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Abstract. We discuss, for the case of pion-pion scattering, a closed system of equations which
may be used for a self-consistent calculation of partial-wave amplitudes. It is shown that, for a given
sufficiently small input function, the equations have a locally unique solution in a particular Banach
space of doubly Holder continuous partial wave amplitudes. At a fixed point, the scattering ampli-
tude is shown to satisfy both a crossing symmetric unsubtracted Mandelstam representation and the
elastic unitarity condition. In this initial study the partial-wave amplitudes are holomorphic in the
right half complex angular-momentum plane.

1. Introduction

Since Mandelstam [1] in 1958, proposed the double spectral representation
for the two-particle scattering amplitude there have been numerous attempts to
solve the crossing-unitarity equations [2]. While dispersion theory has led to
some fruitful phenomenological correlations of experimental data, these attempts
have on the whole met with limited success.

Several years ago, Atkinson [3] proposed a list of remedies for the then
diseased state of strong-interaction dynamics; parts of this programme were
subsequently implemented [3—5]. In particular, it was shown by means of fixed-
point theorems that there exist crossing symmetric pion-pion scattering amplitudes
satisfying the Mandelstam representation with elastic unitarity between the
elastic and inelastic thresholds and the inelastic unitarity inequality above the
latter. However, if more than one subtraction is needed in the double dispersion
relation for the amplitude, it has not been possible to guarantee positivity and
boundedness of the partial-wave amplitude A4 (s, ]) as s— co. Now it is known that
the f-meson resonance, with spin 2 occurs in the pion-pion spectrum and thus,
at least three subtractions are expected in the dispersion relation.

The difficulty with the iteration equations for the double spectral function
lies in the fact that, for the partial-waves to be bounded as s— oo, the double
spectral function must have infinite oscillations. However, it is very difficult to
incorporate suitable oscillations in the Banach space of double spectral functions.
It was proposed in a previous paper [6] (referred to as I) that a likely way of
overcoming this problem is to replace the iteration equations for the double
spectral function by a closed system of equations for A(s, /), the continuation of
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the partial-wave amplitude into the complex angular-momentum plane. At a
fixed point of these equations, the double spectral function may, for the case
when A(s, l) contains Regge poles in the right half I-plane, be written as the sum
of a Sommerfeld-Watson background integral and Regge terms. The contribution
from the background integral should be the same as when A(s, [) is holomorphic
in the right half -plane and thus would not necessitate subtractions in the disper-
sion relation. The Regge terms which lead to subtractions are given explicitly in
terms of Legendre functions and the Regge trajectory and residue functions. For
the sort of trajectory and residue functions that are expected on the basis of
potential theory [2], the Regge terms will in general oscillate. Thus there is a real
hope of overcoming the problem of guaranteeing boundedness of the partial-wave
amplitudes; it seems that the positivity condition may have to be relegated to a
numerical investigation.

In this paper, we examine the equations which define the mapping A(s, [)
— A(s, ]) for neutral pion-pion scattering in the case when A(s, [) is holomorphic
in the right half I-plane. The extension to charged pion-pion scattering is straight-
forward but it seems desirable to avoid the extra notational complications that
the introduction of the isospin matrices involves. Section 2 describes the equations
which consist of the Froissart-Gribov representation for A(s, [), an unsubtracted
dispersion relation for the t-discontinuity of the scattering amplitude and a
Sommerfeld-Watson representation for the elastic contribution to the double
spectral function. The Banach space within which solutions of these equations
are sought is described and an explanation is given of how one may show that
the equations have solutions if the input functions are sufficiently small. The
technical aspects of this demonstration are given in Sections 3 and 4. Section 5
gives the constraints on various indices which must be satisfied if the proof is to
work. It is also shown that, at a fixed point of the equations, one may construct a
scattering amplitude which satisfies an unsubtracted Mandelstam representation.

2. Sommerfeld-Watson Transform

The Sommerfeld-Watson transform for the neutral pion-pion scattering
amplitude is given by

;o —4tetio
F(s,z)zzi i dI21+ 1) A(s, ])

~i+e—ico

P (=2) + P @1
To ensure tu crossing symmetry, 3 [ P,(—z) + P(z)] replaces the Legendre function
which appeared in Eq. (I-2.1). [Equations from I are denoted by placing I- in
front of the equation number.] The contour of integration is again a straight line
parallel to the imaginary axis in the complex [-plane, and A(s, l) is the partial wave
amplitude which is a holomorphic function of I for Rel/> —3+¢. The partial
wave amplitudes will be constructed such that they have this property and such
that F(s,t) in Eq. (2.1) is well defined. The parameter ¢ satisfies

O<e<?i (2.2)

and s and ¢ are the usual Mandelstam variables.
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We now change the integration variable to y, defined by
l=—%+e+iy (2.3)
and we use the reduced amplitude
B(s,y)=(s—4)"" A(s,]). (2.4

