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Abstract. This article is devoted to the perturbative renormalization of the abelian Higgs-Kibble
model, within the class of renormalizable gauges which are odd under charge conjugation. The
Bogoliubov Parasiuk Hepp-Zimmermann renormalization scheme is used throughout, including the
renormalized action principle proved by Lowenstein and Lam. The whole study is based on the ful-
fillment to all orders of perturbation theory of the Slavnov identities which express the invariance
of the Lagrangian under a supergauge type family of non-linear transformations involving the
Faddeev-Popov ghosts. Direct combinatorial proofs are given of the gauge independence and uni-
tarity of the physical S operator. Their simplicity relies both on a systematic use of the Slavnov iden-
tities as well as suitable normalization conditions which allow to perform all mass renormalizations,
including those pertaining to the ghosts, so that the theory can be given a setting within a fixed Fock
space. Some simple gauge independent local operators are constructed.

Introduction

The latest achievements on the renormalization of Lagrangian models in-
volving gauge fields, mostly due to tΉooft, Lee, Veltman, Zinn-Justin [1], were
primarily based on the use of a gauge invariant regularization procedure, the
most popular of which being the so called dimensional regularization [2]. The
gauge structure could thus conveniently be respected by fulfilling the so called
Slavnov identities [3] through the renormalization procedure. There resulted
finite Green's functions which could not however be directly given an interpreta-
tion relevant to an operator theory in some Fock space, were it be in a perturbative
sense, because of the lack of the finite mass renormalizations which would have
been necessary for this purpose. As will be seen here, an operator interpretation
is quite convenient for any discussion involving asymptotic concepts concerning
e.g. the unitarity of the S operator, the construction of gauge invariant local
operators etc.

We shall treat here the simplest model involving gauge fields in which no
infrared problem occurs, namely the abelian Higgs-Kibble model [4] within the
class of gauges advocated by tΉooft. The algebraic complications which occur
in the non abelian cases are deferred to later publications.

We shall make full use of the combinational knowledge or renormalized per-
turbation theory that has been acquired through the work of Zimmermann [5]
(effective Lagrangians, normal products, Wilson expansions), Lowenstein [6] and
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Lam [7] (renormalized action principle), which has been successfully applied in
other cases (massive quantum electrodynamics [8], σ models [9] abelian Higgs-
Kibble model in the Stueckelberg gauge [10]).

This well developed machinery, which relies on the locality and power
counting properties of perturbation theory, is most effectively put to work by
intensive use of the implicit function theorem for formal power series [11] through
which, as we shall see, most symmetry aspects of the perturbation series can be
read off on the classical Lagrangian on which the theory is based, including the
possible occurrence of anomalies. This possibly surprising statement will be
widely illustrated in the present work and in reviews now in preparation [12].

The main reason why such a favourable situation prevails in the present case
is that the model is almost entirely specified by an invariance property even after
the introduction of the necessary Faddeev-Popov ghosts [13]. Namely, at the
classical level, the Lagrangian is invariant under transformations of the super-
gauge type [14], which we have called Slavnov transformations. In the abelian
case treated here, one has however also to impose the full degeneracy of the ghost
masses in order to implement spontaneous breaking. This is a particular feature
of the abelian case which in a sense makes things more complicated.

Section I is thus devoted to a study of some crucial aspects of the tree approxi-
mation. The role of the invariance under Slavnov transformations and the par-
ticular expression of spontaneous breaking are stressed.

In Section II the model is defined to all orders of a perturbation expansion
in powers of a parameter, h, which counts the number of loops in Feynman
diagrams. Namely, we show that both renormalized Slanov identities and the
normalization conditions on Green's functions which hold in the tree approxima-
tion can be fulfilled to all orders. The compactness of the proofs is due to a repeated
use of the implicit function theorem for formal power series [11]. The logic of
the construction also makes clear how anomalies, which do not occur in the
present model, can be produced.

In Section III, one proves the independence of the physical scattering operator
against a change of the parameters which label the gauge function, by suitably
generalizing the argument given by Lowenstein and Schroer [8] in the case of
massive quantum electrodynamics.

Section IV is devoted to a direct combinatorial proof of the unitarity of the
physical S operator.

Several appendices are devoted to a number of technical questions:
Appendix I deals with the structure of the Slavnov identities at the classical

level in the non abelian case.
Appendix II is devoted to a brief description of the implicit function theorem

for formal power series [11].
Appendices III, IV, and V give some computational details which would have

obscured the line of argument in the body of the article.

Appendix VI deals with the construction of some local gauge invariant
operators of dimension smaller than or equal to four.

Appendix VII extends the theory to quadratic gauges odd under charge
conjugation.
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I. The Tree Approximation

As is well known, a classical Lagrangian, ^ c l ( φ ) , which will be assumed to
be of the renormalizable type, defines the tree approximation of a quantum
Green's functional

Z(J) = expjZc(J) (1)

where J denotes collectively a set of sources linearly coupled to the field variables
<g from which J?fcl is constructed. The Legendre transform [15] Γ{(j)) of the con-
nected Green's functional ZC(J_) defined through

+ i ) ( χ ) = o (2)

coincides with j dx^cl((£)(x) in the lowest approximation of a perturbative ex-
pansion in powers of h, and, in higher orders, generates "proper" Feynman graphs.

