariant states. Since $P_{\phi}^{G(\mathscr{Y})}$ is order isomorphic to $(D_{\phi}(\mathscr{Y})'')_{*}^{*}$, a $G(\mathscr{Y})$ -invariant state ϕ on \mathscr{A} is extremal $G(\mathscr{Y})$ invariant if and only if $\phi|_{D_{\phi}(\mathscr{Y})''}$ is a character (the distinction between ϕ as a state on \mathscr{A} and its extension to a normal state on $\pi_{\phi}(\mathscr{A})''$ is not made explicit). It follows from Theorem 3.2 and Remark 3.19 that if $\phi|_{D_{\phi}(\mathscr{Y})''}$ is a character, then ϕ is a gauge invariant generalized free state. Since every gauge invariant generalized free state is a factor [11, 5.1], it follows from Lemma 3.10 that $D_{\phi}(\mathscr{Y}_{A})'' = D_{\phi}(\mathscr{Y})''$. Now, if $\phi|_{D_{\phi}(\mathscr{Y})''}$ is a character, we have (with the notation of Corollary 3.16),

$$(f_i, \omega^{-1}(\phi)f_i) = \langle \phi; \pi_{\phi}(a^*(f_i)a(f_i)) \rangle = \langle \phi; \pi_{\phi}(a^*(f_i)a(f_i))^2 \rangle$$

= $(f_i, \omega^{-1}(\phi)f_i)^2 = 0 \text{ or } 1.$

Thus, $Y_A \omega^{-1}(\phi) = \sum \lambda_i A_i$ with $\lambda_i = 0$ or 1, proving that $Y_A \omega^{-1}(\phi)$ is a projector. Conversely if $T \in \mathscr{Y}_1^+$ we have: ω_T is $G(\mathscr{Y})$ -invariant, $D_{\omega_T}(\mathscr{Y})'' = D_{\omega_T}(\mathscr{Y}_A)''$ and, for $i \neq j$,

$$\langle \omega_T; \pi_{\omega_T}(a^*(f_i)a(f_i)a^*(f_j)a(f_j)) \rangle = \langle \omega_T; \pi_{\omega_T}(a^*(f_i)a(f_i)) \rangle \cdot \langle \omega_T; \pi_{\omega_T}(a^*(f_i)a(f_j)) \rangle .$$

If, further, $Y_A T$ is a projector we have, by reversing the above argument, that

$$\langle \omega_T; \pi_{\omega_T}(a^*(f_i)a(f_i)) \rangle^2 = \langle \omega_T; \pi_{\omega_T}(a^*(f_i)a(f_i))^2 \rangle \quad \forall i \in I.$$

Since $D_{\omega_T}(\mathscr{Y}_A)'' = \{\pi_{\omega_T}(a^*(f_i)a(f_i))\}_{i\in I}'', \omega_T \text{ is a character on } D_{\omega_T}(\mathscr{Y})'' \text{ and is therefore}$ an extremal $G(\mathscr{Y})$ -invariant state on \mathscr{A} . Assertions 1 and 2 follow immediately from Choquet's theorem, bearing in mind that $S(\mathscr{Y})$ is compact and \mathfrak{S} is metrizable. \Box

4.3. (a) Definition. Let $D(\mathcal{Y})$ denote the C*-algebra of continuous, complexvalued functions on the compact Hausdorff space $S(\mathcal{Y})$. Let $\mathscr{E}(|\mathcal{Y})$ denote the canonical map of \mathscr{A} into $D(\mathcal{Y})$. That is, for each $T \in \mathscr{A}$, $\mathscr{E}(T|\mathcal{Y})(\sigma) \equiv \langle \sigma; T \rangle \forall \sigma \in$ $S(\mathcal{Y})$.