As discussed in Section 5 of I, one simplification that occurs in the case of relativistic
pion-pion scattering is that one may insert a Holder-continuous cut-off function
h(s) into the definition of g®!(s, t), the elastic contribution to the double spectral
function; h(s) is equal to unity in the elastic region 4 <s =< 16 and then decreases
to zero for s = 16 + 4 where 4 > 0. This is possible since elastic unitarity does not
now hold for s> 16 and thus g°!(s, t) is only constrained to be equal to the full
double spectral function o(s, t) in the elastic region.
Consequently, we define

075, 0= 006~ 16) 0(s = TO) HO)3-4(5) | dy(y—ie) Py (2) (4726720

'B(S+s Y) B(S—: y)a (25)

where 4t
(t)= T (2.6)
q(s)=(S;4)7, 27)

and the suffices + mean that the boundary values of the function must be taken
respectively above and below the cut on the real s-axis. A suitable definition of
the cut-off function is

{ 4<s<16,
h(s) = %+%cos%(s~16):16<s§_16+A,A>0, 2.8)
0 s>16+4.

The crossing symmetric double spectral function or double discontinuity of
F(s, t) can then be defined by

o(s, t) = 0°(s, t) + 0°!(t, s) + v(s, 1) (2.9)

for t >4, s > 2(t) and otherwise it is equal to zero. The boundary curve s= X ()
is given by

Z(t)=min {z(t), o(t)}, (2.10)
where
16¢

and v(s,t) is a symmetric input function which is supposed given and which
vanishes for s < 16, t < V(s) where

V(s)= max {16, 2(s)} . (2.12)
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The explicit form for V(s) that one would expect on the basis of perturbation
theory was discussed in Ref. [3]; for our purposes however we shall only require
that the above inequality is satisfied and we assume that V(s)—>oo as s|16,
V(s)— 16 as s— o0.

The set of equations which replace the potential scattering equations studied
in I and which define a mapping B(s, y)— B(s, y) then consists of Eq. (2.5) to-
gether with the following equations:

1 1 1
=— [ ds'[o®(s, t) + 0°%'(t, s’ .
Dl 0= [ dsTes 0+ (,s)][s,_s s B CIE)
1 4 iy (
B(Say)=7c—(s_4) o yjdtQ—%+s+iy(Z)D(S9t)+V(Say)a (214)
4
4 —L—g—i T ’ < ’
V(S»J’)=_2(S—4) : Y _[ ds f dtQ—%+s+iy(Z)v(s>t)
T 16 V(s
(2.15)
' 1 + 1
s'—s S —44+s+t]|’
where
2t
=1 . .
z + P— (2.16)

The extra factor in Eq. (2.14), as compared with Eq. (I-2.6) is due to the presence
of the u-channel.

Our object is now to find a suitable Banach space of functions and to show
that if B(s, y) and V (s, y) belong to this space and if || V| is sufficiently small then
there exists a locally unique fixed point B(s, y) = B(s, y). We shall find that there
are in fact classes of input functions (s, t) for which V (s, y) belongs to a suitable
space and which have appropriate large s and ¢ behaviour such that, at a fixed
point, an unsubtracted Mandelstam representation for F(s, t) may be constructed.

We shall choose to look for solutions in a Banach space which is specified
by a norm that is a generalization of that used in I and which allows one to ex-
tend the method of proof of I in a relatively straightforward way. After some
experimentation, it was found satisfactory to look for solutions in a Banach
space of functions, f (s, y), specified by means of the following norm

If = sup {521|J’2 +iFrY S (s2,¥2)}
[f (s y1) = f(s1,92) = [ (52, y1) + £ (53, y,)l

|51_52|M|Y1_YZ'9
s |l y+i |

s,—4 R
+Sup{52’1( ZS )IJ’Z‘H’ B If:s(SZayZ)'}
2

+sup 955" [y, +iF°

(2.17)

|fs(515 y1) = fo(S15 V2) — fo(52, y1) + f(52, )l
l51_52‘”’J’1"J’2|Q
‘ Sz | I Y1+i|

S2

1+pu
-+ sup 521< ) lyp 4+~ *

2
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The suprema are to be taken over s; >s, =4, —00<y, <00, [y;|>[y,| and the
indices are subject to a number of restrictions which we give in detail in Section 5.
We note that the first two terms in Eq. (2.17) correspond to the norm used in I
[Eq. (I-2.9)]. Moreover, if || f|| < oo then, with A>0, u>0, 0> 0, v>13,

— 4\t
s DISIF s(iT) i, (218a)

_l_ufsl_sz Iu

—4
505 9) = Sl IS sﬁ(sst ) |

ly+i*~", (2.18b)
1 '

— s—4 -1 qiop | V1™ ¢
fulss v1) = fals, v SN £ s (—S-) Iy, + i —H—yl . (2.18¢)
| fs(S1, Y1) — fs(S1, V2) — filS25 y1) + £i(52, ¥2)l
S =4\ T s s & sop [ V1 Y2 |®
§lflls“( 2 ) L 220y, i 22 (2.18d)
| 2 Sy 1 Iyz Y+

A similar set of inequalities hold with the function, f (s, ), replacing its derivative,
-1
|y +i| missing on the right hand sides; the

fi(s, y), and with factors (S

relations were given explicitly in Eq. (I-2.10).

