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Abstract. Euclidean Field Theory techniques are used to study the Schwinger functions and
characteristic function of the :φ2: field in even P(φ)2 models. The infinite volume limit is obtained for
Half-Dirichlet boundary conditions by means of correlation inequalities. Analytic continuation yields
Lorentz invariant Wightman functions. It is shown that, in the infinite volume limit, C φ ( x ) 2 : ) ^ 0
for both the Half and the Full-Dirichlet (λφA)2 model. This result also holds for a finite volume with
periodic boundary conditions.

1. Introduction

The path space approach to the self-interacting scalar Bose field in two space-
time dimensions involves the introduction of the free Euclidean field φ which
can be viewed (Nelson [1]) as the generalized Gaussian stochastic process φ(x)
with mean zero and covariance

(1)J (2π)2 ,

The Schwinger functions associated with the P(φ) interaction in the open bounded
region A C R2 are given by

- S:P(φ(x)):d2(x)

<Φ(fl)- Φ(fJ>Λ= 1 ' " -S

np{φix)yd2{x) ~, (2)

\e - dμ0

where supp/ C/1, φ(f) = § d2{x)φ(x)f(x\ and μ0 is the free Gaussian measure,
i.e. the Gaussian measure associated with the free Euclidean field φ. One is then
interested in the Schwinger functions in the infinite volume limit A-+R2. In the
case of small coupling constant, the Glimm-Jaffe-Spencer [2] cluster expansion
is a powerful tool for studying this infinite volume limit. If, however, it is desired to
obtain results independent of the magnitude of the coupling constant, then
correlation inequalities of Griffiths' type become the primary tool (Guerra, Rosen,
and Simon [3], see also Simon [4]). This method is essentially restricted to even
polynomial interactions and we assume this in the following.

Little is known about correlation inequalities for Wick powers (see [3]; for
small coupling Wick powers have been studied by Schrader [12]) so it is of some
interest to explore the properties of even the simplest Wick power, :φ2:. Indeed,
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:φ2: differs from φ2 only by an "infinite constant" and thus it is reasonable to
expect that methods useful for studying the field φ should also be applicable to
:φ2:. Higher Wick powers involve polynomials in φ containing infinite negative
coefficients and the application of correlation inequalities in these cases appears to
be considerably more difficult.

We briefly summarize here the Dirichlet boundary conditions and the lattice
approximation. For details we refer to Refs. [3] and [4], The covariance S(x — y)
given by Eq. (1) satisfies

(-A+m2)S(x-y) = δ(x-y). (3)

Let SΛtD(x,y) be the solution to (3), for x,yeΛ, that vanishes on the boundary
oϊΛ. The Euclidean field with Dirichlet boundary conditions on A is the generalized
Gaussian stochastic process with mean zero and covariance SΛ D(x, y). Let
dμAΌ be the corresponding Gaussian measure, called the Dirichlet measure for the
region A. The Dirichlet boundary condition decouples regions, hence its usefulness
in the investigation of the infinite volume limit. The Half-Dirichlet Schwinger
functions <0(/i)...0(/J>^Dare defined as in Eq. (2) with dμΛD in place of dμ0.
For the Full-Dirichlet Schwinger functions (φ(fι)... </>(/n)>5> the Wick ordering : :
defined with respect to the free covariance S(x — y) is replaced by the Wick
ordering : \D defined with respect to the Dirichlet covariance SΛtD{x, y) (see [3]).
We shall always assume A to be sufficiently smooth (regular and log-normal [3]).

In deriving and applying the Griffiths inequalities the lattice approximation
is used. For each <S>0 one considers the lattice {nδ} in R2, where n = (n1,n2),
nδ = (n1δ,n2δ) and n—0, ± 1, ±2, ... let \n\ = |/tj_| + \n2\. For each lattice point
there is a lattice field φδ(nδ). The lattice fields are Gaussian random variables
with mean zero and covariance Sδ(n, ή) = (φδ(nδ) φδ{n'δ)} in the free boundary
condition case, and Sδ