We remark that since (3.19 and 3.15) for $f, g \in H$ and $\sigma \in S(\mathcal{Y}) \langle \sigma; a^*(f)a(g) \rangle = \langle \sigma; \Omega_{\sigma}(\Lambda(g, f)) \rangle$, and since \mathcal{Y}_* consists of vector-forms, we can add:

4.3. (b) Definition. Let $\Omega: \mathscr{Y}_* \to D(\mathscr{Y})$ be defined, for each $\sigma \in S(\mathscr{Y})$ and $\Lambda \in \mathscr{Y}_*$, by $\Omega(\Lambda)(\sigma) = \langle \sigma; \Omega_{\sigma}(\Lambda) \rangle$.

4.4. Remark. It is clear that $\mathscr{E}(|\mathscr{Y})$ is a positive, *-preserving, linear map of norm 1: we show in 4.5 that it is "almost" a conditional expectation.

It is also clear that $\Omega: \mathscr{Y}_* \to D(\mathscr{Y})$ is a positive, linear, contractive injection which satisfies the formula:

 $\mathscr{E}(A_{NM}(f_1,\ldots,f_N;g_1,\ldots,g_M)|\mathscr{Y}) = \delta_{MN}\det\{\Omega(\Lambda(g_m,f_n))\}.$

4.5. Theorem. Let ϕ be a $G(\mathscr{Y})$ -invariant state on \mathscr{A} . There exists a unique *-representation $\hat{\pi}_{\phi}: D(\mathscr{Y}) \rightarrow B(H_{\phi})$ such that

$$\mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) = \hat{\pi}_{\phi}\mathscr{E}(S|\mathscr{Y}) \quad \forall S \in \mathscr{A}.$$

Further, $\hat{\pi}_{\phi}(\Omega(\Lambda)) = \Omega_{\phi}(\Lambda) \quad \forall \Lambda \in \mathscr{Y}_{*}.$

Proof. Uniqueness would follow by continuity from norm density of $\mathscr{E}(\mathscr{A}|\mathscr{Y})$ in $D(\mathscr{Y})$. Since $\mathscr{E}(\mathscr{A}|\mathscr{Y})$ is a self-adjoint, linear subspace of $D(\mathscr{Y})$, separating $S(\mathscr{Y})$ and containing the unit, density will follow from the Stone-Weierstrass theorem if $\mathscr{E}(\mathscr{A}|\mathscr{Y})^{-N}$ can be proven to be an algebra. It is sufficient to show that $U, V \in \mathscr{A} \Rightarrow$ $\mathscr{E}(V|\mathscr{Y})\mathscr{E}(U|\mathscr{Y}) \in \mathscr{E}(\mathscr{A}|\mathscr{Y})^{-N}$. We have, for arbitrary $\sigma \in S(\mathscr{Y})$,

$$\begin{split} & \mathscr{E}(V|\mathscr{Y}) \cdot \mathscr{E}(U|\mathscr{Y}) \left(\sigma \right) \\ &= \left\langle \sigma ; \mathscr{E}_{\sigma}(\pi_{\sigma}(V)|\mathscr{Y}) \mathscr{E}_{\sigma}(\pi_{\sigma}(U)|\mathscr{Y}) \right\rangle = \left\langle \sigma ; \pi_{\sigma}(V) \mathscr{E}_{\sigma}(\pi_{\sigma}(U)|\mathscr{Y}) \right\rangle \\ &= \lim_{n \to \infty} \left\langle \sigma ; V \mathscr{E}(U|\tilde{E}^{n}) \right\rangle = \lim_{n \to \infty} \mathscr{E}(V \mathscr{E}(U|\tilde{E}^{n})|\mathscr{Y}) \left(\sigma \right), \end{split}$$

where $\{\tilde{E}^n\}$ is a dense increasing sequence of \mathscr{Y} -partitions of *H* [by 3.2(2), 3.13, 3.19, and the fact that σ is a character on $D_{\sigma}(\mathscr{Y})^{"}$].