It may be of interest to briefly summarize the reasons for choosing the norm
(2.17). We begin by recalling that there were two crucial points in the proof of
L. First, there was a contribution to B(s, y) which contained in its integral repre-
sentation a singular y-integral as well as a singular s’-integral. This led us to
choosing a Banach space of doubly Holder-continuous functions. Secondly, we
found in Section 4 of I that in order to obtain the required large y-behaviour
for |B(s, y)| we needed to integrate by parts in the t-integral [Eq. (I-4.4)]. This
was because |Q_, ., ..;,(2)] behaves only like |y+i~* for large y whereas we
needed |B(s, y)| to behave like |y +i|~*7°, where v is the parameter occurring in
Eq. (I-2.9). These same considerations apply to the relativistic case. However,
since our equations now also involve g°!(t,s), the t-integral in Eq. (2.14) will
contain the product of the partial wave amplitudes B(t,, y) B(¢_, y). On integrat-
ing by parts to obtain the required large y-behaviour of the crossed contribution
to B(s, y) one finds that bounds on the derivative with respect to t of B(t, y) are
needed. Thus, a norm of the form given in (2.17) suggested itself.

Most of the rest of this paper will be devoted to demonstrating that if | B|| < oo
and ||V || < oo then B(s, y) is well defined by Egs. (2.5) and (2.13)~(2.15) and further,
that a constant x exists such that

IBll x| B>+ V] . (2.19)

Because of the quadratic nature of the elastic unitarity relation used in deriving
Eq. (2.5), it follows by an immediate extension of the proof that, if B,(s, y) and
B, (s, y) are any two functions belonging to the space, the corresponding image
functions satisfy

1By — Byl <#{l|Bll + By} | Bs— Byl - (2.20)
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Then, from the Banach-Cacciopoli contraction mapping principle [3, 7], it can
be shown that, for a given V(s, y) such that || V| < (4x) %, there is a locally unique
fixed point B(s, y) = B(s, y) in the ball

{—[1—do|V|]?
2%

To_begin the proof of (2.19) we combine Egs. (2.5), (2.13), and (2.14), and
write B(s, y) in the form

B(s, y)=B"s,y) + B?(s, y) + B¥(s, y) + BY(s, ) + V (s, ). (222)

Here BY(s, y), B?(s, y), B®)(s, y), and B®)(s, y) are the contributions to B(s, y)
when the factors g¢'(s', £) (s — s) %, 0°/(s', ) (s — 4 + s+ 1)L, 0°(t, s') (s — s)" !, and
0°!(t, s') (' —4+s+1)"! respectively replace the integrand in Eq. (2.13). In the
next three sections we shall study the boundedness and Holder continuity of
B(l)(s’ y): B(Z)(S’ y)> B(s)(sa y)a B(4)(Sa y) and V(Ss y)

IBll = 2.21)

3. Study of BV (s, y) and B? (s, y)

To study the boundedness and Holder-continuity of B®)(s, y) it is convenient
to proceed as in I by writing it as the sum of two terms:

BY(s, y)=B{"(s, y)+ BS (s, ), (3.1)
where

/

l 2 dS > 7 ! ! 7

BY(s. )= — [ o h(s)als) f dy'(y' —ie) B(s, ) B(s~, ¥)
4

'( _4) Fret2iy An(S,S 5 y,Y),

n=1, 2. Here, A, and A, are defined, in analogy with Egs. (I-2.18) and (I-2.19), by
b =4 3~ 1)

O =y +y—2ig (3.3)

: [Q—-}_+e+iy(zl0) P/—-lt+s+iy‘(zlo) - Ql—%+a+iy(zi)) P-—%+£+iy’(zl())] >

(3.2)

Al(s,a Vs y/)‘_‘

©
A2(57 Sla ya yl)= I dt

o(s’)

—i—emi 2t N i—eei 2t
Jomarimoo (142 —e—ar o 1452

, 2t
oy +5P1+£+1y<1+ 4) (3.4)

where
32¢

(s =47

The treatment of B{" and B’ can then be carried out in the manner described
in Sections 3 and 4 of I respectively. The change in the definition of a(s’) and z;