Let us now consider a classical Lagrangian

(3)

where if inv(^) is invariant under local abelian gauge transformations of the second
kind

^ ^ (4)

^ is a gauge function which breaks gauge invariance, and a is a numerical
parameter, as they occur for instance in quantum electrodynamics. Noether's
theorem yields the following Ward identity:

(5)

where the substitution

has to be made, and where

(7)

is the kernel of a field dependent differential operator of hyperbolic character
whenever ^ is a perturbed version of the divergence of the gauge vector field
associated with the gauge transformations under consideration. We shall from
now on limit ourselves to this situation. The Ward identity (5) can conveniently
be solved for ^ upon introducing scalar charged Faddeev-Popov (ΦΠ) ghost
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fields [13] and the corresponding sources into the initial Lagrangian

J?c\x) = Jί?inv(x) - -i- (^~ψ- + J dyc(y) £(x, y) c(x)j + [J (£ + cf c + <

The Fermi statistics conventionally assigned to these fields while preserving
locality introduces new sources of indefinite metric into the quantum inter-
pretation of such a system and, at the same time exhibits crucial properties con-
nected with the structure of the gauge transformations, which are best observed
in the non abelian case described in Appendix I. The new Ward identity reads:

W(x)(Zc)

δφ{y) 1 1 r δM{y,z)
My) ^ - - -4Hy, x) *iy)- - f dzc(z) ^ ^ φ ) = 0.

(9)

Integrating through c yields the so-called Slavnov identity (3), which, in the
present, abelian, case, reads:

S(ZC)= Jdx t(x)#(x)+ jrfy i(x) -^—y φ ) =0 (10)

where use has been made of the equations of motion for the ΦΠ fields, and of
their anticommutativity, whereby the last term in the Ward identity (9) drops out
in view of the abelianness of the gauge transformations. In the non abelian case
treated in Appendix I, this last term contributes however in a way which is charac-
terized in terms of the structure constants of the Lie algebra involved.

The Slavnov identity can be interpreted as expressing the invariance of if
under the following transformations of the supergauge type [14], which we shall
call Slavnov transformations:

(11)

δλc(x) =

where λ is an infinitesimal, space time independent, gauge parameter of the Fermi
type. The vanishing of the variation of c is due to the abelian character of the
gauge transformations and is suitably altered in the non abelian case as shown
in Appendix I. The Fermi character of the ΦΠ field linearizes the gauge "group"
since

δλlδλ2(β(x) = 0

δλlδλ2c(x) = 0 (12)

<5λA2Φ0 = >l iM M(y,x)c(y)dy
so that

S2(ZC)= μxdyξ(y) JHy,x)c(x) = 0 (13)
and

(S S2-S2'S)(Zc) = 0. (14)
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One should realize the lack of equivalence, in general, between the Ward identity
(5) and the Slavnov identity (10): if one adds to if a breaking term of the form

- I "5|

such that
* ^ (16)

where M is a possibly field dependent differential operator which does not upset
the hyperbolic character of #, the Lagrangian

B(x) + J dy c(y) ( #(x, y) + ̂ ( x , y)) c(x)

+ i(x) ' <β(x) + ξ(x) c{x) + ξ(x) c(x)

will lead to the same Slavnov identity whereas the Ward identity is modified
according to

Γ δφ(y) 1
W™(x) [Z c ] = f dy \j(y) • - ± f v - - (Miy, x) + ./fiy, x)) <3{y)

This pathological situation is due to the abelianness of the gauge transformations
which insures the absence from the Slavnov identity of a contribution involving
the last term of the Ward identity.

A concrete example of this phenomenon will be given in the context of the
abelian Higgs-Kibble model treated within a family of linear, charge conjugation
odd gauges.

The basic fields and sources are given in Table 1.

Table 1. Fields and sources

Field Behaviour under Source
charge conjugation

φλ even J1

φ2 odd J2

Aμ odd Jμ

c] u even ξ

ΛφΠ ghosts :
c\Ύ & even ξ

One may choose for the Slavnov transformation:

δφ2= +λe°2{φ1+v°)c

δAμ = λdμc (19)

be — λ(a° dμ Aμ + Q° φ2)

δc = 0
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where v° is a field translation parameter e°, e2 are charge parameters, a0 and ρ°
characterize the gauge function. The corresponding Slavnov identity reads:

- ξ[_a°dμδJμZc + ρ°δj2Zc]}(x) = 0 .

Equation (20) can be linearized by introducing into the Lagrangian the source
terms:

η1{z1φ1c + z'c) + η2z2φ2c (21)

where ηl9 η2 are Fermi type sources:

= 0. (22)

Now Z c also depends on ηx,η2 whereas the Lagrangian is the partial Legendre
transform of Zc with respect to Jί,J2,Jμ, ξ, ξ.

ff is now a linear functional partial differential operator of the form:

ix). (23)

The transformation law (19) is easily converted by translation and renormaliza-
tion of the field variables into the more conventional one

δφι = — λeφ2c

δφ2 = λe{φ1 +v)c

δAμ = λdμc

δc = λ(dμAμ

(24)

(g° = e°2 = e, U = U0, ρ = ρ°, α° = l), where we keep however a field translation
parameter explicit.

One may ask oneself what is the most general Lagrangian of the renormalizable
type which is invariant under such a transformation, even under charge conjuga-
tion and carrying zero ΦΠ charge.