Consequently, [6, IV.6.4] $\mathscr{E}(V|\mathscr{Y})\mathscr{E}(U|\mathscr{Y}) = \text{weak} - \lim_{n \to \infty} \mathscr{E}(V\mathscr{E}(U|\tilde{E}^n)|\mathscr{Y})$ (the continuous function on the left is the point-wise limit of a bounded sequence of continuous functions). By [6, V.3.13] $\mathscr{E}(V|\mathscr{Y})\mathscr{E}(U|\mathscr{Y}) \in \mathscr{E}(\mathscr{A}|\mathscr{Y})^{-N}$.

This completes the proof of uniqueness; we now prove existence. Let $S \in \mathscr{A}$, $\psi \in \mathfrak{S}_{\phi}$ and $\mu_{\mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y})}$ be the unique maximal measure on $\mathfrak{S}^{G(\mathscr{Y})}$ representing $\mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y})$, where $\mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y})$ is the $G(\mathscr{Y})$ -invariant, normal state on $\pi_{\phi}(\mathscr{A})''$ defined as $\langle \mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y}); S \rangle \equiv \langle \psi; \mathscr{E}_{\phi}(S|\mathscr{Y}) \rangle$. We have

$$\left\langle \psi; \mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \right\rangle \equiv \left\langle \mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y}); S \right\rangle = \int \mathscr{E}(S|\mathscr{Y})(\sigma) d\mu_{\mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y})}(\sigma) \,.$$

We can now define, without ambiguity, $\hat{\pi}_{\phi}^{0}: \mathscr{E}(\mathscr{A}|\mathscr{Y}) \to B(H_{\phi})$ by $\hat{\pi}_{\phi}^{0}(\mathscr{E}(S|\mathscr{Y})) \equiv \mathscr{E}_{\phi}(\pi_{\phi}(S)|\mathscr{Y}) \forall S \in \mathscr{A}$. It is clear that $\hat{\pi}_{\phi}^{0}$ is linear and *-preserving. Let again $U, V \in \mathscr{A}$; then, by the weak convergence proven above, we have

$$\begin{split} \langle \psi ; \mathscr{E}_{\phi}(\pi_{\phi}(U)|\mathscr{Y})\mathscr{E}_{\phi}(\pi_{\phi}(V)|\mathscr{Y}) \rangle &= \lim_{n \to \infty} \langle \mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y}) ; U\mathscr{E}(V|\tilde{E}^{n}) \rangle \\ &= \lim_{n \to \infty} \int \mathscr{E}(U\mathscr{E}(V|\tilde{E}^{n})|\mathscr{Y})(\sigma) \, d\mu_{\mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y})}(\sigma) \\ &= \int \mathscr{E}(U|\mathscr{Y})\mathscr{E}(V|\mathscr{Y})(\sigma) \, d\mu_{\mathscr{E}_{\phi}^{*}(\psi|\mathscr{Y})}(\sigma) \, . \end{split}$$

Thus, for each $V \in \mathscr{A}$ we have,

$$\begin{split} \|\mathscr{E}_{\phi}(\pi_{\phi}(V)|\mathscr{Y})\|^{2} \\ &= \sup_{\||\xi\||=1} (\xi, \mathscr{E}_{\phi}(\pi_{\phi}(V)|\mathscr{Y})\mathscr{E}_{\phi}(\pi_{\phi}(V)|\mathscr{Y})\xi) \leq \|\mathscr{E}(V|\mathscr{Y})\|_{\mathrm{sup-norm}}^{2} \end{split}$$

Therefore, $\hat{\pi}_{\phi}^{0}$ extends by continuity to a continuous, *-preserving, linear map $\hat{\pi}_{\phi}$ of $D(\mathscr{Y}) = \mathscr{E}(\mathscr{A}|\mathscr{Y})^{-N}$ into $G_{\phi}(\mathscr{Y})$. It is clear that, for each normal form ψ on $\pi_{\phi}(\mathscr{A})'', \langle \psi; \hat{\pi}_{\phi}(T) \rangle = \int T(\sigma) d\mu_{\mathscr{E}_{\phi}^{1}(\psi|\mathscr{Y})}(\sigma) \forall T \in D(\mathscr{Y}).$