Zo=1+ (3.5
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does not alter the proof, while the presence of the relativistic phase tactor g(s')
and the cut-off function h(s’) means that one can obtain bounds on B%)(s, y) which
are better behaved for large s than was the case in I. We find, on using the fact
that h(s') is Holder continuous:

Y
Ih(sy) — h(sy) < h(sy) [ 22|, (3.6)
that
IBO(s, y)| S| BJ|? s~ FPUTmHO|y g mEEmET (3.7a)
,B(l)(sxa)ﬁ)_B(l)(Sza)ﬁ)“Ba)(SlaJ’z)"'B(l)(szaJ’Z)l
S%||B||25_1+”(1—")+“+51Sl =2 |* |y =2 |Q|y2+i|_%+”+"+"+5. (3.7b)
- S | ' n+i
Here
1 : 1
_Jz—e if O<es=gz
p—{% if f<e<i’ 58
and, as in Eq. (I-4.16),
0<n<i-3u—20, (3.9)
where
0<pu<min@,e), (3.10)
0<o<ts. (3.11)

In Eq. (3.7), and in the following, x is a generic constant which may change from
one line to the next: the important point is that there exists such a number and
that it depends only on the various indices. Similarly J will be taken to be a generic
small positive number which may be as small as one pleases, and which may
change from one equation in which it occurs to the next. To ensure that the
y' integral in Eq. (3.2) (with n=2) is absolutely convergent, we require that the
index v, appearing in Eq. (2.17), satisfies

0> 3/4—n/2+ /2. (3.12)

Next we study the boundedness and Holder-continuity of B{(s,y), the
derivative with respect to s of BY(s, y). From Theorem 4 of Appendix B we have

B (s, y) =Bl (s, y) + BI"(s, y)+ B s, ) (3.13a)
where
B{'(s,y)=B{"(s, ») + BE(5.)), (3.13b)
2i 2 ds 0
B9 [, av' (v —ig) —
sn (S,y) TCZ ;!: s/_s _j;o y(y 18) as/

[(h(s) q(s) B(s's, ¥') - B(s—, y') (8" = 4) T F 727 ] (s — 4 A, (5,5, 3, ) s (3.14)
n=1, 2. Further,
2i ¢ ds <%

BV = 7 | 5y | &0/ ~i9)h(s)a(s) B, y)
4 -

(3.152)
B, y) (s —4)7ET 2 A, (5,55, 1, V)
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and B! (s, y) [referred to as Eq. (3.15b)] is defined by Eq. (3.15a) with (s' — 4)™*'
- Ay(s, 8, y, V") replaced by I'(s, s/, y, y'), where

2t 2t
© P—%+e+iy’ <1+ s —4 ) Q-—%+e+iy (1+ S——4>

0
I'(s,s V= — dt - — . -
(5,5, y,¥) o' d(j;,) (s — 4y~ iy (s—4)F+eriy

(3.16)

From Egs. (3.2) and (3.14) we see that B{}? is given by the same expression
as B except that the function

h(s) 9(s) BS'., ) Bs-, ) (s — &)™ 47+

is replaced by its derivative with respect to s'. Thus the method of obtaining
bounds and demonstrating the double Holder continuity of BY) is essentially
the same as that used for BY). We note however, that an extra factor (s' — 4) 1|y’ +
appears in the bound on the derivative with respect to s’ of

h(s) q(5) B(s'e, ) B, ) (5 = 4747+

compared with the bound on this function itself. This means that the theorems
in Appendix B which allow for singular behaviour of the weight functions at
the end points of integration are needed to replace the corresponding theorems
in Appendix B of I. Moreover, because of the introduction of the extra factor
|y' +1il, the bound on A, given in Eq. (I-4.8) is unsuitable for deriving the required
bound on B%?. However, instead of integrating by parts in Eq. (3.4) to obtain
the alternative expression for 4, in Eq. (I-44), we could have integrated by parts
with the roles of the Legendre functions P and Q interchanged. Taking a com-
promise between the resultant bound and that given in Eq. (I-4.2) we have

h(s) | Ay(s, 85y, Y Sxly +i] 73y +i| 3o gidmnTo, (3.17)
where
O<n<t, (3.18)

Here we have used the bounds on the Legendre and hypergeometric functions
given in Appendix A and in Appendix A of I. Similar bounds for the double
Holder differences in the variables sy, s’y can also be established by using the
mean value theorems [cf. Eq. (I-3.8)]. Finally, using the fact that the derivative
with respect to ' of h(s') is a Holder continuous cut-off function, we find that

s—4
[B (51, y1) — BY (55, y1) — B (51, y2) + B (55, 3,)| (3.19b)

1-¢
|B§“’(s,y)r§quu2<L) STHES i (319a)

IQ

H

treme o Ly Si =S [y —y
< IB 2( S2 ) STATETMTI |, 4 7+u+g+y,+(sl 1792 172
=x|Bl s,—4 2 y2+4 sl i

where #, i, 0, and v must satisfy inequalities (3.9), (3.10), (3.11), and (3.12) respec-
tively.