This problem is a purely algebraic one. The most general Lagrangian of the
renormalizable type which carries the vacuum quantum numbers is, up to a
divergence, a linear combination of the following twenty six monomials:

0) φx 10) φ2dμAμ 20) cc
1) φ\ 11) Aμφ1dμφ2 21) cφ1 c
2) φ\ 12) Aμφ2dμφ1 22) cφ\c
3) φ\ 13) AμAμ 23) cφ\c
4) φ2

2φί 14) AμAμφx 24) cAμAμc
5) φf 15) AμAμφ\ 25) cQc
6) φί 16) ^ ^ φ l
7) φ?φ^ 17) (δμ^μ)2

8) ^ Φ i ^ Φ i 18) (dμAv-dvAμ)(dμAv-dvAμ)
9) dμφ2dμφ2 19) (Aμ>4J2

(25)
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Its variation s5£ under the Slavnov transformation (24) is of maximal dimension
five, carrying the ΦΠ charge of a c ghost, odd under charge conjugation. It is
therefore a combination of the 23 monomials:

1)

2)
3)
4)
5)
6)
7)

8)
9)

10)

cφ2

cφ1φ2

cφjφ2

cΏφ2

cφ\φ2

cψi φ2

cφ2 CH ψ\

C(piΠφ2

cdμφίdμφ2

11)
12)
13)
14)
15)

16)
17)

18)
19)
20)

cAμdμφγ

cdμAμφ1

cdμAμφx

cAμφ1δμφ1

cdμAμφ2

cAμφ2dμφ2

cUdμAμ

cAμdμcc
C AμAv0μΛv

21) ΈAμAμΨl

22) cAμAμφ1

0^\ p A A r\

(26)

One can however verify that the last three monomials can never occur as varia-
tions of some monomials in Eq. (25) whereas the first twenty are such variations.
It follows that the requirement that if be invariant under Slavnov transforma-
tions is expressed via a homogeneous linear system of twenty equations whose
unknowns are the coefficients of the twenty six monomials listed in Eq. (25). As
a result, the most general invariant $£ can be written as a linear combination of
the following six terms:

(27)

2)
3)
4)

5)

6)

where

(A
φ*

(φ[

&'
2

Aι

φ
» 2

- +

Aμ

2

> = (SμAv

Dμψ

_ b<3

δA
_ |
c c

- dvAμ) (dμAv

iφ2
9 = dμAμ + ρφ2

(28)

δA

In other words, if is of the form

" W (29)
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The last term which is conspicuously absent from the classical Higgs-Kibble
Lagrangian has precisely to do with the phenomenon previously alluded to. Its
presence violates spontaneous breakdown without spoiling the Slavnov identity.
As we shall see later, its absence can be imposed by requiring suitable normaliza-
tion conditions on the Green functions which allow to convert the unphysical
parameters Z^, Z 1 ; μ

2 , g, α, ρ, β into parameters that are needed to interpret the
theory in terms of particles. In terms of the variables appropriate to the case of
broken symmetry, Eq. (29) can rewritten as:

2?

-~ GμvGμv
dflφ2dμφ2

2eAμ(φ2dμφi - {Ψι + v) dμφ2) + e2 AμAμ{(φγ + υ)2 + φ2

2j]

φϊ\- v)2 (30)

c(ΠJrQe{φι

Jrv))c

ΛμAμ
— cc-\-

We shall now impose the following normalization conditions, which for reasons
to be explained, we split into two groups:

unphysical: < φ i > = o (0)

(1)

(2)

physical:

iτAτφι(m2,m2,M2)=2εm

(3)

(4)

(5)

(6)

(7)

(31)

'cγdetΓΛΛ Λφ

\ 1 Λ T 1
\— A*-1 (p2 — (p2ψ2

= 0 . (8)
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HerevlΓ (resp. AL) denotes the transverse (resp. longitudinal part) of A; expressed
in terms of the parameters specifying if, these conditions read:

βoc

(0)

(1)

M2 = ~ (6gv2 - μ2)

= ?A = 1

(3)

(4)

(5)

(6)

(7)

(32)

EALAL CALΨ2

1 1

α p2 -ρeυ- βoc

-/>(•£-)-<>.

{p2 -ρeυ-βcή ίp2-ρev
ev

(8)

This last normalization condition is well defined because the ΦΠ ghost mass
turns out to be degenerate with at least one of the coupled (AL, φ2) ghost system.
This is a consequence of the Slavnov identity, as shown in Appendix III. On the
other hand complete degeneracy of the ghost masses is precisely the condition
for spontaneous breakdown, (β = 0), except if ρ = aev, which characterizes the
restricted tΉooft gauge, excluded here and eventually recovered by a limiting
procedure.

The system is an algebraic system which is invertible and allows to solve for
the coefficients in the Lagrangian in terms of the parameters occurring in the
normalization conditions. This leads to a particle interpretation of the theory in
a Fock space carrying an indefinite metric due to the Fermi character of the
ΦΠ ghosts and the non positive definiteness of the (AL, φ2) coupled propagator
matrix.

One can easily generalize this analysis to the case where e\^e\, a0 φ 1 where
the theory is again determined by the Slavnov identity and normalization con-
ditions, e°2 and α° being left free. Although the corresponding algebra is not
illuminating and will not be reported here, the possibility of such a generalization
should be kept in mind for further reference.

We are now able to describe the scattering theory: the Fock space is deter-
mined by the quadratic part of if, the corresponding in fields being solutions of
the derived Euler Lagrange equations. Within this Fock space we may select a
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physical subspace generated from vacuum by application oΐ {φli-mAjr). Physical
states should actually be equivalence classes of such states modulo some zero
norm states whose structure will be mentioned later in connection with the ques-
tions of the unitarity of the physical S operator and of the existence of physical
local observables.

The restriction to the above defined physical subspace of the connected scat-
tering operator is given by the LSZ formula:

= : exp\iJ dxdyίφUin(x) K^x.
0Ji\y)

Kμv(x, y) j f ^ • ZcGZ]l.,λ.=./1=.72 = ί = ί = o (33)

where, in view of Eq. (31, 3-6)

K1(x,y) = (Π+M2)δ{x-y)

Kμv(x> y) = (Ogμv ~Sμdv + m2gμv) δ(x - y).

