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Abstract. The group G of unitary elements of a maximal abelian von Neumann algebra on a
separable, complex Hubert space H acts as a group of automorphisms on the CAR algebra srf{H)
over H. It is shown that the set of G-invariant states is a simplex, isomorphic to the set of regular
probability measures on a w*-compact set S of G-invariant generalized free states. The GNS Hubert
space induced by an arbitrary G-invariant state on stf(H) supports a *-representation of C(S); the
canonical map oisrf(H) into C(S) can then be locally implemented by a normal, G-invariant conditional
expectation.

In this paper we shall define observable Fermion number densities on the
spectra of complete one particle observables and study the classical fields which
they generate.

Let s/(H) denote the C*-algebra of the Canonical Anticommutation Relations
(CAR) over a complex, separable Hubert space H. H will be fixed throughout and
jtf(H) denoted by sέ. srf is generated algebraically by the range of an antilinear
map f-+a(f) of H into si obeying the CAR:

a(f) a(g) + a(g) a(f) = 0 a*(f) a(g) + a(g) «*(/) = (gj) Vf,geH.

Let u be a unitary operator on H. Then the map a{f)-+a(uf) extends uniquely
to a *-automorphism αM of sd. ocu is called the Bogoliubov automorphism induced
by u.

Let & be a self-adjoint operator on Jf. & shall be called complete if its spectral
family generates a maximal abelian von Neumann algebra ®J on H. Let (X, B, μ)
denote the spectral measure space of Θ. By the well known isomorphism theorem
(I § 7 and III § 1, Corollary 3 of Ref. [3]), completeness of Θ leads to identification
of Jf with S£\X, B, μ) and of <& with ^°°(X, £, μ).

When Θ has discrete spectrum, the number density N on X is defined for each
x e l by Nx = a*{δx)a{δx) where δx is the Kroenecker <5-function at xeX. The
number density N generates a classical field which is isomorphic to the lattice
gas. One can also isolate the field and density by symmetry considerations (as
we have remarked before [16]).

An observable in s$ is called 0-diagonal if it is diagonal in the Fock representa-
tion with respect to the basis formed by anti-symmetric products of eigenvectors
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of Θ. The algebra of ^-diagonal observables is, at once, the classical field generated
by the number density and the fixed point algebra for the unitary group G(^)
of <W (which acts as Bogoliubov automorphisms): The (^-diagonal part of a cor-
relation function is simply its average over G(W). Now, the (^-diagonal part of
the one point functions a*(f)a(g) defines an operator-valued measure on (X, B)
which is continuous with respect to μ, and whose Radon-Nikodym derivative
is N. That is, if D(a*(f)a(g)) denotes the diagonal part of a*(f)a{g) then

D{a*(f)a{g)) = \Ax)g(x)NJμ{x) V/, g e J?2(X, B, μ).

Thus, by focusing in the mean-values of correlation functions over G(β/) one is
naturally lead to the number density and its field. This is also the case when Θ
does not have discrete spectrum.

Since the unitary group G(^) of an arbitrary maximal abelian von Neumann
algebra ®J may have poor ergodic properties even locally on si, we shall, in
effect, approximate G(W) by a net of compact subgroups, each of which has a
unique invariant mean or conditional expectation on si. In Section 2, we associate
to each partition of the spectrum of ®f a conditional expectation on si which
destroys the off-diagonal correlations between elements of the partition. Indexed
by the partially ordered set of partitions, these conditional expectations form a
net. In Section 3, we prove local convergence of the net in the representations
induced by G(^)-invariant states and isolate the local number densities and
classical fields. In Section 4, we prove the set of G(^)-invariant states to be a
simplex and characterize its extreme points. Then, using the global consistency
of the approximation scheme, we obtain the C*-algebra of observables of the
classical field over the spectrum of <&.

The notation for von Neumann and C*-algebras follows that of Refs. [4]
and [5] with the following exceptions: If φesi* and Sesi, (φ S} denotes the
value of φ at S; if / , g e H (a Hubert space), Λ(f,g) denotes the vector form on
B(H) defined by </!(/, g); S> = ( / , Sg)\/Se B(H); the σ-topology of a von Neumann
algebra is defined in Ref. [16]. The closure of a set X in topology τ is denoted
by X~\ the closure of the linear span of X by [X]~ τ. The symmetric group of
degree N is denoted by £fN and sgn(p) denotes the signature of p e ^N.

0. Conditional Expectations

In this section we recall the definition of a conditional expectation on a
C*-algebra and reproduce, for completeness, two theorems giving sufficient
conditions for its existence. These results are applied in § 2 to the definition of a
net of partial diagonal part operators.

0.1. Definition [13]. Let si be a C*-algebra with unit. A linear mapping $ on si
is said to be a conditional expectation if the following conditions are satisfied:

1. <?(!) = L
2. S^0=><f(S)^0.
3. δ{Sδ(T)) = S(S{S)T) = δ{S)δ(T) VS^Tesi .

£ is said to be faithful if δ(S) = 0, S^0^>S = 0.
The following theorem is a slight variant of the principle result of [16.1].

The proof is in the Appendix.
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0.2. Theorem. Let si be a C*-algebra with unit, and let G be an amenable
discrete group of automorphisms of si. Denote by siG the C*-algebra of all fixed
points of si and by ΘG the set of all G-invariant states on si. If there exists a C*-
subalgebra (with unit) sJM of siG which separates SG, then

1. If ρ is a state on siM, there exists a unique G-invariant state ρonsi extending ρ.
2. siM = siG.
3. If Sesi, there exists SG e s/ such that {SG} = s/MnCo{gS\g EG}~N.
4. The mapping S^SG is a conditional expectation on si satisfying,
a) SG = S MSesiG,
b) {gS)G = SG V ^ e G ; V 5 e ^ .

0.3. Definition [9]. Let si be a von Neumann algebra on a Hubert space H
and let G be a group of automorphisms of si. Let R+(si, G) denote the set of
G-invariant, positive normal forms on si. si is said to be G-fmite if for every
Sesi+, SφO there exists φeR + (si,G) such that (φ;S}ή=O.

Kovacs and Szίics have obtained the following ergodic theorem.

0.4. Theorem. Let si be a von Neumann algebra and let G be a group of auto-
morphisms of si. Let stfG denote the set of all fixed points of si. Suppose that si is
G-finite. Then, for every TESJ, there exists TG e si such that {TG} =
siGnCo{gT\g e G}~σ. The mapping T^TG is a normal, faithful conditional
expectation on si such that

1. {gT)G=TG VgeG VTesi .
2. T=TG \/TesiG.

The mapping T^TG is called the G-canonical map.