We note that B®? is given by the same expression as BY except that A,
replaces A,; its boundedness and Holder continuity can be studied by a method
similar to that described in Section 4 of 1. By starting with the expression for
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A, in Eq. (3.4) and using the bounds on the Legendre functions given in Appendix
A of T one can obtain a bound for 4,,. Similarly, from the expression for A, in
Eq. (I-4.4) one can derive an alternative bound for A,,. Compromising between
these two bounds we have

h(s) [A5(s, 8y, YV Sy + il 7y +4 72T st (3.20)

where # satisfies inequality (3.18). In a similar way it can be shown that A, is
doubly Holder continuous in the variables sy, s'y. With E(s,s’,y) defined in
Eq. (I-4.1) it then follows that E (s, s', y) is bounded and Holder continuous in
sy,s"y. On applying Theorem 3 of Appendix B of I we find that Eq. (3.19) is also

1-¢
valid with the replacement B — B1?, In fact, for B*? the factor (S > 4) in

1+p—c¢
Eq. (3.192) and the factor (S 52 4) in Eq. (3.19b) could be removed.
-

From the expression for I'(s, s, y, ') given in Eq. (3.16), it is straightforward,
using the bounds on the Legendre functions and their derivatives given in Appen-
dix A and Appendix A of I, to obtain a bound on I'. By integrating by parts in
Eg. (3.16) an alternative estimate can be established. Compromising between the
two we have

/

s
s'—4

W) (s, 5, v, ¥ < x( ) VI i, (321)

where 7 satisfies inequality (3.18). Moreover I' is doubly Holder continuous in
the variables sy, s'y.
Defining

C(s,s,y)=%(s—4F | dy'(y' —ie) B(s's,y) Bs_,y) (5,5, 3,¥) (322)

we find that C(s, s, y) is bounded and doubly Holder continuous in sy, s'y. It
is important to note that C(s, s, y) behaves like (s’ —4)~'*¢ as s'|4 while the
double Holder difference in s’y behaves like (s —4)"!7#*¢ as s, | 4. Thus using
Theorem 3 of Appendix A we find that Eq. (3.19) is also valid with the replace-
ment B89 — B, In fact, for B9 one can obtain estimates which are slightly
better behaved at large s. Finally we see that Eq. (3.19) is valid with B¢®— B®).

The treatment of B® (s, y), defined in Eq. (2.22), is much simpler that that
of B (s, y) and can be carried out in the manner described in Section 5 of L.
Because the denominator (s'+t+s—4) replaces the singular Cauchy kernel
(s"—s) which occurs in the definition of BY)(s, y), there is no singular integral
in either s’ or y' in the integral representation of B‘®)(s, ). The method of showing
that it is bounded and doubly Hélder-continuous is very similar to that used
to treat B,(s, y) in Section 4 of I. We find that Eq. (3.7) is also valid with the re-
placement B») — B®,

The treatment of B{*)(s,y) can be carried out in a manner similar to that
used for B!?(s, y). It can be shown that Eq. (3.19) is also valid with B! — B,
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4. Treatment of B® (s, y) and B (s, y)
From Egs. (2.22) and (2.5) we see that B®)(s, y) takes the form

2i % ds _ o
BV, )= — | o— | &y =i Qs 5.y, (4.1)
16 —

where 2t
Q—%+s+iy 1+ s_4 2

Q(S,S,ya)’)= 1({') dth(t) q(t) (S_4)~%+a+iy P"%+£+iyl<1+ t_4) (42)

“B(t,,y)B(t_,y)(t—4) 12420

and 1(s') is defined in Eq. (2.6). In Eq. (4.2) the integrand vanishes for t = 16 + 4
because of the presence of the cut-off function A(t). Thus, since 7(s)— o0 as s’ | 16
we find that Q(s, 16,y,))=0. A straightforward bound on the integrand in
Eq. (4.2) would indicate that |Q| and hence |B*®] behave like |y + i~ * for large
y. This estimate does not have the required large y behaviour, namely |y +i|~*7°
[see Eq. (2.10)]. In order to improve on this bound we integrate by parts in Eq. (4.2)

to obtain 21(s’ 2(s’
Qs, 5, 9, y)= —L(s— AP~ [(= L4 e+iy) (%+s+iy)]—1[;_s4) (2"' ST_(S4)>]

, 21(s") 2s N N,
“Q stetiy (1 + 4 )P—%+e+iy‘ (1 + —T(S,—‘)_4)B(T+(5 ), y) B(t_(5), )

(t(s) —4) 7220 g(2(s)) h((s) — }o dti(s—4yr—="v 4.3)
T(s’)
2 2 2 0
t-srerinGrorin [ 2 (24 25| (14 525
2s