It is typical of the spontaneously broken theory that the physical scattering
operator does not depend on the parameters which specify the gauge. In other
words,

dρ ' da

The first relation can be proved as follows:

dρ ^ dρ
(36)

since the expectation value of <& between physical states vanishes because of the
Slavnov identity and those of c and c because oΐΦΠ charge conservation. Similarly,

VlLJa y

~toΓ~ phys d~a

c.£c)(x)[I=0 (37)

+ξc)(x)\1 = 0 = 0.

This concludes our review of the tree approximation.
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II. Perturbation Theory to All Orders: The Slavnov Identities

The extension of the model beyond the tree approximation, proceeds in the
spirit of the BPHZ [5] renormalization scheme, via an effective Lagrangian of
the form

The corresponding Green functionals

Z(J,η) = (Vexp [-1 f ̂ li^Lη) (x) d'x^ (39)

and

are expressed in terms of Feynman graphs in which the propagators are defined
by the quadratic part if0 of if [Eqs. (30, 31)], and the vertices are given by

The substraction procedure which defines the time ordering symbol T in Eqs.
(39,40) being specified by the N prescriptions indicated in Eq. (38). The coefficients
of the Wick monomials in ifeff are to be considered as formal power series in ft,
and, of course, ifeff should coincide in zeroth order with if [Eqs. (31)].

We shall also clearly restrict ourselves to effective Lagrangians even under
charge conjugation and carrying no ΦΠ charge.

One can furthermore immediately specialize Eq. (38) by making the choice

z 1 = z 2 = l , z[=0 (42)

which corresponds to fixing normalization conditions on the fields coupled to η.
We can also define ifeff(<g) so that no linear term is present, thus automatically
fulfilling the normalization condition (31,0)

O i > = 0 . (31,0)

We shall have however to keep in mind in the following that the allowed class
of Lagrangians is that written down in Eq. (38) and ifeff ((g) is a linear combina-
tion of 25 terms which are listed in Eq. (25) [excluding Eq. (25,0) in view of
Eq.(31,0)].

The question is now whether one can determine <£m so that Zc{J_,η) fulfills
a renormalized Slavnov identity:

dμδξ-eίJίδη2 + e2J2δηι + mJ2δξ

y](x)zc(j,n) = o

where ά,ρ,e1,e2im = e2v are formal power series in h. We shall eventually require
that the normalization conditions (31) be fulfilled.



138 C. Becchi et al.

Now, according to Lam's [7] renormalized action principle, the Slavnov
identity (43) expresses the invariance of the effective Lagrangian under the renor-
malized Slavnov transformation

δφ1=λe2N2[_φ2e]

δφ2 = —λ(eίN2

ι[φιc] —me)

δAμ = λdμc (44)

δc = λ(adμAμ

Indeed performing on an arbitrary effective Lagrangian the quantum variation
(44) according to the quantum action principle yields:

yZc(J,η) = AZc(J,η) (45)

where the left hand side comes from the variation of the source terms, and where
— A is precisely the insertion of the quantum variation of the effective Lagrangian
î eff((£>,_??). It is a consequence of Lam's analysis that:

) (46)

where sJSfeff is the naϊve variation of the Lagrangian, and hQ sums up the quantum
corrections. Because of power counting and selection rules. A is a linear com-
bination of twenty three monomials listed in Eq. (26), the coefficients being formal
power series in h and in the coefficients of ifeff as well as in those appearing in
Eq. (44). The symmetry condition we are looking for is

Δ=0. (47)

It can be partially satisfied by requiring that the coefficients of the 20 first
monomials vanish to all orders in h the parameters of the Slavnov identity being
left arbitrary to all orders. The argument is that if

J^ e f f = c ^ + c b ^ b (48)
where:

s^=0 } s^φO (49)

we can write:

Δ=d>sg* + hgt (50)

where db = cb + ftΦb, Φb being a formal power series in h,c^cb and the coefficient s
of the Slavnov identity, and the quantum correction h$ is not of the form s^\
namely it involves the last three monomials in Eq. (26). By the implicit function
theorem for formal power series (cf. Appendix II), the system:

cb + ftΦb(ft,c,,cb,5) = 0 (51)

is soluble for cb.
ifeff is thus now determined in terms of five parameters [because of (31,0)]

and of the five coefficients involved in the Slavnov identity which now reads

lη) (52)
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where Δ1,Δ2,Δ3 (previously numbered 21, 22, 23) are the last three terms in (26),
affected with the N5 prescription.

Now, obviously, the right hand side (52) has to fulfill the compatibility con-
dition implied by the structure of the left hand side [cf. Eqs. (12, 13)] namely:

^ 2 Zc = - f dx K((α • + ρin) δξ + ρe2 <SJ] (x) Z c

) ] ( x ) Z c

A2 + c3A3)Zc

Now:
hc (54)

where sΔt is the naϊve variation of the monomial A{ under a Slavnov transforma-
tion, to which dimension six is assigned, whereas Pt is a dimension six insertion,
carrying two c charges, even under charge conjugation and whose coefficients are
formal power series in h and in the so far undetermined power series coefficients
occuring in ifeff and £f, as a consequence of Zimmermann's reduction formulae.

On the other hand, the ΦΠ ghost equation of motion is of the form:

(rfδξ) (x) Zc = [(3D + μ2) δξ + dδηi + / δβ] (x) Zc\β.= 0 = «ξ(x) (55)

where a, μ, d, /, α are formal power series, and β is a source coupled to

%={N3lφlc], Nsίφlc], N3\_AμAμc]} .