1. The CAR

Let H be a separable, complex Hubert space, and let s/(H) be the C*-algebra
of the Canonical Anticommutation Relations (CAR) over H [7]. As stated in the
introduction, si(H) is generated by the range of an anti-linear mapping a:H^>si(H)
satisfying the CAR: a is continuous, with ||α(/)|| - 1 | / | | V/etf; and si{H) is the
closed linear span of the n-point correlation operators defined, for N,M EΈ+,

By convention, Λ00 = l, Aί0(f) = a*(f), A01(g) = a(g).
Let S be the set of all states on si(H). A state ω e 6 is determined by linearity

and by continuity from its rc-point correlation functions defined, for N,M eΈ+,
{/»}!U {&„}£= iCίί, by

W W / i , •••JN>9U •••,gM) = <ω;ANM(f1, ...,fN;gu ...,gM)) .

A state ω is said to be a gauge invariant generalized free state if its «-point cor-
relation functions have the form;

WNM(fu ...,fN;9l, ...,gM) = δMιNdQt{W11(fn,gm)}\f N,MeΈ+
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F(H) denotes the set of all gauge invariant generalized free states on si. If ω is a
gauge invariant generalized free state there exists a unique operator A on H such
Wtl(f;g) = (g,Af)Vf,geH. It follows that 0<LA^l. Conversely, if A is an
operator on H such that O^A^l, then there exists [2] a unique gauge invariant
generalized free state ωA such that

<ωA a*(fWg)> = {g,Af) Vf,geH.

Let u be a unitary operator on H. Then, there exists a unique ^-automorphism
αM of si(H) such that αw(α(/)) = φ / ) V / e i ί . The mapping α:lΓ(JFf)-»Autj^(lί)
of the unitary group £/(//) of H into the automorphisms group of si(H) is a
strongly continuous homomorphism, when the former is equipped with its
strong operator topology.

If H' is a closed subspace of H, we shall denote by si(H') the C*-subalgebra
of si(H) generated by

2. A Net of Conditional Expectations

Let <& be a maximal abelian von Neumann algebra on H, and let G{(¥) denote
the unitary group of <&.

2.0. Definition. Let E = {Ea}aeI be a family of non-null, mutually orthogonal
projectors in & such that ΣEa = ίH. E is called a ^-partition ofH. Let Γi<β/) denote
the set of all ^-partitions of H.

The set Γ(%f) is partially ordered by refinement. That is, E is said to refine F
if, for each EeE and FeF, we have EF = 0 or E. We write E^F. One readily
verifies that (Γ($0, ^ ) is a partially ordered and directed set with £ v F = {EkFj}.

The directed set (T(^), ^ ) will serve to index a net of conditional expectations.
The remainder of this section is aimed at defining a conditional expectation for
each partition E e Γ{<&).

Let E be a ^-partition oϊH. We shall denote by G(E) the unitary group of the
abelian von Neumann algebra <3/(E) generated by E. G(E) is represented in Autj/
by a (see above). We denote the set of G(Έ)-invariant elements of si (resp. S) by
J3/G(έ) (resp. SG ( £ )). If £ = {!}, then G(£) is the gauge group 0.

2.1. Lemma. Let E = {£7 }7 e 7 foe α $/-partition of H; let, for each j e J,
be the C^-subalgebra of si generated by

, let (^)jSi(EjH)θ denote the C*-subalgebra of si generated by
Then, (g)jsi(EjH)θ separates G ( £ )

Proof Let φ and φ1e&i{B) with φφφ1. There exists N,MeΈ+, {/„}%= l9

{gm}m=ιCH such that <φ-φ1;ANM(fl9...,fN;g1,...9gM)y>Φθ. By linearity, and
by continuity, there exists {jn}n=1, {im}m=i£J s u c h

<φ-φ1;AN^EjJl9...9EjJN;Eiίgl9...,EiMgM)>±0.
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Let, for eachjG J, Nj = Ca.rd{n\j=jn} and M j = Car ά{m\j = im}. Now, if NjoφMjo

for some joeJ, G(E)-invariance of φ — φ1 implies, with the choice
i + [exp{iΠ/\Njo-MjQ\)-1~} Ejoe G{E), that the LHS of preceding expression
vanishes. Thus, Nj = MjVjeJ. But this implies

ΛNM(EjJu ..., EJNfN; Ehgu ..., EiMgM)C®js/(EjH)θ. D

Since G(E) is amenable, and since (g)j^(EjH)θQsiGiE\ Lemma 2.1 fulfills the
remaining hypothesis of Theorem 0.2. We have therefore the following:

2.2. Theorem. Let E be a ̂ -partition of H. There exists a unique G(E)-invariant
conditional expectation $( \E) on si whose range is (x)si(EjH)e = siG{E\

2.3. Corollary. *(a*{f)a(g)\E) = Σja*(Ejf) a(Ej9) V/, geH.

2.4. Corollary. Let E^F be two <&-partitions of H. Then,

S(S(S\F)\E) = S(S\E) MSestf.

Proof. Since G(E) 2 G(F) the result is immediate from Theorem 0.2 (3).

2.5. Corollary. Let E^F be two 9-partitions of H. Then, S'(^\E)QS>(^\F).

We have therefore defined a net {$( \E)}EeΓ{(2/) of conditional expectations on
sd with decreasing range (2.5) and the lattice property 2.4.

We now turn to the implementation of this net on some representations of si.
Let E be a ^-partition of//; let φ be a G(£)-invariant state on s/; let (πφ, Uφ,

Hφ, Φ) be the cyclic, covariant representation of (si, G(E)) associated to si via
the Gelfand-Naimark-Segal construction [12,6.22]. Since si is simple [15], it
follows that πφ is invertible. We can therefore define Sφ( \E)= nφS(jC^ \E):πφ(si)->
πφ(s/G{E)). For each geG(E) define the automorphism 6Lg\πφ(st)n-+πφ(sί)" by
&gS=Uφ(g)SUφ(g)*VSeπφ(si)". The mapping &:G(E)-^Autπφ(si)/f is a homo-
morphism such that 6cgπφ(S) = πφ(oc^S) V S e j / . Accordingly, if we can prove that
nφ(sί)" is G(JE)-fmite (0.3), the G(E)-canonical map (0.4) will be a normal, G(E)-
invariant conditional expectation on πφ(si)" whose restriction to πφ(si) is §φ( \E).

By continuity, it will be the unique normal extension of Sφ( \E) to πφ(si)". In
that event we shall denote the G(£)-canonical map by £φ( \E).

2.6. Lemma. Let E = {Ej}jeJ be a ̂ -partition of H, and let φ be a G(E)-invariant
state. Then with the above notation, πφ(si)" is G(E)-finite.

Proof. It suffices to exhibit a complete orthonormal set of simultaneous eigen-
functions for Uφ(G(E)). To this end, let Jί=[jj{Ejf\feH}, and let

Clearly, the linear span of Mφ is dense in Hφ. Since Uφ(g) Φ = ΦV ge G(E), there
exists, for geG(E) and ΨeJtφ9a unique θ(g, Ψ)e[0,2Π) such that Uφ(g)Ψ =
exp[z'%, ψy\ Ψ. Two vectors Ψ and Ψ1 e Jίφ are said to be equivalent («) if θ(g, Ψ) =
θ(g,Ψrl)V geG(E). Jίφ is thus divided into disjoint equivalence classes Jl\.