ΛJ){n,n') for Dirichlet boundary conditions on A, where

ί
2 if n = ri

- 1 if | n - n ' | = l

0 otherwise.
The restriction of Sδ to lattice points in the region A satisfies [ S ^ M ] " 1 {n,ri)
= Aδ(n, ή) — Bδ(n, ή) where B is a positive definite matrix with non-negative
elements (see [3]). In the lattice approximation φ(h) is replaced by £ δ2φδ(nδ) h(nδ),
and f:P(<£(x)): d\x) by £ δ2:P{φδ{nδ)):9 the Wick ordering here being withnδe A

respect to the lattice covariance Sδ

Λ. The lattice fields suitably approximate the
corresponding continuum fields as (5-»0 in the sense that the lattice Schwinger
functions converge to the continuum Schwinger functions. Given an open bounded
region A, let qu ...,qN be the lattice fields φδ(nδ); nδ e A. With the P(φ) interaction,
the joint distribution of the lattice fields has the form

N

Σ (Btj-Aijqtqj N

dpδΛ = ηeij=ί Y\Fi(qi)dq1...dqN,
i=l

where Ft = e-
δ2:P^y and η is a normalization constant. The Half-Dirichlet lattice

measure dPδ

A HD is obtained from dPδ

Λ by setting the matrix £ = 0, and in addition
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for the Full-Dirichlet measure dPb

ΛΌ the Wick ordering in P ^ ) : is with respect
to the Dirichlet covariance Sδ

ΛD. The measures dP%, dPδ

Λ HEh and άPδ

ΛΌ are
even ferromagnetic measures and expectations of qOί = qa

ί

ί...q%N with respect to
these measures satisfy the Griffiths inequalities [3]

(GI)

(Gil) <q«qβ>^<q«>(qβ>.

It follows by an argument of Nelson [5] that

and (φ(xι)...φ(xn)}%D is monotone increasing in Λ. The Half-Dirichlet Schwinger
functions are uniformly bounded (Frohlich [6]) independently of A and thus the
limit A-+R2 can be taken. The resulting Schwinger functions satisfy the Oster-
walder-Schrader axioms and thus yield Wightman functions by analytic conti-
nuation (see [6, 4]). This also holds for the Full-Dirichlet Schwinger functions,
in the case of a 0 4 interaction ([3, 4]). In the following sections we obtain similar
results for the Wick square :φ(x)2:, and in the last section we prove that, in the
infinite volume limit, (:φ(x)2:} ^ 0 for both the Half and the Full-Dirichlet
(λφ4)2 model. This result also holds for a finite volume with periodic boundary
conditions.

2. Basic Inequalities

Let :φ2:(g) denote l\φ(x)2\g(x)d2(x) where :φ(x)2: is Wick ordered with
respect to the free covariance S{x — y). Let 3) denote the set of infinitely differentiable
functions with compact support, 3>{A) the functions in 3) with support in the
open set A, and let 9> denote the set of infinitely differentiable functions which
decrease faster than any inverse power at infinity.

The Griffiths' inequalities yield the following theorems:

Theorem ΐ1. Letge 3f{A). Then

<e^.(9)yHD^<e:φ-{9)yΛ ίf g^Q

< ^ w > 5 ^ < ^ ^ if gSO.

Proof. Take g^O. In the lattice approximation (e

σ Φ2-(9)yHD i s g i v e n b y

where Sδ = Sδ(n, n). It suffices to show that

J e aΓΛ,HD

is increasing in y if σ > 0 and decreasing in y if σ < 0.

1 Here and throughout this paper we assume P has degree ^ 4 . The results are still true in case P
is of second degree but one must then be careful about the integrability of e:φ2'Λ9\ it suffices to notice
(eλ:φ2:{9)yΛ<oo for \λ\ sufficiently small.
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The derivative of this expression with respect to γ is

and this is positive or negative according to whether the following expression is
positive or negative:

<.ΣBijqiqjyσ-<.ΣBiJqiqj ) y (*)

where < >y is the expectation with respect to the measure

y ! e

and < >σ is the expectation with respect to the measure

e«τ^άP
σ S

The derivative of the quantity (*) with respect to σ is

<(Σ gtqf) (Σ B^q^ - <Σ giq
2}σ <Σ B^q^

which is non-negative by (Gil) for the measure dPσ. Taking the limit <5

completes the proof of the theorem. •
Precisely the same sort of argument /with Σ B ^ ^ replaced by — ^ A^q

ieΛ
\ JeΛ'\Λ

leads to the following result:

Theorem 2. Let g e 2>{Λ). Then if Ac A'

<e:φ2:{g)yHD^<e:φ2:ig)yHD y g ^ Q

Thus the Half-Dirichlet expectation is monotone increasing if g ^ 0 and monotone
decreasing if g ^ 0.