Thus, integrating Eq. (52) through ξ, one gets

μxίξ(.yFδJ](x)Zc = O. (56)

Noticing that

μX(ξδξ)(x)Zc = 0 (57)

as a consequence of the invariance of ί£eff(J,2?) under the variation

δc = λc

and substracting Eq. (56) from Eq. (53) yields:

= ΣiΦAi + hpi)zcU,n)- ( 5 8 )

1

We now express Zc in terms of Γ by Legendre transform, thus obtaining:

f dx[(d - ρe2) δcΓδηiΓ + fδeΓδfΓ] Wl|=o

Let us now write
Π ^-hΓ' (60)
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where it has been explicitly noted that the corrections to ifeff occuring in Γ are
necessarily radiative corrections. Equation (59) can be cast into the form:

$ dx{Πcl(d-ρe2)φΐc + ftφϊc + f2φlc + f3AμAμc + 2c1eAμdμcφ2

+ 2c2Aμdμcφ1φ2 + C3(2cdμcAμdvAv + cAμAμΠc)']}(x) (61)

= hΦ(d-ρe2,fuf2,f39 cί9 c2, c3)

where Φ is a functional of the fields which is linear in the indicated arguments
and lumps together contributions from Γ' and from the Pf's. Differenciating in
turn Eq. (61) with respects to the fields occuring in each indicated monomial,
and setting all fields equal to zero, yields, in view of the independance of these
monomials:

d-ρe2 = hΦ0(d - ρe2, /, c)

f1 = hΦί{d-ρe2J,c)

f2 = hΦ2{d-ρe29f,c)

(62)

c2 = hΨ2(d-ρe2,J,c)

c3 = hΨ3(d-ρe2J,c)

where Φt (i = 1,2, 3), Ψt (i = 1, 2, 3) are linear in the indicated arguments, formal
power series in h and in the remaining parameters. The situation occuring in the
tree approximation and application of the theorem in Appendix II yield:

d - ρe2 = cλ = c2 = c3 = fx = f2 = f3 = 0 . (63)

Hence, the Slavnov identity holds, and, up to the mass term the ΦΠ equation of
motion involves the same coefficients and monomials as those occuring in £P2.
The equality of the two mass terms will be proved in Appendix III in connection
with the normalization conditions we shall now consider.

Namely, we shall show that the normalization conditions (31) can be fulfilled,
whereby all parameters are determined except a and e2. Eq. (31,0) is already ful-
filled. Next we try to impose Eq. (31,1-7). Looking at the algebraic system which
is soluble in the tree approximation, we can apply once more the theorem of
Appendix II, because this system is perturbed as allowed by this theorem by
higher order terms occuring in Γ?iφi,ΓAτAτ,Γc^ΓAτAτφι.

The last normalization condition (31,8) is more delicate: one has first to show,
to all orders in h that Γ~Έ

ι(ΓALA^Γφ2ψ2 — ΓALφ2) is finite at p2 = m%. The proof,
based on the Slavnov identity and Eq. (31,2) is given in Appendix III. As a by
product, as previously announced, one obtains the last equation connecting SP1

and the ΦΠ equation of motion [Eq. (52)] namely the ΦΠ equation reads:

(x) Zc = (/Mδξ) (x) Z c = *ξ(x). (64)

In conclusion, once the Slavnov identities and the normalization conditions have
been fulfilled, there remain two free parameters, a and e2, which will not be
specialized any further.
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III. Perturbation Theory to All Orders: Gauge Invariance of the
Physical Scattering Operator

The normalization conditions Eq. (31) allow to interpret the theory, in the
sense of formal power series, within the Fock space defined in the tree approxima-
tion, and the formula giving S£hys in terms of Zc(f) [Eq. (31)], or similarly Sp h y s

in terms of Z(f) remains unchanged. For a technical reason which will appear
later we shall from now on work with the non connected Green functional.

We now wish to evaluate

dρ doc

Using Lowenstein's [6] renormalized action principle we see that

where λ is one of the parameters α, m2

G and Δλ is a dimension four insertion ob-
tained by differenciating ifeff ((β,r[), with respect to λ, namely an operation which
alters infinitesimally J£eίΐ((£,η) within the class (38). Using the Slavnov identity,
we are going to show that Δλ can be written as

Λ^ΣA'^ΐ + L^^ (66)
1 1

where the zlf's (ί= 1,..., 8) are eight insertions such that

^ ) b = Γ o = 0 (67)

and leaving unchanged the physical normalization condition (31,8).
The other physical normalization conditions (31,3—7) are left unaltered as

a consequence of Eq. (67). In the following, we shall call these insertions non
physical. The Δf, (ί= 1,..., 6), are six symmetric insertions, namely such that

SfΔ?ZU,n) = 0 ( i = l , . . . , 6 ) . (68)

Thus applying Eq. (65) to the physical normalization conditions (31,3-8) yields
a linear homogeneous system of equations of the form

Σ O (7 = 3,4,5,6,7,8). (69)
1

The forthcoming analysis shows that

θ (70)

since this happens to be true in the tree approximation. Hence it follows that

4J = 0 (71)

and the gauge invariance of the physical S-operator follows from Eq. (67). We
now construct the decomposition of Δλ given in Eq. (67).



142 C. Becchi et al. '

From the definition of Δλ we have

? = 0 (72)

so that

— \_Δ , ίf\ = 3 y . (73)

Thus we can write

Δλ = Δλ + Δs

λ (74)

where Δλ is a particular solution of Eq. (73) and Δs

λ is a symmetrical insertion.
We shall first construct a non physical Δλ, and we shall show that any Δs

λ is
a linear combination of nine symmetrical insertions three of which are non
physical the remaining six satisfying Eq. (68).

Let us denote
5

<¥> — V r 9 (1S\
— / i i i \ )

where
c o = l so = ^dx(Jμdμδξ)(x)

c 2 = e 2 s2 = ϊfx(J2δηiHx) ( ? 6 )

c 3 = m S3 — ί dx(J2 δξ) (x)

C4=-a St = μX(ξdμδJμ)(x)

c5 = - ρ s5 = j dx(ξδTl) (x).