Let θ(g, oc) = θ(g, Ψ) for Ψ e Ma

φ, g e G(E), and let Pφ denote the projector upon
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the closed linear span H% of Ji%. One readily sees that P%P% = 0 Vαφα', ΣPa

φ = l,
and

Uφ(g) = Σaexp(iθ(g, α)) P% V g e G(E). Π

From Lemma 2.6 and the preceding discussion we have the following.

2.7. Theorem. Let φ be a G($/)-invariant state on si. Then, with the above
notation and definitions, there exists a net {Sφ( \E)}EEΓ(&) °f normal conditional
expectations on πφ(si)" such that

1. For each E e Γ{®f\ £φ{ \E) is a normal, G(E)-invariant conditional expectation
on πφ(si)" whose range is (πφ(si)")G{E).

2. Sφ( \E) is the unique normal extension of Sφ{ \E).
3. IfE^F,then

4. IfE^F,then

Remark. In the remainder of the paper we suppress the " ".

3. A Local Theory

In this section we investigate the convergence of the net {$φ( \E)}^sΓm of
normal conditional expectations on πφ(stf)" defined in Theorem 2.7 for a maximal
abelian von Neumann algebra ®f on H and G(^)-invariant state on s/.

Due to the totally dissimilar behavior of the net for the atomic and non-
atomic parts of ®f we make the following:

3.0. Definition. Let ®f be an abelian von Neumann algebra on H. A non-null
projector A e ®f is said to be an atom of <& if for every projector P of ®f we have
AP = 0 or A. Denote the set of all atoms of 9 by A(<3/) = {Ai}ieI; let YA= v Aψ)
and YN=l-YA.

We remark that (1) since distinct atoms are mutually orthogonal, YA = ΣAh

and (2) since H is separable, Card/:gX0.
Let ΩeH be a separating vector for the maximal abelian von Neumann

algebra $/ on H [4,1 § 7]. For each element F of ^ we define the vector/ =FΩeH.
The mapping F->/ is an injection of ®J onto a dense subset of//. Throughout the
remainder of this section Ω will denote a fixed separating vector for <3/.

Let PN denote the set of all projectors P of <W such that PYN = P Clearly PN

is a Boolean σ-algebra; the mapping P-+ω(P) = (Ω, PΩ) is a finite positive measure
on PN and (PN, ω) is a finite, separable, non-atomic measure algebra. Therefore,
(PN, ω) is isomorphic to ([0, ω(YNJ], dx) [8,41C].

3.1. Definition. Let E° = {YN}vA(<&).
An increasing sequence {En}™=1 of ^-partitions of// is said to be dense if

1) E1 ^ E°, and if 2) to every projector F e PN, and to every ε > 0, there corresponds
a positive integer n0 and a projector E which is a union of projectors of Eno and
is such that
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Theorems 41B and 41C of Ref. [8] assure the existence of an abundance of dense,
increasing ^-partitions of H.

3.a A Local Convergence Theorem

3.2. Theorem. Let <& be a maximal abelian von Neumann algebra on H let φ
be a G(®J)-invariant state on s$' let{Sφ{ \E)}^er({W) be the net of conditional expecta-
tions on πφ(s$)" defined in Theorem 2.7. Then, there exists a unique normal conditional
expectation Sφ{ \<&) on πφ{stf)" such that

σ-limΓ^/φ(πφ(S)\E) = β φ{πφ{S)W) V S e sί.

Further, 0) <oφ( \<W) has abelian range.

1) <?Φ(Uφ(g)SUφ(g)*\<W) = £φ(S\<y) VgeG(<8f)

2) φ

3) £Φ(πφ

4) Sφ(πφW'W) = {δφin^A^if; g))W)\f, geH}".

The proof of this result is punctuated with several lemmas and propositions.
3.3. Remark. The proof of σ-convergence of the nets of operators

{Sφ(πφ(S)\E)}^Γ(qι), which results in Proposition 3.11, employs the following
artifice. Since, for each S e si and ^-partition E, ||^ψ(πψ(S)|£)|| ^ ||S|| there exists,
by σ-compactness of bounded spheres of πφ(sn/)", a σ-convergent subnet: We
chose one and denote its limit point by Sφ\πφ(S)\'¥), finally proving that

<?°Φ(πφ(SW) = σ-\ϊmrmSφ{πφ{S)\E).

This method of proof has the advantage that if P is a projector on Hφ, and if the
net {PS>

φ(πφ(S)\E)P}geΓm can be shown to be ultra-weakly convergent, then its
limit point is P$°φ(πφ(S)\®/)P. We remark further that since the weak-operator
and ultra-weak operator topologies on B(Hφ) coincide on bounded spheres, weak
operator convergence of the required nets is sufficient to ensure σ-convergence.

The following argument appears often enough to warrant abbreviation:
If two vectors Ψ, Ψ1 e Hφ are eigenvectors of a unitary operator g with different
eigenvalues, then they are orthogonal. We shall say "(Ψ,Ψι) = 0 due to
0-invariance", leaving the task of verifying that Ψ and Ψ1 belong to different
eigensubspaces of g to the reader.

Preparatory to proving Proposition 3.11, we make the following definitions
and remarks. Let D e f be a projector; let G(D) = {t + {g-\)D\geG{(W)}QG{(W)\
and if φ is a G(^)-invariant state on si, let Hφ(D) = {ΨeHφ\Uφ(g)Ψ=Ψ V geG{D)}.
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Define the family of projectors {Qφ(D)i}f=1 as follows (recall that d=DΩ where
Ω is a fixed cyclic vector for W in H).

Qφ(D)3Hφ = ίπφ(a(d)a*(d))Hφ(D)-] ~

Qφ(D)4Hφ=lπφ(a*(d)a(d))Hφ(D)Γ •

From the CAR and Uφ(l — 2D)-invariance it follows that these projectors are
pairwise orthogonal. Let Qφ(D) = ΣQφ(D)i.

If D and D' be two orthogonal projectors of ^ , then [QΦ(D\ Qφ(D')] = 0. In
fact, let Oφ(D) [resp. OΦ(D'Y\ denote the projector upon Hφ(D) [resp. Hφ(D')~\. Since
Oφ(D)eUφ(G(D)T and OΦ{D') e Uφ{G(D')ϊ it follows that [OΦ(D), Oφ(D'ft = 0.
From this, and the fact that Oφ{D') e πφ(s/(<Cd))'9 Oφ{D')Qφ{D)HφQQφ(D)Hφ. Hence
ίOφ{D\Qφ{D)-\=0 and Qφ(D)Oφ{Df)HφQOφ{D')Hφ. Consequently,

Qφ(D)Qφ(D')HφQQφ(D')Hφ,

proving the assertion.