We consider now the Full-Dirichlet expectation (e:φ2' D{9)}^ in the case
P(φ) = λφ4, where :φ2:D denotes Wick ordering with respect to the Dirichlet
covariance SΛD. As

• φ2- D(g) = -Φ2'.(g) + ί ίS(x -x)- SΛ,D(x, x)-] g(x) d2(x),
A

S(χ -x)- SΛD(x, x) e Lp(A, d2{x)) for all p < oo ,
and

S(x-x)-SΛD(x,x)\0 as 2

it follows that φ2{)°

if the limits exist (and if one exists, so does the other). It suffices therefore to
consider <e:φ2:iβ)y%.
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Theorem Γ. Let P{φ) = λφ*, and suppose g e Θ(A). Then

Proof. To prove the inequalities < ) S | < ) Λ D u s e

where S"5 —S^ D > 0 and α is a normalization constant. The proof then proceeds
exactly as in Theorem 1. The remaining inequalities are a restatement of Theorem 1.

D

Theorem 2 ' .Let P(φ) = λφ4, and suppose ge@(A). Then if Ac A

if g^

if g^

Proof. As in the discussion of the Schwinger functions for the φ field given
in Ref. [3], one proceeds in two stages. In the first stage one does not change the
region A but the Wick ordering is changed to that appropriate to A':

,D-sA,n)(i,ΐ)q? J pδ
aΓΛ,D

and notice Sδ

Λ,D>Sδ

ΛD. In the second stage one turns on the couplings to the
region A'\A. In each of these stages the required inequalities follow as in Theo-
rems 1 and 2. •

Remark. By a limiting argument Theorem 1 implies that if geL1nL2

where gΛ is the restriction of g to the set A. ((e

:φ2:{9))%D = (e φ2' {gΛ)}%D since the
Dirichlet field vanishes outside A.)

Similarly, in Theorem 2, if g e L1 nL2

<e:φ2:{g)yHDύ<e:φ2:igΛ)yHp j f g ^ Q

and likewise for the other inequalities.

3. Uniform Bounds

According to Theorem 2, (e:φ2:{0)}%D (and (eφ2:{g)yD

Λ for a φ4 interaction)
are monotone increasing (decreasing) in A for g ^ 0(g ̂  0) if A contains the support
of g. A study of the infinite volume limit is completed by obtaining bounds uniform
in A.

Theorem 3. Let geQ) and suppg C Ao where Ao is a finite union of unit squares,
and let ADA0. There exists a norm || | | s defined on Sf such that | | ^ | | s ^ c < o o
implies \^e:φ2'^9)y^D\^cr <co where d depends only on c and is independent of
A and Ao.
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Proof.
^φh(g)yHD\ ^ ^e'.φ

2:(2g + )yHDψ ( < g - : ^ : ( 2 f f - ) > H D ) i

where g+,g- are the positive and negative parts of Reg, the real part of g. The
first term can be estimated by an argument of Frohlich [6] (see also Simon [7]).
Let / = 2g + . By Theorems 1 and 2,

/p:φ
2:(f)\HD < / :φ2:(f)\HD < /p:φ

2:{f)\ jf A r ]Ύt

\ e /A =\e /lχt=\e /Ixt Π ΛLLXl,

where Ixt denotes the rectangle with sides of length / and t centered at the origin.

where E[A] denotes the lowest eigenvalue of the operator A,

1/2

iJz = i i z - £ [ # , ] , Hι = H0+ J :P{φ(x,0)): dx,
-1/2

and ft(x) = f(x, ί).
By a result of Spencer [8] (see Simon [7])

ro + c^:P(φ(x,0)):dx-:φ2:(ft)

independent of /, if supp/ t C [α, ft]. The constants c, d depend on a, b. As shown
in Lemma 1 below, (J |/(x, ί) |2 ^x)^" ̂  ĉ  < oo implies