So that Eq. (73) now reads:
5

h L x,< J Ϋ λ i i- v

N o w , there exists a basis of covar iant n o n physical insertions Δ{\ ί (i= 1,.. ., 5)
satisfying:

z

Indeed let us consider :

Qi,ε= - ^ - ί ^ ^ ί f i ί ^ ί - ε ) ) ^ ) O' = 4

? 5) (78)

where the cts are defined in Eq. (76) and α in Eq. (55).
The symbols (50. are defined by:

δ*4 = δ A μ ( 7 9 )

The indices (±ε) indicate translations by the e.g. space like small vectors +ε.
We introduce the insertions:

Z Γ Cf Γί ~Λ 7 (QC\\
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and we have:

= - j LQi,s, ί dxlξ(J/δξ)] (x)Z = A | _ j dx[δgΛε)(^δξ) (-ε)] (χ)Z

where the connection between ίf and the ΦΠ equation of motion [Eq. (64)] has
been used.

It is shown in Appendix IV that, in the limit ε-^0 the finite part Δί of ΔitE has
the same covariance as AitE, namely

c,stZ(J,η) = lim ct J dx(ξ(- ε) δgiie)] (x) Z(J,η) (82)

It is furthermore shown, in Appendix IV, that by substracting a symmetric in-
sertion, which therefore does not alter the covariance ctsh one obtains non
physical insertions which we denote A®.

We now look for other non physical insertions which are easily obtained by
applying the renormalized action principle [6].

The following variations whose covariances are indicated provide us with the
desired insertions :

1) δcocc yields the insertion

h
Δc = — J dx(ξδξ) (x) (83)

with

— \_Δ , £f~\ = c s + c s , (84)

h c'c 4 4 5 5 '
2) the operation

h

i

corresponds to a variation of z1 in the neighbourhood of zί =z2 = 1, z[ =0 and
its covariance is given by

y [ ^ , 1 9 ^ ] = -c2s2, (86)

3) the operation

h

UW (87)

(88)

corresponds to a variation of z2. Its covariance is given by
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4) the operation

h

>ξ)(x) (89)

corresponds to a variation of z[. Its co variance is given by

-i[z1' ^]=-c2s3. (90)

n
It is obvious that all of these four insertions leave all physical normalization con-
ditions (31,3-8) unchanged.

Aλ is thus a linear combination of A%, A%, Aηί, Δη ,A'ηί which solves part of
Eq. (74).

We are thus left with finding a basis of symmetrical insertions. We know that,
given the Slavnov identity ifeff(^,^/) depends on nine parameters, namely six to
specify J^ e f f(φ), three to specify the external field dependence (i.e., zu z2, z[).

This is indeed true in the tree approximation and therefore, by the theorem
of Appendix II, to all orders. [Of course, this counting does not take into account
any of the normalization conditions (31), including (31,0).] As a consequence,
there are nine independent symmetric insertions.

We first construct those which respect the physical normalization conditions:
The first one is:

Δ% s = Δl + Δ°s-Δc. (91)

The second one is generated by the variation δφί = const.:

^0,5 = Γ j i ( x ) ^ X i (92)

The third one is obtained by considering

h
Δφ2= — J dx{J2 δj2) (x) (93)

whose co variance is given by

r^j cf>~\ = c s 4- c s — c s (94)

From the foregoing analysis:

is symmetric, leaves the physical normalization conditions unchanged, and is
non zero as can be seen by a direct calculation at the tree level.

We are thus left with finding six independent symmetric insertions. By the
general theorem of Appendix II, five of them are determined by the terms of ££
(excluding the one which leads to AQ'S). The sixth one involves

ΔA=~\dx(Jμδ])(x) (96)
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since

y [ 4 o ^Λ = coso- c4s4 = - cιs1 -c2s2- c3s3 - 2c4s4 - c5s5 (97)

it follows that

ΔS

6 = ΔA- Δn2 -Δηι--^Δ1

ηι + 2ΔC - Δ°5 (98)
C2

is symmetric.
It is straightforward but tedious to verify in the tree approximation that these

six insertions alter independently the six physical normalization conditions
(31,3-8).

The gauge invariance proof is thus completed. It is extended in Appendix VII
to gauges which contain a quadratic term odd under charge conjugation.

IV. Unitary of the S Operator

Let us first define

(99)

where the notations are the same as in Eq. (33). According to the reduction
formula, the physical S operator is given by

Sphys = SphysGZ)lj = O (100)

The contribution of non physical particle states to physical unitarity is explicitly
given in the expression:

Slhys(J) exp{ih J dxlδΓLS+ * Lδj-] W}G h O 8 tSp h y 8(J)| i = s 0

Here L and ihS+ are respectively the differential operator occuring in the
asymptotic field equations and the positive frequency part of the asymptotic field
commutator.

The proof consists in considering

phys(J)\j = o (102)

and evaluating

pyM)\j = o- (103)

It is shown in Appendix V, by extensive use of the Slavnov identity that

L ) , , δ J W ] (x)dx}®(λ)Sphys(J)\j=o (104)

where

δJ{9) = άdμδj +Qδj2. (105)
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S\ denotes a regularized version of S+ around the ghost mass shell and the index
$& labels the "gauge-gauge" matrix element of LS% L as indicated in Appendix V.

Integrating Eq. (104) with respect to λ yields

= limS\ h yM) exp {ih f dx[δJi9){LS% * !)„ δJm~\ (x)} Sphys(J)\j = o

Further use of the Slavnov identity according to which, the gauge operator
decouples from physical states finishes the proof:

° phys V— / ^ v * / ° phys \X-)1J = 0 ° phys UU ° phys UL/1J = 0 — ° phys ° phys

Unitary follows from the hermiticity of the Lagrangian.