3.4. Lemma. Let D be a projector of ty. Then, with the above definitions and
notation,

strong \imrmQφ{D)£φ{πφ{N{d))\E)Qφ{D) = Qφ{D)£°φ{πφ{N{d))\®)Qφ{D)

Proof. We prove, for ί, Ϊ ' = 1 , ..., 4, that each of the nets (*)H =
{QφΨ)i^φ(^(N(d))\E)Qφ(D)v}&eΓim is strong-operator convergent. However, by
Uφ((ί — D) + ϊD)-invariance, the (i, i')-net vanishes for

i = 2 ; i ' = l , 3 , 4 i = 4;i' = l , 2 .

Thus, the proof reduces to six cases :

Case 1. ί = ϊ / = l . We prove the bounded net of positive operators to be
increasing and therefore [4, Appendix 1] strong operator convergent. Let E^F,
and let Fk = ΣjeJ(k)Eβ with the obvious notation. Let Ψ = πφ(a(d))χ with χeHφ{D).
Then

(Ψ, {Sφ{πφ{N{d))\F)- Sφ{πφ{N{d))\E)} Ψ)

= Σk(χ, πφta*(d){a*(Fkd)a(Fkd) - Σjsma^Ejd)a(Ejd)}a(d)-]χ)

= Σk(χ, π φ [ α * ( ( l - Fk)d){ - }a((ί- Fk)d)-\χ)

+ Σk{hπφ\_a*{Fkd){-}a{Fkd)-\χ)

, πφ[_a%t - Fk)d){ -}a{Fkd)-]χ) + c.c.
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Now, (1) the first term on the RHS vanishes by Uφ(t — 2DEj)-mvariance for jeJ(k)
and all k; (2) the third and fourth terms vanish by Uφ(t — 2D(i — Ffc))-invariance
for all fc; (3) since a(Fkd)2=0, we are left with

-Σk(χ9 πφla^

Since Ψ eπφ(a(d))Hφ(D) was arbitrary, we have by continuity E^

η
Case 2. i = i' = 2. We prove the net (*)2 2 of positive operators to be decreasing

and therefore strong-operator convergent. Let E^F and let Fk = Σjej{k)Ej. Let
Ψ = πφ(a*(d))χ with χeHφ(D). Then, by an argument similar to that of Case 1,
we have;

(Ψ9 tfφ{φ φ φ

= Σk{χ, πφla(Fkd){ \\ Fkd\\2 - ΣjeJik)a^Ejd)a(Ejd)}a^Fkd)-]χ) ^ 0

since

Σjem\\a^{Ejd)a{Ejd)\\ ^Σjem\\Ejd\\2 = \\Fkd\\2 .

Since Ψ e πφ(a*(d))Hφ(D) was arbitrary, we have, by continuity,

E^F^Qφ(D)2*φ(πφ(Nmmφ(D)2^Qφ(D)2*φ^

Case 3. i = ϊ = 3. We have (CAR),

a{d)a*{d)£{N{d)\E)a{d)a*{d) =\\d\\ 2a{d)£{N{d)\E)a*{d)

-a{d)a\d)Σj\\Ejdf.

Therefore,

\ ~2QΦ(D)3πφ(a(d))£φ(πφ(N(d))\E)πφ(aψ))Qφ^^

- \\d\\ - Λ Q φ ( D ) 3 π φ φ j j

Now, (1) since πφ(a*(d))Qφ(D)3 = Qφ(D)2πφ(a*(d)\ strong-operator convergence
of the net of first term on the RHS follows from Case 2; and since the net in <C,
{Σj\\Ejd\\4}£eΓm is positive and decreasing, the net of second terms is norm and,
a fortiori, strong-operator convergent.

Case 4. ί = ί' = 4. By an argument similar to that of Case 3, we have

Qφ{D\Sφ{πφ{N{d))\E)QφΦ)A

= \\d\\ -AQφ(D)4πφ(N(d))Qφ(D)4(Σj\\Ejd\n

Now, since πφ(a{d))Qφ(D)4 = Qφ(D)1πφ{a(d))9 strong-operator convergence of the
net of second terms on the RHS follows from Case 1 (2) Convergence of the net
of first terms follows as in Case 3.
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Case 5. ί = 3, i' = 4. We have (CAR)

QΦ(D)^φ(πφ(N(d))\E)Qφ(D)4

Now let, for each ^-partition E of //,

Let, for each M e Z + , EM be a ^-partition of// such that 1) E ^ j ^ ^
and 2) (Ω,Z)7iV£fΩ) = 0 or (i2,D7Ni2)/M Vj. Let F^EM for fixed, but arbitrary,f
M:Ej =ΣkeK(j)Fk.

d
{Ω,DYNΩ)2/M. Thus \imrmf{d,E) = f{d,(W), and consequently

Γ2Qφ(D)3πφla*(f(d9

6. i = 4, /' = 3. Case 6 follows from Case 5 by virtue oϊnorm convergence. •

3.5. Lemma. Let D be a ^-partition of H; let {Fn}^=1 be a finite set of mutually
orthogonal projectors of <&(D) (i.e. Fn = Σjejin)Dj); and let Pφ(D)Hφ =

Then

^ Π ^ i Sφ(πφ(N(fn))\E")Pφ(D)

\ϊ= X S%πφ{N(fn))W)PφΦ) •

Proof. Let Qφ(n)ΞγiJEj(n)Qφ(Dj). It follows from Lemma 3.4 that, for each
finite subset J0(n)QJ(n),

S4imrmQφ(nμφ(πφ(N(ΣjeJo(n)Djfn))\E)Qφ(n)

Since, for E^D, we have

it follows that

It then follows, by the triangle and Schwartz inequalities, from the above remarks
that

SΛimrmQφ(nWφ(πφ(N(fn))\E)Qφ(n) = Qφ(nW°φ(πφ(N(fn))W)Qφ(n).
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By joint strong-operator continuity of products on bounded sets, and by virtue
of the fact that, for n Φ ri,

0 = [Qφ(n\ Qφ{n'J\ = ί£φ{πφ{N{fn))\h QΦ(n')]

= t<$φ(πφ(N(fn))\El Λφ(πφ(N(fn.))\Fβ,

we have

= Π«= 1 Q*(«) Π-= 1 ^>

However, since Pφ(D)SQΦ(Dj)Vj; it follows that Y\N

n=1Qφ(n)^Pφ(D): This, and
the preceding statement, proves the lemma. •

3.6. Lemma. Let {Fn}%= 1 be a finite family of mutually orthogonal projectors
of <&. Then,

S-l im r w w Π»= i Sφ(nφ{N{fn))\E") = Π»= i <?>Φ(

Proof. Let Γ{<W\{Fn}) = {D e Γ(<Sf)\FΛ e D" V n). Clearly, Γ(<W\{Fn}) is a directed
set and cofinal with Γ^): thus, since [13,1.3.1 and Remark, p. 46] the linear span
of the projectors of <$/ is norm-dense in <&, since Ω is cyclic for ®( in H, since Φ is
cyclic for nφ(sf) in Hφ and since the w-point correlation operators {ANM} are
continuous and multilinear, it follows that

S-\imrmιFn))Pφ(D) = ί.