— E Ho + c {j :P(φ(x, 0)): dx - :φ2: (/t) j] ^ c'2

where c'2 depends on c[ and on a and b.
Defining the norm |||g|||2 = sup J \g(x, t)\2 dx we have shown

t

< ^ 2 ; ( 2 9 + ) > r ^ c 2 if \l\g\\\Sc,,

where c2 depends on c1 and on Λo.
We must now estimate ^e- Φ2:(29-)yHD^ ^ s ^ ^ r s t Griffiths' inequality does

not apply to :φ2: we cannot estimate this in terms of (e Φ2 (2g-)yHD^ ^ye p r o c e e c j
instead using the monotone decrease of ζe-' Φ2'-(29-)yHD w ^ j 1 ̂  j o r ^ ^
(Theorem 2). L e t / = 2^_

c p~:φ2:(f)p-VΛo J
/p-:φ2:(f)\HD < / -:φ2:(f)\HD _ J_f e α ^ 0 , D

where F l o denotes the Half-Dirichlet interaction associated with Λo, and c
depends on Ao.

But
\e-'Φ2 (2f)dμ =$ e~:φ2:D(2f)dμ ens(χ,χ)-sΛo,D(

As 5(x, x) — SΛo D(x, x) e Lp{A0, d2(x)) for all p < oo [3] we have

, x) - S^,D(x, x)] 2/(x) rf2(x) ̂  c || /1| 2 . (4)
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By an application of Jensen's inequality for conditional expectations [3]

for some constant α>0. Since H/IU^&IIIΛ b depending on the support of g9

we have shown

<-Φ2:(2d^yHD i f

where c2 depends on c1 and on Ao. Thus, for ADA0

\(e:Φ
2 (9)yHD\^c><ϋ0 if

where d depends on c and the support of g but is independent of A. To complete
the proof of the theorem the dependence of the constants on the support of g
must be eliminated. This is accomplished using a technique due to Glimm and
Jaffe. Decompose R2 into (closed) unit squares Λij9 ίj e Z, such that (x, y) e Atj

implies |x| ^ \i\9 \y\ ^ \j\. Let pu = A{i2 + 1) (j2 + 1) where A is chosen so Σ l/p f j = 1.
Let gtj denote the restriction of g to Atj and let ||^||s = Σ ί j /?ίjH|^{j |||. By Holders'
inequality, 1

\/e:φ
2:(g)\HDι <; ΓT i/^2:(Pij Regίj):\HDyΓj ^

As suppgijCAijCA, we can use our uniform estimate for ADA0, and replace
Λo by Au. If \\g\\sSc1 then \\\pijgij\\\^c1 for all ίj and thus

where c2 depends only o n q . Thus

and the theorem is proved. •
We now prove Lemma 1.

Lemma 1. Ho +^:P{φ(x,0)):dx-S:φ(x,0)2: g(x)dx^c1 if ||flf||2gc2, where
a

supp^f C [α, fe] and cί depends on c2, a, and b.

Proof.
Γ b 1 b

-E \Ho + $:P(φ(x,O)):dx-S:φ(x,O)2:g{x)dx\ - ί :P(φ(x,O)): dx + J:φ(x,0)2: g(x)dx

e y « \<,\\e - ||2/m,

where m is the mass associated with the φ field (see Segal [9], Guerra-Rosen-
Simon [10], Klein-Landau [11]). This Lp norm is estimated by Nelson's method
(e.g. [4]). Undoing the Wick ordering (with a momentum cutoff k, and dropping
the x variable temporarily),

:P(φk):-:φ2

k:g = a2nφ
2

k

n + a'2n_2φ
2n~2 + ••• + ao-φ2g + Skg,

n

where P{z)= Σ anz2i a n d the α include the change in the coefficients due to

the Wick ordering. This is equal to
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The first term is estimated as usual to be ^ — c1 (Ink)" and the second ^ — c2g
tι/n~1.

Thus

J :P{φk(x, 0)): dx - J :φk(x, 0)2: g(x) dx ^ -c^lnk)" - c2 J g^)"1"'1 dx .