[P (1+ = 4)B<z+,y')B<z-,y'> (t— 420200 g h(t)J.

ot

We recall that it was precisely to do this integration by parts that we introduced
the extra terms involving the derivative in the norm in Eq. (2.17). Taking a com-
promise between the bounds on Q that one can derive from Egs. (4.2) and (4.3),
we find, on using the estimates on the Legendre functions given in Appendix A
and Appendix A of I, that

1Q(s, ', y, Y Sestemdng ET ey g RNy )T Em 20 (4.4)

where # satisfies inequality (3.18). Similar bounds for the double Holder dif-
ferences in the variables sy, s’y can then be established by using the mean value
theorems. A slight adaptation of Theorem 3 of Appendix A of I is then needed
to show that

[B(s, y) S x[|B||*s™ ¥y 4| “F#+n, (4.5a)
IB®(s;, y;) — B®(s5, ;) — B®(sy, y,) + B3 (s, y,)l (4.5b)
2 —2p+s ._;++++5|Y1_y2|g|51—52iu ‘
Sx|B|“sy 1Ty, 44T ET AT T ; .
yiti l l S

Again, v is required to satisfy inequality (3.12) to ensure that the )’ integral in
Eq. (4.1) is absolutely convergent. Further, since the inequalities (3.9), (3.10),
and (3.11) were required in Section 3 we shall also impose them here.
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From Theorem 4 of Appendix B we find that B®)(s, y), the derivative with
respect to s of B®)(s, y) can be written in the form

BX(s, y)= B3 (s,y) + BPP(s, y), (4.6)
where
2i 2 ds %

BP9 (s, y)=—5 | [ dy(/—ie) Qs,s,y,¥), 4.7)
T fe 8’ =8

dS/ ° ’ ’ (] ’ /
s —Iw dy (y - 18) Qs’(ss S, 0¥ ) . (48)

l e o)
B2, ))= o |
16 8’ —

Taking the derivative with respect to s of the two expressions for Q(s, s, y, y)
given in Egs. (4.2) and (4.3) we find on compromising between the resultant
bounds that

|Q(s, 8, y, VN S x| B2 s™Ho7Hn g =3 ey g Ay g 7E7 207 (49)

where # satisfies inequality (3.18). Again similar bounds can be established for
the double Holder differences in the variables sy, s'y. Finally a slight modifica-
tion of Theorem 3 of Appendix A of I can be used to show that

IBEO (s, )| S || Bl s =¥ [y | 7 HeT, (4.10a)
|B§3a)(S , _ (3a) S5, _B(3a) sy, +B(3a) S5,
1> Y1) (52> 1) (s1,2) (525 ¥2)| (4.10b)

<x|B|?s —1_"’*"1y2+1|—‘+ﬂ+e+n+alJ’1 V2| ]Sl—szj“
Ly +i || s

The restrictions on #, u, ¢, and v given in Egs. (3.8)—(3.12) are again assumed
to hold.

Treating the term B®Y(s, y) turns out to be somewhat more trouble-some.
Differentiating the expression for Q(s, s', y, ') in Eq. (4.2) with respect to s’ leads
one to the estimate

Qe (s, 8,y VN S IBI?s™3 722 ey iy +i] 73720, (4.11)

To obtain an estimate with the same large y and y' behaviour as that given in
Eq. (4.9) one might try the usual trick of integrating by parts. Now Eq. (4.3) is
unsuitable and in order to get a suitable estimate for Q.(s, s, y, y’) one would
need to be able to carry out explicitly the integral with respect to t of

!

P_yioiiy (1 + a )B(t+, VB(t_,y)(t—4)"1F2et20",

Clearly, we do not, from Eq. (2.17), have sufficient information about B(t, y) to
carry out this integral. We shall therefore be content with Eq. (4.11) and similar
estimates on the double Holder differences in the variables sy, s'y. A slight re-
formulation of Theorem 3 of Appendix A of I then shows that

B3O (s, Y| S % ||BJ|> s~ 75 0y 447, (4.122)

Bg”’ 51, 91) — B3P (s,, y,) — BEY(sy, + B (s,,
[ (815 y1) (82, ¥1) (51> ¥2) (52, y2)l (4.12b)

g |m
<% B 2 _i_8+(j +l|_;+#+9+5‘y1 yZl Isl SZ'
B2 533751y, Sl s
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To ensure that the ) integral in Eq. (4.7) is absolutely convergent we require
that
v>32+u2 (4.13)

which is a stronger constraint than that given in Eq. (3.12). Again we impose
the restrictions in Egs. (3.10) and (3.11) respectively on u and .