The result then follows from Lemma 3.5 via the inequality, valid for

KΓ

=1 H/J2 \\(1-PΦ(D))Ψ||

3.7. Lemma. Let {Sn} be a Cauchy Sequence in stf such that

for each neΈ+. Then, if S = n-limSn,
n-> oo

w-\imrmSφ{πφ{S)\E) = £°°φ(πφ(

The proof is immediate from linearity and uniform boundedness (i.e.
Uφ{πφ{S)\E)\\ g ||S|| VEeΓm of the maps {Sφ{ \E)}£sΓm).

3.8. Lemma. Let N,MeΈ+, and let {fn}
N

n=u {gJ%=1CH. Then,

w-limm/φ(πφ(ANM(fu ...,fN;gu ...,gM))\E)

As implied by the notation, the order of the product is unimportant.
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Proof. Let D = {Dk} be a ^-partition of H. Let, for each l^n^N (resp.
l < m < M ) , Dfe (resp. Dκ ) be chosen from D; let fn = dk V l<n<N (resp.
gm = dKm V l ^ m ^ M ) . By the familiar invariance argument (e.g. Proof of 2.1)
we have <$φ{πφ{AΉM{fu ...JN;gl9 ...,gM))\D)

0 if(l)fcπ = fcπ, for

or (2) * = * „ , , for

), where

— otherwise

p is the unique permutation such that kn = κp(n) V n

= δM,NΣpe^N^n(p)Yln= iδφ{πφ(Alx(fn\ gp{n)))\D).

Taking into account the orthogality of the {Dk}, one has, by operating on both
sides by δφ( \E), the above equality for D replaced by E^D. The result then follows
for this special case from Lemma 3.6. Clearly, the order of the product is irrelevant.
Since the linear span of the set of all projectors of ^ is norm dense in ®f [13, 1.3.1],
and since Ω is cyclic for ®J in H, the general case follows from linearity and con-
tinuity (3.7). D

3.9. Definition. Let Dφ(<&) [resp. Dφ(<SSΛ), Dφ{®JN)~] denote the C*-algebra on Hφ

generated by

(resp. YΛH, YNH)}u{ί].

We remark that (2.3) Dφ(®/) is generated by Dφ(<3fA)υDφ(<3fN).

3.10. Lemma. Let &φ = πφW'nπφ(s/)'. Then Dφ(WN)Q^φ and Dφ(<W) is
abelian.

Proof. Since, by Lemma 3.8, Ώφ{®J^) Q πφ(sf)'\ it remains to prove that
Dφ(WN)QπφW. It suffices to prove that [πφ(a(f))9 £°φ{πφ{a*{g)a{ΐ))\v/)-\ =
OVfeH; V g9leYNH. Since Ω is clearly cyclic for YN<& in YNH it suffices by
linearity and continuity to prove that, if F, G, K be projectors of ^ , then

= O; or,

g; YNk))\EΪ] = 0 .

In fact, let F^EN with the notation of Lemma 3.4, Case 5 but with D= YN. It then
follows, by an elementary calculation, that \\[πφ{a(f))9δφ(πφ(A11(YNg;
YNk))\F)]\\2^(Ω, YNΩ)3/N. This proves the first assertion. To prove that Dφ(&) is
abelian, it remains only to show that Dφ(βtA) is abelian. But, since S'(φ(πφ(Alί(YAf;
YAg))m = Σπφ(a^Aif)a(Aig)), it follows that Dφ{WA) is generated by {πφ(N(ad)}u
{1} and these clearly commute. D

We now put together the results obtained so far.

3.11. Proposition. There exists a unique linear, continuous mapping $°φ( \®J\.
such that

%πφ{S)\&) = σ-Kmrmδφ(πφ(S)\E) V S e d .
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Further,
0)

2)
3)
4)

5)

S°φ(n

iφYi
= <%
For

:|β0=i

:Φ(S*)\&) = &φ(πφ(S)\<&)
)ίφ(g)πφ{S)<%φ(g)*\(y) = (

φ(gK(πφ(SW)Wφ(g)*
N,MeΈ+,{fn}

N

n=1,{c

#Φ(πφ{SW)
VSe^ Vge

]m}™=1CH, we

6) El(πφ

Proof. Since si is the closed linear span of the n-point operators {ANM},
existence of S°φ{ \<%) follows by linearity and by continuity (3.7) from Lemma 3.8:
uniqueness is immediate. 0), 1), 2), and 3) follow from the properties of the con-
ditional expectations {Sφ{ \E)}. It follows from the G(£)-invariance of Sφ{ \E) for
EeΓφ/) that 4), holds for g e G°(<W) = [jm)G(E). Since G\Ψ) is norm-dense in
G(W) (by trivial modification of the proof of [13,1.3.1]), and since α and allφ are
strongly continuous, 4) holds for all g e G(^). 5) follows from 3.8, and 6) from 5). D

3.12. Proposition. There exists a unique normal conditional expectation Sφ{ \<W)
on πφ{sf)" which extends E% \W). Further, £φ(πφ(<sι?)"\<3/) = Dφ(

ίW)".

Proof. We first prove existence of a, necessarily unique, normal linear map
extending S% ψ). To this end, let H$ = {πφ(s/(YAH))Φ}~, and let MφHφs
[D^N)Hf]-- Since MφeD^Sf)ί, and since πφ(^(YNH))cDφ($/y [recalling that
Gφ(<WN)g&φl the central support of Mφ in Gφ(β))' is 1 (i.e. ίDφ(®)'MφHφ\~ 2
lπφ(^(YNH))Dφ(<WN)πφ(Af(YAH))ΦΓ 2ίπφ(sέ(H)ΦΓ =Hφ). Therefore, the restric-
tion map

R:Dφ(<¥)"->Dφ(<y)"Mφ is an isomorphism [4; 1,§ 2, Proposition 2], On the
other hand, if S e si, we have

YN(g - l))«f φ(πφ(S))\E°)Wφ(ί + YN(g -1))*

Further, since <%φ(G(Y»))Q{Dφ(<8/N)πφ(^(YΛH))y, it follows that <%φ(g)Mφ =
Mφ V g e G(YN). Combining these two observations, we have

^φ(g)*Mφ = MφSφ(πφ(S)\E°)Mφ Vge

Recalling 0.2(3), it follows from linearity and continuity that

Mφ£φ{£φ{πφ{S)\E0)\C)Mφ = Mφ£φ{πφ{S)\E°)Mφ V C e Γ(βf).

Therefore (2.7(4)),

° °Mφ V S e si.