Also

J :P{φk(χ9 0)): dx - J :φk(x, 0)2:
b

j :P(φ(x, 0)): dx - J :φ(x, 0)2: g(x) dx

for some constants i ,α as usual. It follows that if | | 0 | | 2 ^ c ' Nelson's estimate
shows that the L2/m norm is bounded uniformly in g and thus the lemma is
proved. •

Theorem 3 requires that g have compact support and that A be sufficiently
large, containing the support of g. In order to handle g e Sf we consider those
regions A which are a finite union of unit squares Atj. Then

_ _
\ < "TΓ //^φ^.{2Pijg + ij)\HD\2Pιj ^e~:φ2:(2Pijg-ij)yHD\2pιj ^

where g+,g- are the positive and negative parts of Reg^, and gΛ is the restriction
of g to A. The first term is estimated as in Theorem 3, the second term satisfies

This holds because, due to the special form assumed for A, AD Atj. The right hand
side is estimated uniformly as in Theorem 3. Thus we have

Theorem 3'. Let geίf.lfΛ is of the form (J Atj then
finite

| | 0 | | s ^ c < oo implies | < e : φ 2 : ( 0 ) > ^ D | ^ d < oo ,

where d depends only on c and is independent of A.

Remark. Theorems 3 and 3' are also true for ^e:φ2:iβ)}^ for a φ4 interaction.
The proof is the same, using Theorems Γ, 2' in place of Theorems 1, 2.

Theorem 3 implies that ( g z : ^ 2 : ^ ) J D is an entire analytic function of z, since no
restriction on the magnitude of the norm | |# | | s was imposed. For the purpose of
studying the existence of the time-zero field J :φ(x, 0)2: f(x) dx it is useful to have
a norm || ||̂  which remains bounded as /®ω M -*/®<5. Lemma2 gives such a
norm (see the discussion in Section 4) although in this case a restriction on the
magnitude of the norm \\g\\'s is imposed.

Lemma 2. Let g{x)e^{R1) be real Then
i) Ho — J :φ(x, 0)2: g(x) dx^—a uniformly in g if \\g\\ x ^ b where b is sufficiently

small
ii) As a consequence, if /(x, t)eQ) is real,

c e$:φ(x,s)2:f(x,s)dxds(iιί <A

if Ill/Hi'^2? where B is sufficiently small and |||/||Γ = sup J|/(x, t)\ dx, A depending

only on B and the support of f.
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Proof.

e-E[Ho-ί:φ(x,0)2:g(x)dx] <
e°

1 -e~m

(see [7] or [11]). Using Jensen's inequality the right hand side is

which is <Lcγ if ||gr|| x S- c2 for c 2 sufficiently small,
ii) Follows immediately from

l •
Corollary 1. Let ge@{R2\ suppgCΛ.o, where the distance from the support

of g to the boundary of Λo is ^ e > 0. Let ΛDΛ0. Then

if \\g\\'s^B for B sufficiently small, where

\\' = sup ϊ\h(x,t)\dx.

Proof. The proof proceeds as in Theorem 3, using Lemma 2 in appropriate
places. Note that because of the assumptions on Λo and suppg, S(x, x) — SΛoJ)(x, x)
is continuous on the support of g9 so that in Eq. (4) the norm || | |2 can be replaced

by II ||!. D

4. The Infinite Volume Limit

Theorems 1-3 lead to the infinite volume Schwinger functions via Vitali's
theorem, as discussed by Frohlich [6] (see also [4]).

Theorem 4. Let j l 9 ...Jn9gl9 ...,gme&. Then

converges as A sR2, and there exists a norm \\ \\son6f such that the infinite volume
Schwinger functions satisfy the bound

lls WMmWs

for some constant c. Moreover they satisfy the OsterwalderSchrader axioms and
thus can be analytically continued to Lorentz invariant Wightman functions.

Proof. The proof is as in Frohlich [6]. Take the norm || ||s as defined on p. 149
It is known [6, 7] that \<eΦU)}%D\ ̂  c if | | j | | s ^ d. We may conclude by the Schwartz
inequality and Theorem 3, that

| < ^ + :*1 :<*>2D |^c if ItflL + k l U C ,

where c depends only on d. Letj\.. Jn9g1...gm^0.

/eλίφUi) + " +λnΦUn) + zί:φ
2:(gi) + zm:φ2:(grn)\HD
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is an entire function of λί9 ...,zm which is bounded on any ball, and monotone
increasing in A if all λi9 Zj are non-negative and j 1 ? ...,gme 2)(A). By Vitali's theorem
the limit as A s R2 exists and is an entire function. The bounds on the Schwinger
functions come from the Cauchy integral formula. See [6] for details. •

Remark. Theorem 4 is also true for the full Dirichlet Schwinger functions
for a φ4 interaction.