Hence, for $U, V \in \mathcal{A}$, we have

 $\hat{\pi}_{\phi}(\mathscr{E}(U|\mathscr{Y})\mathscr{E}(V|\mathscr{Y})) = \hat{\pi}_{\phi}(\mathscr{E}(U|\mathscr{Y})) \cdot \hat{\pi}_{\phi}(\mathscr{E}(V|\mathscr{Y})) \ .$

Hence, $\hat{\pi}_{\phi}$ is a *-representation of $D(\mathcal{Y})$. The remaining assertion is immediate. \Box

4.6. Corollary. Let $\mathfrak{S}(\mathscr{Y})$ denote the set of regular probability measures on $S(\mathscr{Y})$. Then, the map $\mathscr{E}^*(|\mathscr{Y}): \mathfrak{S}(\mathscr{Y}) \to \mathfrak{S}^{G(\mathscr{Y})}$ defined for each $\mu \in \mathfrak{S}(\mathscr{Y})$ by

 $\langle \mathscr{E}^*(\mu|\mathscr{Y}); S \rangle = \int_{\mathfrak{S}(\mathscr{Y})} \mathscr{E}(S|\mathscr{Y})(\sigma) d\mu(\sigma) \forall S \in \mathscr{A}$

is an affine, bijective map.

Discussion

In Theorem 3.2, the net of conditional expectations is proven to converge only on $\pi_{\phi}(\mathscr{A})$ (not on $\pi_{\phi}(\mathscr{A})''$). If ϕ is the Fock state and if \mathscr{Y} is non-atomic, there exist elements of $\pi_{\phi}(\mathscr{A})''$ on which the net does not converge. By restricting our attention to $\pi_{\phi}(\mathscr{A})$, we have been able to treat those cases when $\pi_{\phi}(\mathscr{A})''$ is not $G(\mathscr{Y})$ -finite.

We remark that Corollary 4.6 is the natural generalization of the work of Shale and Stinespring on states symmetric about a basis [14]. Araki [1] has generalized Theorem 4.2.

On the physical side, we have isolated a classical field of number densities on the spectrum of an arbitrary, complete one-partical observable \mathcal{O} . When \mathcal{O} has discrete spectrum, the field is simply the lattice gas [3]. When \mathcal{O} has continuous spectrum, the field is macroscopic (i.e. centre-valued [10]). This results from the coarseness of the CAR-algebra description of a Fermi field on a continuous physical space; coarsness which is preserved by normality of the projector upon the classical field.

J. C. Wolfe

Appendix

Proof of Theorem 0.2. We give a sketch. See 16.I for details and notation. 1) Existence of the extension follows from amenability of G and the assumption $\mathcal{A}^M \subseteq \mathcal{A}^G$ (e.g. Ruelle [12, 6.2.13]): Uniqueness is immediate.

2) Since each state on \mathscr{A}^G can be extended (e.g. Ruelle) to a *G*-invariant state on \mathscr{A} , \mathscr{A}^M separates the set of all states on \mathscr{A}^G . Therefore, by an Extension of the Stone-Weierstrass theorem [5, 11.3.1], $\mathscr{A}^M = \mathscr{A}^G$.