This proves that ^(πφ(SW) = R~1(Mφ£φ(πφ(S)\E°)Mφ)MSesi. Now, since the
mapping S(e πφ(^)")^MφSφ(S\E°)Mφ is ultra-weakly continuous it follows that
Mφ£φ(S\E°)MφeDφ(®/)"MφV S eπφ(s/y. We d e f i n e ^ \<W)=R~\Mφgφ{ \E°)Mφ)
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on πφ(stf)". $φ{ \<&) is clearly a normal linear map extending gφ( \®f). To prove
Sφ{ Y%J) is a conditional expectation only (3) of Definition 0.1 remains.

We have,

δφ(Sgφ{T\<S()\<9() = R~ \Mφgφ {SS

= R-\Mφgφ(S\E°

= gφ{S\<Sf)gφ{T\<3f) V S, T e πφ

where the second equality follows from G(£°)-invariance gφ{T\W). It is clear,
from 3.11 and normality, that Eφ(πφ{sff'\^gDφ(<S/)". On the other hand, if
SeDφ{<3fY', we have

Hence

&) = Dφ(<3()'t. •

The proof of Theorem 3.2 is immediate from Propositions 3.11 and 3.12.
We shall need the following modification of 3.2.

3.13. Proposition. Let {En}™= ί be a dense, increasing sequence of ^-partitions
of H; let φ be a Gi^jyinvariant state on srf. Then,

σ-Ximiφ{πφ(β)\En) = gφ{nφ(S)\<Sf) V S e s* .
n~~* oo

Proof. Let F = {Fj}?= 1 ^ E° be a ^-partition of H ordered so that {Ω, YNFjΩ)}
is decreasing. For every ε 1 > 0 there exists JfeJ (finite) such that (Ω,YN(1 —
Yfj=1Fj)Ω)<ε1. Furthermore, since {En}^=1 is dense, we have for arbitrary ε2,
an n0 such that, for each 1 Sj^J, there exists a projector G} which is the sum of
orthogonal projectors of En° and which satisfies (Ω, G'j(ί-Fj)-i-Fj(t-G'j)Ω)<ε2.
Let, for each 1 ^ ' ^ J , G^G'μ-XJi<:iG'^ then (1) GjQGf

β (2) GjG—OVίφj,
(3) ΣjGj = \/jGj, and (4) G} is the sum of orthogonal projectors of E"°. It follows
directly that

(Ω,Fj(ί-GJHGj(ί-Fj)Ω)<s2J

For arbitrary n^nOi and projector D e f , we have

\\£(N(d)\F\jEn)-£(N(d)\En)\\ = \\ΣJ<J{£(N(Fjd)\En)

To sum up, if F is a ^-partition of H, and if D is a projector of <&, then for
every ε > 0 there exists n0 such that n^no=>

\\£(N(d)\F\/E")-£(N(d)\E")\\ <ε.

The proof is then completed by simple modifications to 3.7, 3.8, and 3.11. D
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3.b Consequences of Local Convergence

The next lemma aims at establishing (Theorem 3.15) the map Ωφ\
(Wχ-*Dφ(<$f)".

3.14. Lemma. Let φ be a G{^J)-invariant state on s$. Then, there exists a unique
mapping Kφ:(Dφ{<3f)\-*<Sf such that

(g,Kφ(ψ)J) = (ψ; £φ(πφ(a*(f)a(g)W)} Vf,geH.

Further, Kφ is positive, linear and contracting.

Proof. Since, for each ψe(Dφ(<S()'%, the mapping (g,f)^<ψ ;*φ(πφ(a*(f)a(g))\<3f)>
is, by Theorem 3.2, a continuous sesquilinear form over H, there exists, by Riesz's
theorem, a unique bounded linear operator, Kφ(ψ) on H such (g,Kφ(ψ)f) =
<ψ;£φ(πφ(a*(f)a(g)W)}. By (1) of Theorem 3.2, R ^ Γ ^ ^ V l i e G f f ) .
It follows that Kφ(ψ) e(3/f = (W. This proves existence and uniqueness. Linearity
and positivity are immediate. Finally,

\\Kφ(ψ)\\ = sup Kψ;£φ(πφ(a*(f)a(g)W))\^\\ψ\\ . D
f.geH:

11/11 = 11*11 = 1

To each A e ^ %, we can now assign a mean number operator.
3.15. Theorem. There exists a unique map Ωφ\

(Wχ-+Dφ(
(3/)" such that

Vf,geH.

Further, Ωφ is positive, linear and norm-reducing.

Proof. Uniqueness is immediate. Existence follows from Lemma 3.14 by
defining ΩΦ(Λ) = K$(Λ) V A e <&+. D

We can now make contact with the discrete case.

3.16. Corollary. Let A((W)={Ai}ieI denote the atoms of <W define for each
ίel, AiE&x such that A^A^δ^. Then, Ωφ(Ai) = πφ(a*(f^a(fl)) where f is any
normalized vector in the range of At. Hence Ωφ(At) is a projector and Dφ{^^ is
generated by iφ and {Ωφ{A^\ieI}.

We now obtain the operator-valued, number density over the spectrum of <&
attached to the representation πφ (cf. 1, § 7, Theorems 1 and 2 and III, § 3, Corol-
lary 1 of Ref. [4]).

3.17. Theorem. Let (X,B,μ) be a totally σ-finite measure space; and, in the
preceding discussion, let H = £?2(X, B, μ), ^ = J^°°(X, B, μ) and ®J^=<£\X,B,μ\
If φ is a G(<ty)-invariant state on stf{H), there exists a μ-a.e. unique, σ-measurable
mapping Nφ{ \<3f):X-+Dφ{<3/)" such that

(ψ; Ωφ(f)) = J/(x) <φ; Nφ(xW)ydμ{x) V ψ e {Dφ(<&)'% \ Vfe<?\X, B, μ).

Further, 0^Nφ(x\®J)^tμ-a.e.

Proof. Separability of if implies that of s/(H), Hφ and hence of (Dφ(<&)'% and
of {DΦ(Φ)")X [the normal positive linear forms on Ώφ{^jy\. let D° be a countable
dense set of (Dφ(<3S)'% such that D°n{Dφ{%/)'% in dense in {Dφ{<30'%9 and let D%
denote the set of all finite linear combinations of elements of D? with coefficients
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in β + iQ (β = rationals). It is clear that D° is itself a countable dense set of {Dφ(!&)f%
such that {D^n(Dφ{&)%}~ =(Dφ(βf)%. We now prove uniqueness. Suppose that
Nφ( ψy), Nφ( \ύy) are two such mappings. It follows from the uniqueness of Lemma
3.14 that for each ψe(Dφ(<&)'%, Kφ(ψ)x = (ψ; Nφ(x\$/)} = (ψ;Nφ(x\*/))μ-a.e.
There exists, then, a measurable set X 0 C X such that μ(Xo) = 0 and such that

<φ N0(x|«O> = <φ Nφ(x\$/)> V ψ e D° .