The Schwinger functions obtained in Theorem 4 can be extended by continuity
to functions jι...gme&?. On the other hand Theorem 3' enables us to take the
limit AsR2 for j u gj e 9* in case A is a union of unit squares, and we obtain the
same sort of bounds as in Theorem 4. A 3e argument shows that the Schwinger
functions for j h gj obtained either by extension by continuity or by taking the
limit A /* R2 for A a union of unit squares coincide.

Finally, we remark that the time zero Wick square is well-defined in the infinite
volume limit: Let fe@(Rι) and let φo(f) denote J φ(x, 0)f(x)dx. Likewise
:*§:(/) = ί:0(x,O)2:/(x)dx.

Theorem 5. Let fe@(Rι). The time zero field :φl(f): is well-defined in the
infinite volume limit. Let fu ...fn,hx,... hme ^(R1). Then

converges as ASR2.

Proof. The proof follows from the fact that, according to Corollary 1, the
norm || | | s may be replaced by the norm || \\'s which is bounded as ωn®F-*δ®F
and from Euclidean covariance: As we have defined the norm || 11̂  it is clear
that J :0(O, i)2\ f(t) dt is well-defined. A rotation brings this to the form :φl: (/). •

5. Positivity of (:φ(x)2:>

Theorem 6. For a λφ4 interaction, in the infinite volume limit

Proof. The proof follows from the existence of the above infinite volume
limits, as discussed in Section4, plus integration by parts. If qh i= 1, ...,n are
Gaussian random variables with co variance Ctj = <^^;->, and F = F(ql9... qn)
then [2] n

For the Half-Dirichlet theory in the Lattice approximation the above formula
(used twice) gives

:q2:e ^ ) Λ + \2λδ2 £ S%D(iJ)2 \:q2: e * ) A

j

Dividing through by (e-
λδ2Σ qk .yHD a n ( j ^ ^ ^ g ^ lattice spacing δ-+0 gives

<:φ(x)2:>H

Λ

D + m Jd2{y)SΛ,D(x,y? <:φ(y)2:>H

Λ

D^SA<D{x, x)-S(x, x). (5)
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By the results of Section 4 we can take the limit A / R2 where the A are finite
unions of unit squares:

Let 0 S / e 2. Define g(x) = l2λ$S(x- y)2f(y)d2(y)9

h(x) = 12λ J lSΛtD(x, y)2 - S(x - y)2] /(y) d2(y), and

Then Eq. (5) becomes

The first two terms converge as A SR2 and FΛ-^0. By Theorem4 and Lemma 3
below, (:φ2: (hΛ)}%D^0 as A-+R2.

Thus in the infinite volume limit

Using the translation invariance of the infinite volume Schwinger functions gives

Ίhus(:φ(x)2:}HD^0.

A similar discussion for the Full-Dirichlet theory leads to

<:</>(X)2' D>Λ + 12λ ί d2iy) SAD(x, yf <:φ(y)2:D)D

Λ ^ 0

and to (:φ(x)2:}D ^ 0 as before. •

Lemma 3. Let hA(x) = f [S(x - y)2 - ^ ( x , y)2] /(y) J2(y).
Then \\hΛ\\s^0asASR2.

Proof. Consider points x = (z, t) e Atj for some unit square Atj.

hΛ(x)\0 as A/R2 since SΛtD{x,y)f S(x-y) [3].

Also, /î  e 5^ so that J dz\hΛ(z, t)\2 is continuous in ί and monotone decreases
to zero. Therefore, by Dini's theorem,

sup j dz\hΛ(z,t)\2^0.

Thus pΛ.HI \0. Finally | |ftJ| s\0 follows from

\\\hΛιj\\\S \l\HJ\ and Σ Λ J i ϊ J < oo ,

where i/(x) = J S(x - y)2 /(y) d2(y) and Ho- is the restriction of H to Λu. D
Remarks. 1. Our proof that <(:</>(x)2:) ̂  0 depends crucially on the translation

invariance of the infinite volume expectation. The same proof gives the result
for a finite volume theory with full periodic boundary conditions (i.e. the Wick
ordering is with respect to the periodic measure) since one again has the required
"translation invariance". This has been obtained by Baumel [13] by a different
method.

2. Theorem 6 applies also for free boundary conditions and small coupling.
The required infinite volume limits are in Schrader [12].
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