Finally we come to the treatment of B“*(s, y) defined in Eq. (2.22). Here the
non singular denominator (s'+ ¢+ s—4) replaces the singular Cauchy kernel
(s — s) which appears in the definition of B®'(s, y) [Eq. (4.1)]. Thus the boundedness
and double Holder continuity of B“)(s, y) can be established more simply than
was the case for B®)(s, y). However, once these properties have been established
for B®)(s, y) the simplest way of showing that Eq. (4.5) is also valid with the
replacement B® — B® is probably to write

s'—s
, 4_1 ’ -1
(+t+s—4)"" =("~5s) (—s’ s 4)

r_ -1 v : _
and regard (s'"—s)~ ' as the kernel and (S, T iso 4> as part of the weight func

tion. Similarly the bound on B{* (s, y) and on its double Holder difference in
the variables sy are also satisfied by B*(s, y).

5. Study of V (s, y) and Construction of the Mandelstam Representation

We have yet to show that there are classes of symmetric input functions
v(s, t) for which V (s, y), defined in Eq. (2.15), belongs to the Banach space with
norm given in Eq. (2.17). Let us consider as an example the class of functions
v(s, t) for which

[o(s, £)| Ses™9t 7 or Sa(t EteTosTepsTEteTomay (5.1)
where a>2 and for which iv(s 1) 9 (s, 1) i£v(s t), and —2~v( )
4 TR PR S PR I P FORF TR

are all majorized by »s °t% where b> 1. It may then be shown that V(s, y)
satisfies bounds which are no worse than those satisfied by B®'(s, y) in Eq. (4.5).
Similarly, the bound on B®)(s,y) and on its double Holder difference in the
variables sy are also satisfied by V(s, y). The method of deriving these results
in similar to that outlined in Section 4, with the simplification that there is no
y'-integral in Eq. (2.15).

We must now consider for what range of values of the indices Eq. (2.19) is
valid. First we see from Eqgs. (3.12) and (4.13) that v must satisfy inequality (4.13)
in order to ensure that the )’ integrals considered in Section 3 and 4 are all abso-
lutely convergent. Also, for Eq. (2.19) to be valid we require that the powers of
ly+1i and s in Egs. (3.7) and (4.5) are not greater than the corresponding powers
in Eq. (I-2.10) and that the powers of |y +i| and s in Egs. (3.19), (4.10), and (4.12)
are not greater than the corresponding powers in Eq. (2.18). Thus, v must satisfy
the inequalities

24uR2<v<li—pu—go—n (5.2)
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which, with u and ¢ satisfying inequalities (3.10) and (3.11) respectively, means
that we must restrict n further to

O<n<i—3u—o. (53)
Moreover, the index 4 which appears in Eq. (2.18) must satisfy
0<i<3y. (5.4)

It is in fact sufficient to take u and ¢ very small and positive, which means that
v can range from slightly larger than 2 to just less than 1, for sufficiently small
1. Similarly # can range from just larger than zero to just smaller than 4, which
in turn means that 4 may range from slightly larger than zero to just less than
1. These ranges of v and A can in fact be extended but they shall suffice for our
purposes. In particular, if in the second and fourth terms in Eq. (2.17) we replace
s% by s? then our proof also works for

-0 <120, (5.5

provided we also add to the norm terms like the second and fourth terms but
with u replaced by zero and f(s;, y;) — f(sq, ¥,) (resp. f,(s1, y1) — fi(S1, y,)) missing.
This follows from the fact that the cut off function Ah(s) appears in Eq. (2.5) and
so it does not matter how rapidly B(s, y) increases with s.

When the above restrictions on the indices hold we then see that there is a

unique fixed point _
B(s, y)=B(s, y) (5:6)

in the ball defined by Eq. (2.21), provided that ||V || < (4%)~ ' fwhere » now refers
specifically to the constant appearing in Eq. (2.19)]. Furthermore, this solution
of Egs. (2.5), (2.13), (2.14), and (2.15) can be obtained by a convergent iteration
procedure.

At this fixed point, g°!(s, t) is given by Eq. (2.5) and A(s, [) can now be obtained
for Rel = — % + ¢ from the equations

A(s,l)zn(%jdtQ,(l—f 2t )F(s 5, (5.7)
F (s, t)—%zf ds' o(s', t)[ 1 — + s’—4:—s+t} (5.8)
(t)

with (s, t) defined in Eq. (2.9). [We note that when [= —1 +¢+1iy, the above
equations are equivalent to Egs. (2.13)—(2.15) with B(s, y) defined in Eq. (2.4).]
By construction, A(s, ) is a holomorphic function of I, for Rel> — 1 + ¢, which
vamishes as s— c0.