Since D° is dense in {Dφ(<S/)\, it follows that xeX0=>Nφ{x\%/) = Nφ(x\<&). This
proves essential uniqueness of Nφ( \®J). We now prove existence. There exists by
Lemma 3.14 for each ψe(Dφ(

(S/)'\ a μ-a.e. unique essentially bounded function
Kφ(ψ) such that

<V>; Ωφ{f)y = \xf(x)Kφ{xp)xdμ{x)\/ fe &\X9 B, μ).

We have, for λ, γ elR and φ, ψ' e (Z>φ($0'%.
(1) Xμtp + yψ')x = λKφ{ψ)x + yKφ(ψ')xμ-a.e.

(2) |X φ ( V )J^ | |φ | |μ-α.e.
(3) ψit0=>Kφ(ψ)x^:0μ-a.e.
There exists, then, a measurable set X0CX such that μ(Xo) = 0 and such

that (1), (2), and (3) hold everywhere on X — Xo for y, A e β + fβ and for all φ, ψ'eD^.
Define Kφ(ψ)x = Kφ(ψ)xX(X — Xo) where X(X —Xo) is the characteristic function
of X — XQ. Kφ, mapping D° into the Banach space of bounded ^-measurable
functions M(X, 5), extends by continuity to a complex-linear mapping Kφ of
CDφW')* i n t o M(X,B). Thus, for each X G X , ψ-+Kφ(ψ)x is a positive, linear
mapping of (D^^)")* into (C bounded by 1. There exists therefore, for each xeX,
a unique operator Nφ(x\®/) e Dφ(®)" such that <ψ;Nφ(x\W))=Kφ(ψ)xVψe(Dφm%.
One easily verifies that Nφ( \W\ satisfies the requirements of the theorem. D

3.18. Theorem. Let φ be a G^yinvariant state on si, and let Pφ

{®] denote the
cone of G{^J)-invariant normal positive linear forms on πφ{srf)". Then, with the above
notation and definitions, the restriction map R:P%m^>(Dφ(®/)% of PG

φ

m into the
cone of normal positive linear forms on D0(W)" is a bijection.

Proof. Let ψ be a normal positive linear form on Dφ(β)'. The form ψ defined
for each Seπφ{si)" by (ψ;S} = (ψ;S'φ{S\(W)) is clearly a G(^)-invariant normal
positive linear form on πφ{si)" extending xp. R is therefore surjective. Now let
ψ Φ ψ' e P%m with Rψ = Rψ, Then, there exists S e si such that 0 φ (ψ - ψ' πφ(S)>.
This, however, results in the contradiction:

= I i m Γ W < φ - ιpr ίφ(πφ(S)\E)> = <ψ-ψ'; πφ(S)} .

.R is therefore injective. D

3.19. Remark. It follows from the proof of 3.18 that if φ is a G(^)-invariant state
on si, and if ψ is a G(^)-invariant normal positive linear form on πφ(si)'\ then
(xp £φ(πφ(S)\<30> = <Ψ π0(S)> V S e Λ/.
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4. Global Theory

In the present section, we focus on the global consistency of the local results
obtained in the preceding section. We first show (4.2) that the set of all G(^)-
invariant states on si is a simplex and give a characterization of the set of extreme
points, showing it to be weak* compact. The set S^) of extremal G(^)-invariant
states supports the global extension we are looking for (4.3^.5).

The next lemma follows easily from Moore's theorem.

4.0. Lemma. Let ΛeB(H) be such that O^A^ί. Let ωA denote the unique
gauge invariant generalized free state on si such that (ωA;a*(f)a(g)} = (g,Af)V
f,geH. Then, the map ω: B(H)± —• F(H) is a homeomorphίsm when the former is
equipped with the σ-topology, and the latter with the weak*-topology.

4.1. Definition. Let <& be a maximal abelian von Neumann algebra on H. Let
S(<30 denote the set of all Ae®/ satisfying O^A^l and A2YA = AYA. Let S(^) =
ω(S(<S0). We remark that S(®/) is a σ-compact subset of <&; therefore S($/) is w*-
compact.

4.2. Theorem. The set S G W of all G(<8Γ)-inυariant states on si is a (Choquet)
simplex, and S(f&) is the set of extremal G(&)~ invariant states on si. For each G(%J)-
invariant state φ on si, there exists, by Choquet9s theorem [cf. 12, A.5], a unique
regular probability measure μφ on <ZGW (or SJ such that

(1) μφ(S(«0)=l.
(2) <φ;Ay = $(σ',A}dμφ(σ) V Aesi .

Proof. We show that the cone PG{q/) of G(^)-invariant positive linear forms
on si is a lattice. For this it is sufficient to show that, for each G(^)-invariant
state φ, the cone P^J) of all G(^)-invariant normal positive linear forms on
πφ{si)" is a lattice. Indeed, if ψ, ψ' e PGm, then ψ ψ' e P%m for φ = (ψ + ψ')/(ψ +
ψ/;l>. Since P$m is, by Theorem 3.18, order isomorphic to the set of normal
positive linear forms on the abelian von Neumann algebra Dφ{®J)', and since
this last set is a lattice, it follows that Pφ{®] is a lattice. Hence, SG(<^} is a simplex.
We now characterize the set of extremal G(^)-invariant states. Since PGm is
order isomorphic to (Dφ(<3f)") + , a G(^)-invariant state φ on si is extremal Gί®/)-
invariant if and only if φ\Dφ^r is a character (the distinction between φ as a state
on si and its extension to a normal state on πφ{si)" is not made explicit). It follows
from Theorem 3.2 and Remark 3.19 that if φ\Dφm» is a character, then φ is a gauge
invariant generalized free state. Since every gauge invariant generalized free state
is a factor [11, 5.1], it follows from Lemma 3.10 that Dφ(<8fA)" = Dφ(<g/)". Now, if
Φ\DΦ(®)" *S a character, we have (with the notation of Corollary 3.16),

(/„ ω~ ι(Φ)fd=<Φl πΦ(a*(fiMfi))> = <Φ;πφ(

W ) 2 = 0 or 1.

Thus, YAω~1(φ) — ΣλiAi with ^ = 0 or 1, proving that YAω~1(φ) is a projector.
Conversely if T s<Wt we have: ωτ is G(<^)-invariant, D ω τ W = Dωτ(<8fΛ)" and,
for iφj ,

<ω τ ;π ω τ (α*(/>(/,.))>.
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If, further, YAT is a projector we have, by reversing the above argument, that

< ω τ ; πωτ(a*(fMfd)>2 = O τ ; πωτ(a*(fMfd)2> V i e / .