3) Let \mathscr{B} be the eneveloping von-Neumann algebra of \mathscr{A} . \mathscr{A} is isomorphic to a σ -dense C^* -subalgebra of \mathscr{B} , and G extends to a group of automorphisms of \mathscr{B} . If $S \in \mathscr{B}$ (resp. $\phi \in \mathscr{B}^*$), and if m is a mean on B(G), define $mS \in \mathscr{B}$ (resp. $m^*\phi \in \mathscr{B}^*$) by $\langle mS; \mu \rangle = m \langle gS; \mu \rangle \forall \mu \in \mathscr{B}_*$ (resp. $\langle m^*\phi; S \rangle = m \langle \phi; gS \rangle \forall S \in \mathscr{B}$). If ϕ is a state on \mathscr{B} and if η is an *invariant* mean, then it is easily seen that $\phi \circ \eta$ and $\eta^*\phi$ are two G-invariant states on \mathscr{B} which coincide on \mathscr{A}^G . Consequently, by 1, $\langle \phi; \eta S \rangle = \langle \eta^*\phi; S \rangle \forall S \in \mathscr{A}$ (though not necessarily for all $S \in \mathscr{B}$). Choose a net $\{M_{\beta}\}_{\beta \in I}$ of finite means weak*-convergent to η . Then, for each state ϕ on \mathscr{B} and $S \in \mathscr{A}, \langle \phi; \eta S \rangle = \langle \eta^*\phi; S \rangle = \eta \langle \phi; gS \rangle = \lim M_{\beta} \langle \phi; gS \rangle = \lim \langle \phi; M_{\beta}S \rangle$. Thus, by linearity, for each $S \in \mathscr{A}, \eta S = \text{weak-lim} M_{\beta}S$. We conclude that $\eta S \in \text{Co} \{gS | g \in G\}^{-w \operatorname{cak}}$ and by Mazur's theorem [6, V.3.13], that $\eta S \in \operatorname{Co} \{gS | g \in G\}^{-N}$. Consequently, $\operatorname{Co} \{gS | g \in G\}^{-N} \cap \mathscr{A}^G$ is not empty. To prove that $\{\eta S\} =$ $\operatorname{Co} \{gS | g \in G\}^{-N} \cap \mathscr{A}^G$ suppose that $\overline{S} \in \operatorname{Co} \{gS | g \in G\}^{-N} \cap \mathscr{A}^G$ with $\overline{S} \pm \eta S$. There exists, therefore, $\phi \in \mathscr{B}^*$ such that $\langle \phi; \overline{S} - \eta S \rangle \pm 0$; thus $\langle \eta^*\phi; \overline{S} - \eta S \rangle \pm 0$. But $\eta^*\phi$ is, by continuity, and linearity, constant over $\operatorname{Co} \{gS | g \in G\}^{-N}$. Define $S^G = \eta S$.

4) These properties follow immediately from those of the *invariant* mean η . Uniqueness is immediate. \Box

References

- 1. Araki, H.: Kyoto preprint
- 2. Balslev, E., Manuceau, J., Verbeure, A.: Commun. math. Phys. 8, 315-326 (1968)
- 3. Brascamp, H.J.: Commun. math. Phys. 18, 82-96 (1970)
- 4. Dixmier, J.: Les Algèbres d'opérateurs dans l'espace Hilbertien. Paris: Gauthier-Villars 1969
- 5. Dixmier, J.: Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars (1969)
- 6. Dunford, N., Schwartz, J.: Linear operators. I. New York: Interscience 1958
- 7. Emch, G.G.: Algebraic methods in statistical mechanics and quantum field theory. New York: John Wiley and Sons 1972
- 8. Halmos, P.: Measure theory. New York: Van Nostrand 1950
- 9. Kovács, I., Szücs, J.: Szeged Acta. Sci. Math. 27, 233-246 (1966)
- 10. Lanford III, O. E., Ruelle, D.: Commun. math. Phys. 13, 194-215 (1969)
- 11. Powers, R., Stormer, E.: Commun. math. Phys. 16, 1–33 (1970)
- 12. Ruelle, D.: Statistical mechanics. New York: W. A. Benjamin 1969
- 13. Sakai, S.: C*-algebras and W*-algebras. Berlin-Heidelberg-New York: Springer 1971
- 14. Shale, D., Stinespring, W.F.: Ann. Math. 80, 365-381 (1964)
- 15. Stormer, E.: Commun. math. Phys. 16, 136-137 (1970)
- 16. Wolfe, J., Emch, G.G.: JMP 15, 1343 (1974)

Communicated by H. Araki

John C. Wolfe Physics Department University of British Columbia Vancouver, British Columbia V6T 1W5 Canada