The Mandelstam representation for F(s,t) may now be established by sub-
stituting the Froissart-Gribov representation for A(s, [) [Eq. (5.6)] into the partial
wave series o
F(s, t)= Z QI+ 1)3[P(2) + P(—2)] A(s, ) (5.9

and then using Heine’s identity [9] after interchanging the orders of summation
and integration. Substituting Eq. (5.8) for F,(s,t) into the resultant expression
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then gives
1 fe o) [ o}
F(s,t)=—5 [dt' [ ds'o(s,?)
TeoIo (5.10)
{ { { '

o=9@=0 T =9 —d+s+0  T=0DG—4+s+9)°

since g(s', t') is a symmetric function of s and ¢'.
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Appendix A. Further Bounds for Legendre Functions

Here we establish some further properties of the Legendre functions which,
together with the results of Appendix A of I, are needed in the main body of the
paper. We note that Egs. (I-A.1)—(I-A.5) are also valid when m = 3. Also Eq. (I-A.7),
with n=2, is a valid representation for F(}, —3,1+ (¢+iy),{) and it is then
straight forward to obtain a suitable bound for this hypergeometric function
from which one can show that

3
" 05 z _17e
102 s @I Sy () 2, (1)

3
Py @l Sty (2] 2, (A2

z—1
Here Eqgs. (I-A.1)~(I-A.5), with m = 3, have also been used. As usual, x is a generic
constant. Moreover, since Eq. (I-A.25) is valid when m =3 we see that the deriva-
tives with respect to y of the Legendre functions on the left-hand sides of Egs. (A.1)
and (A.2) can be bounded by the corresponding right-hand sides multiplied by
(1 + logz).

Appendix B. Properties of Singular Integrals

We now extend the theorems of Appendix B of I to allow for singular behaviour
of the weight functions at the end points of integration. From a slight generaliza-
tion of Pogorzelski’s theorem [8] for singular integrals over a finite interval,
the following theorem for singular integrals over the semi-infinite interval [4, o)
can be proved.

Theorem 1. We consider a function f(s), defined on the interval 4 <s< oo of
the real line and we define a norm

170 =sop s (24 1o

? . (B.1)
53 —4>“ ") = f(s2)l

Sl_SZﬂ ’

+ sup 52”(
2

St
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where 00> 0, 0+ u<1 and 0<u< f <1 and the suprema are taken over 4<s, <s,
<. If || fl; < o0, and

LO=P |5 1), (B2)

where s =4, then it may be shown that a constant, x, exists such that

el =%l Sl - (B.3)

Combining Theorem 1 with Theorem 2 of Appendix B of I, leads us to the
following theorem.

Theorem 2. Let us now consider a function of two variables f(s,y) and we
introduce the two-dimensional norm

_4\
I/ l2=sup {Szﬁ(sz ; ) [z +il"1f(s2, )’z)l} (B4
Sp— 4\ o 1 (s, y1) = (52, 91) = f (51, y2) + f (52, y2)
*sup SZﬂ( ) 2+ 151_52|ulJ’1_J’2|Q ’

s, || yi+i]

where >0, 0+ u<1,0<u<f<1,0<g<y<1 and the suprema are taken over
4<5,<85 <00, =00 <y, <O, |y| >y, If [| f]l, < o0 and

0 d /
ls))=P [ -7 (), (B:5)
Ji(S,y)=P£ s’is I(S7y)s (B6)

where s 24, — 00 <y < oo then a constant » exists such that
<%0 S5, (B.7)
Wellz =% fll2- (B)
The above results are also valid if y is replaced by y+in and the P in Eq. (B.5)

is dropped.

For the case when both the Cauchy kernel and the weight function depend
on s, we have the following theorem.

Theorem 3. Consider a function g(s', s) defined on 4<s' < o0, 4<s< o0 and
introduce the norm

N i R
lglls = sup {szasf( = ) |g(s2,s2)|}

2

s suplsrasy (s;74)“+“ 9051, 52) = 9053, 5,)

S5 51—y |* (B.9)
81
sy —4\* |g(sy,5,)—g(s5, s
+Sup{sfbs’2ﬂ( 2 : ) lg(s5. s1) g#(+25 2)|}’
52 sy — s5]
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where a>0, a+u<1, max{a+p b+put<f<t, u>0,a=20, b=0 and o is a
generic small positive number which can be chosen as small as one pleases. The
suprema are taken over sy >s5, 24, s, > s, =24. If ||g|l; < o0 and

/

= g
G(s)=P | ﬁ 4(s', 5) (B.10)

then it can be shown that ||G,|| < co, where
1G4l = sup {s57¢|G(s,)I}
—c 1G(s,) = G(s,)l
Sy — Sy |
1

+sup {8 (B.11)

and ¢=max{a, b+ p+0}. The suprema in (B.11) are taken over s, >s, 2 4.
Finally, we shall need the following theorem concerning the derivative of a
principal value integral.

Theorem 4. Consider a function f(s) defined on 4 <s< oo and suppose that
f@=0and lim f(s)s ! =0.

Thenif s=4
0 o ds , © s
o Pl /=P ! — a'f( ). (B.12)

The theorem can be proved by using Leibniz’s theorem and then integrating
by parts.
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