Since Dωτ(<3fA)" = {πωτ(α*(/i)α(/i))};/

6/, ω r is a character on Dω τ(«0" and is therefore
an extremal G(W)-invariant state on si. Assertions 1 and 2 follow immediately
from Choquet's theorem, bearing in mind that S{C3/) is compact and S is metriz-
able. D

4.3. (a) Definition. Let D(®J) denote the C*-algebra of continuous, complex-
valued functions on the compact Hausdorff space S(&). Let δ( \<&) denote the
canonical map of si into D{<&). That is, for each Ύesi, δ(T\<&) (σ) = (σ; Γ ) V σ e

We remark that since (3.19 and 3.15) for /, g e H and σ e S(<&) <σ; a*{f)a(g)> =
(σ',Ωσ(Λ(g,f))y, and since ®J^ consists of vector-forms, we can add:

4.3. (b) Definition. Let Ω'.^^Diβ) be defined, for each σ e S(&) and A e ®'#,

4.4. Remark. It is clear that <f ( |^) is a positive, ^-preserving, linear map of
norm 1: we show in 4.5 that it is "almost" a conditional expectation.

It is also clear that i2 :^->D($0 is a positive, linear, contractive injection

which satisfies the formula:

NM(fl9...9fN;gl9 ...,

4.5. Theorem. Let φ be a G(^/)-invariant state on si. There exists a unique
*-representation iiφ:D((%/)^B(Hφ) such that

Further, πφ{Ω(Λ)) = ΩΦ(Λ) V Λ e 9 ^ .

Proof. Uniqueness would follow by continuity from norm density of S(si\(&)
in D(&). Since S^®/) is a self-adjoint, linear subspace of D{&), separating S(β/)
and containing the unit, density will follow from the Stone-Weierstrass theorem
if i{si\^jy^ can be proven to be an algebra. It is sufficient to show that U, V e si=>
δ(V\<3ί)δ{υ\<&)eδ{sίW)-1'. We have, for arbitrary σeS(«0,

δ(V\<8f)'δ(U\<St){σ)

= lim<σ; VS{Ό\En)y=\imS{VS{Ό\En)\(W){σ),
R->OO n-^oo

where {En} is a dense increasing sequence of ^-partitions of H [by 3.2(2), 3.13,
3.19, and the fact that σ is a character on Dσ{®/)"~\.

Consequently, [6, IV.6.4] <£(7|<S0<f(C/|«0 = weak- lim(f(F(f(C/|£")|^) (the con-

tinuous function on the left is the point-wise limit of a bounded sequence of
continuous functions). By [6, V.3.13] δ{V\<&)δ(U\<&)eδ{si\<&)-N.

This completes the proof of uniqueness; we now prove existence. Let
ψeQφ and μs*φ{xp^) be the unique maximal measure on <SG(<3° representing (?$
where S^ψ^) is the G(^)-invariant, normal state on πφ(srf)" defined as

. We have

; δφ(πφ(S)\<3()> Ξ
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We can now define, without ambiguity, π%:g{jz?\(2/)-+B(Hφ) by π%(&(S\&)) =
£>φ(πφ(S)\(W)VSe<8?. It is clear that πφ is linear and ^-preserving. Let again U,Ves/;
then, by the weak convergence proven above, we have

= lim
n—* oo

σ) dμs.φ{ψm(σ)

Thus, for each V e srf we have,

p ^ φ { φ { φ { φ { p

Therefore, πφ extends by continuity to a continuous, ^-preserving, linear map
πφ of D(<3f) = &(.s/\&)~N into Gφ{^). It is clear that, for each normal form ψ on
πφ{sf)"9 <ψ πφ(T)} = f T{σ)dμsmm{σ) V T e D{βf).

Hence, for U,V G J / , we have

Hence, πφ is a ^-representation of D(^). The remaining assertion is immediate. D

4.6. Corollary. Let S(W) denote the set of regular probability measures on
Then, the map δ*( \<W)\ S(^)-><5 G m defined for each μ e S(«0 by

Y S> = \^/{SW) (σ) dμ(σ) V S G ^

is an affine, bijective map.

Discussion

In Theorem 3.2, the net of conditional expectations is proven to converge
only on πφ(stf) (not on πφ(srf)"). If φ is the Fock state and if ty is non-atomic, there
exist elements of πφ(stf)" on which the net does not converge. By restricting our
attention to %φ{s$\ we have been able to treat those cases when πφ(stf)" is not

GOSO-fmite.
We remark that Corollary 4.6 is the natural generalization of the work of

Shale and Stinespring on states symmetric about a basis [14]. Araki [1] has
generalized Theorem 4.2.

On the physical side, we have isolated a classical field of number densities on
the spectrum of an arbitrary, complete one-partical observable Θ. When Θ has
discrete spectrum, the field is simply the lattice gas [3]. When & has continuous
spectrum, the field is macroscopic (i.e. centre-valued [10]). This results from the
coarseness of the CAR-algebra description of a Fermi field on a continuous
physical space; coarsness which is preserved by normality of the projector upon
the classical field.
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Appendix

Proof of Theorem 0.2. We give a sketch. See 16.1 for details and notation.
1) Existence of the extension follows from amenability of G and the assumption

stfMQs/G (e.g. Ruelle [12,6.2.13]): Uniqueness is immediate.
2) Since each state on s/G can be extended (e.g. Ruelle) to a G-invariant state

on si, s$M separates the set of all states on siG. Therefore, by an Extension of the
Stone-Weierstrass theorem [5,11.3.1], siM = siG.

3) Let & be the eneveloping von-Neumann algebra of si. si is isomorphic
to a σ-dense C*-subalgebra of ^ , and G extends to a group of automorphisms
of J*. If S e J* (resp. φ e J>*), and if m is a mean on B(G), define rnSe& (resp.
m*φe&*) by <mS; μ} = m(gS; μ> V μe J ^ (resp. (m*φ; S} = rn(φ; gS} V S e &).
If φ is a state on ^ and if η is an invariant mean, then it is easily seen that φ°η
and /?*</> are two G-invariant states on & which coincide on sfG. Consequently,
by 1, (φ;ηSy = (η*φ;S}\/SesJ (though not necessarily for all SE SS). Choose
a net {Mβ}βeI of finite means weak*-convergent to η. Then, for each state φ on $
and S E si, (φ ηS) = (η*φ;S) = η(φ gS) = UmMβ(φ ^S> = lim<</> MβS). Thus,
by linearity, for each S ES/, ηS = weak-limM^S. We conclude that
?/SeCo{#%eG}-weak and by Mazur's theorem [6,V.3.13], that ηSeCo{gS\geG}~N.
Consequently, Co{gS\g E G}~Nns/G is not empty. To prove that {ηS} =
Co{gS\gEG}~Nns/G suppose that S e Co{gS\g E G}~ΉnsiG with SφηS. There
exists, therefore, φe@* such that (φ S-ηS)φO; thus (η*φ;S-ηS)ή=0. But
η*φ is, by continuity, and linearity, constant over Co{gS\g e G} ~N. Define SG = ηS.

4) These properties follow immediately from those of the invariant mean η.
Uniqueness is immediate. D
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