Conclusion - Outlook

The gauge invariance problem has been solved for the abelian Higgs-Kibble
model treated in a family of gauges odd under charge conjugation. Emphasis was
put on the fulfillment of normalization conditions which allow the interpretation
of the theory within a Fock space with indefinite metric. This has in particular
allowed us to prove the unitarity of the physical scattering operator and to con-
struct some physical local observables. We feel however that one should make
a more complete study of the zero norm states that are allowed in the definition
of physical states as equivalence classes. From the technical point of view, it was
encouraging to see that the theory was widely controlled by the algebraic structure
of its tree approximation thanks to the repeated application of the implicit
function theorem for formal power series. This situation looks quite favorable
to a future treatement of the non abelian situations, at least when no fermion
anomalies are potentially present. This last case will doubtlessly call for more
refined techniques, involving the Callan-Symanzik equations which have not been
included here.
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Appendix I. Non Abelian Gauge Transformations: Classical Theory

Here are a few details concerning the classical theory of non abelian gauge
transformations: the gauge parameters A as well as the ΦΠ ghost field c are labelled
by the indices of the dual of a Lie algebra J^ with structure constants /. The ΦΠ
ghost field c and the gauge function ^ are labelled by the Lie algebra itself.

•M = —— is labelled as a linear operator from $F into 3*. The square of ^ is the
oΛ

Killing form of #", at least for the non degenerate part.
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Going from the Ward identity to the Slavnov identity now involves an extra
term:

which, using the group law together with the anticommutativity of c boils down to

δ& (x)
-i$dxdy ca(x) j j ^ fξy F{y) c\y) (AI.2)

or, using the equation of motion:

The corresponding Slavnov identity can then be interpreted as expressing the in-
variance of the lagrangian under the transformation law:

(AI.4)

_±fa -β, -,,

-γfβyc{x)c(x)

where λ is a space time independent anticommuting parameter carrying no index.

Appendix II. The Implicit Function Theorem for Formal Power Series

This appendix is devoted to the statement and proof of an easy theorem (11)
which has been repeatedly used to reduce the proof of a property to all orders of
perturbation theory down to the verification of a simple algebraic property of the
tree approximation:

Theorem. Let Fi(x1,..., xn;yl9 ...,yp) = 0 (z '=l, . . . ,w) be a set of algebraic

(analytic) equations which has a unique solution xi = φi(yι,..., yp) analytic in

(yl9 ...,yp) in some neighbourhood of (y®,..., y®).

Then the perturbed system

where yu ...,yp are formal power series in h whose lower order terms are y j , . . . , y°p

and the ft

9s are formal power series in x 1 ? . . . , xn, yl9..., yp, h, possesses a unique

solution

where the (j)?s are formal power series in h, y1, ...,jfp.

Proof. Let

ξi = χi-φi{yί,...,yp)
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Ft can be expanded into a formal power series in ξhyh whose term linear in ξ is

where, by the hypothesis

det
dXj

is invertible in the sense of formal power series. Hence the initial system can be
cast into the form

ξj = Φi(ξu...,ξn;yu...,yp;h)

where the formal power series Φt are such that Φ, (0, ...,0;y1,...,yp 0) = 0

i . e . ζj = ψj(ζi, •• ,ζn\yi> •• >Σp>b)

with the same conditions on ψjt This system is easily solved by iteration.

Appendix III

We show here that, as a consequence of the Slavnov identity,
Γc~c1(ΓALALΓφ2ψ2 — ΓjLφ2) is finite at p2 = m^ and thus can be required to vanish.
In other words, the ΦΠ ghost mass is always degenerate with one of the ΛL, φ2

ghost masses, complete degeneracy then characterizing spontaneous breakdown.
We first write the Slavnov identity in terms of the vertex functional:

(AIII.1)

(AIII.2)

(AIII.3)

(AIII.4)

+ meδφ2Γ- aAμdμδcΓ + ρφ2δcΓ) (x) = 0 .

Within the Aμ, φ2 channel, we get:

ΦμΓAμφ2(P) ~ QΓCC(P2) ~ y(p2)Γφ2φ2(p2) = 0

PμPvΓAμAv(p) - ap2 Γ,C(P2) + iy{p2)pμΓAμφ2(p) = 0

where

Thus

= Mp2)pμrAμφ2(p)

Hence :

Lφ2 *φ2φ2
' p2y(p2)

\c(p2){a2p2-Qy{p2)).

ί-ρaP

2(Γίc(p2))2!
(AIII.5)
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Thus, first

is finite and furthermore its vanishing implies

ap2 - ρ{m + e2Γδηι(p2))\p2 = nh = ap2 ρ

since ΓA φ2 + 0, provided one stays away from the restricted tΉooft gauge
(ρ = ocev).

Looking now at the ΦΠ propagator equation

lap2 - (ρm + μ2)] G,c(p2) - ρe2 G,ηi(p2) = oί

the absence of a pole in the left hand side at p2 = m2

G yields:

ap2 - (ρm + μ2) - ρe2Γ,ηi(p2)\p2 = mh = 0 (AIII.8)

after multiplication of (AIII.7) through Γδc and use of

Hence comparing with Eq. (AIII.6), we get:

μ = 0. (AIII.10)

Appendix IV

We have shown in Chapter III [Eq. (81)] that, in the limit ε->0, the commutator
of AitE with ίf is equal to c fs f. We thus infer that the infinite part of Ai>E as given
by the Zimmermann-Wilson expansion is a symmetric insertion with coefficients
going to infinity as ε-»0. The finite part At will then be given by [ ^ QJ where Qt

is the finite part of Qt ε.
It is possible but lengthy to verify these statements by looking at the Zimmer-

mann-Wilson expansion of Qt ε. In the case of Q5 ε the calculation is however
reasonably simple:

= ~{\dx 7Ί> 2 (ε)c(-ε)] (x)JV2[cφ2] (0)> \ dxη2{x) (AIV.l)

+ <J dx T[φ2(ε) c(-ε)] (x) φ2(0)c(0)> ' ί dx{TN2lφ2(ε) c(-ε)] (x)}

where the second coefficient is amputated on its φ2 c arguments. The only singular
coefficient in this expansion is

<{ dx Tlφ2(ε) c(-ε)] (x) N2\cφ2-\ (0)> (AIV.2)

which diverges logarithmically. The singular part of A5ε is thus proportional to
[^, Jdxf7 2 ( χ )]~ ^dxJ1(x) which is symmetrical [cf. Eq. (92)] as expected.
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By a similar but more involved analysis one can evaluate the singular part
of ΔA>ε which assumes the form

ω(ε) j dxJγ(x)

where ω and ω' are, in the limit ε -• 0 logarithmically divergent.
The resulting finite parts are however not suitable for our purpose because,

due to the occurence of graphs which are φx one particle reducible they do not
vanish upon application of the operator Σphys [cf. (Eq. (33)]. Since the QtJs carry
the quantum numbers of cφ2 we have:

=-e1 Σphys J dx(Jλ δη2) (x)QiZ

— — p Γ^(M2)Σ f dγ(J ft -4- n fi )(x)7

where

ΓiQi)(p)= — <TJV 2 [CG) 2 ] (O)Qiφί(p)y
n

is involved in the expansion:

_ i

(AIV.6)

where the upperscript lx denotes the set of graphs which are one particle irreducible
with respect to the pair c φ 2 , Qt.

Since $ dx[Jίδjι+η2δη2~](x) is obviously a symmetric insertion, adding

does not change the covariance of [5^, QJ and produces insertions which leave
the physical normalization conditions [Eq. 31 (3-7)] invariant. We now want to
show that the insertions A ° leave the normalization condition Eq. (31.8) unchanged.
These insertions can be replaced by A{ = \Jf, <2J modulo terms which trivially do
not contribute to the calculation.

We shall show that:

( ^ W ) G C

2

Γ D (AIV.7)



Renormalization of the Abelian Higgs-Kibble Model 151

remains regular at the ΦΠ mass, upon insertion of At.

= GcίD[2lΔiGct] + GetΊτ{[**"*" " ^ ' 2 ' Λ ' ^ ^
(AIV.8)

where the matrix ||Gίi7 || is the inverse of the matrix WΓiβ. By commuting δξδτ
through y we get:

(AIV.9)
= GC I(p2)<Tc(p)Sί(0)Q ί>

where underlining means amputation.
Similarly

,GC

2

ΓD] (p) = 2G2,(p2)D(p2)

(AIV.10)

Thus we only have to make sure that the bracket is regular at the ΦΠ squared
mass. Now the first term is singular due to the occurence of the ^ propagator, and
the last two terms are singular due the occurence of the ΦΠ propagators. The ^
propagator can be factorized using the Slavnov identities:

μ μ (AIV.ll)

so that:

<Tf(p) »(0)βf> = - <T_φ) φ2(0)Qi} (T(e2N2lcφJ + me) (0) φ)>

+ p2<TZ(p)dμAμ(0)Qi> <Tc(0)φ)> . (AIV.12)

Now the ΦΠ equation of motion allows to replace [e2N2[cφί] + mc] (0) by a
term proportional to • c(0) up to a regular term, so that the factors <Tc(0) c(p)>
undo the c amputation involved in their factors and produce an exact cancellation
with the last two terms in Eq. (AIV.10).

Appendix V

This appendix deals with a number of details in the unitarity proof of Chap-
ter IV. We first discuss the properties of the asymptotic ghost field wave operators L
and of the corresponding asymptotic field two point function S+. Within the cou-
pled (dμΛμ, ψ2) channels L can be taken as a polynominial approximation to the
matrix

Γyy 1 c

1 (& cβ 1 eg cβ
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where

! = ^ + ^ (AV.l)

Denoting x = p2 — niQ, and taking into account: (i) the normalization condition
(31.8), which implies the occurence of a double zero in detL at x = 0 (ii) the lack
of singularity in the ̂ ^ propagator, which follows from the Slavnov identity and
implies the occurence of a double zero in Γ%q at x = 0. We can parametrize L
in the following form:

the last
The

and the

so that

A + βx yx\

\ yx 0 /

term giving corrections of order x2.
corresponding matrix propagator is:

ί Γ1 C

S+ operator is

ihS +

•\ W o

given by:

I °
=θ{Poyδx β\y {x) r

+ O(x>),

>

r *<*)+•

• Regular terms

> „ )
y2 (xy

(AV.3)

(AV.4)

yxδ(x)x\

Q j (AV.5)

where the symbols 5c, x are to remind that the usual identities: x δ(x) = x 2 ^'(x) = 0
cannot be used here because this kernel is to be tested with functions which have
poles at x = 0.

Concerning the Faddeev-Popov fields, let us define

(AV.6)

Using the results of Appendix III we get:

GΨψ = h Regular terms (A V.7)
yx

and

(^ _ j (AV.8)

The si operator Eq. (101) can now be written

(x)x) + βxδ(x)x']δj^p)

jϊ(-p)δj*(P) ( A V 9 )
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where J* is the source of the field qfl that is used in the definition of the antitime
ordered functional.

Before pursuing, let us regularize the δ functions according to

(AV.10)

so that we may forget about the arrows on the 3c variables. Owing to the invariance
of the lagrangian under the transformation:

c-> — c

(AV.ll)
c-+c

we have the identity

hh-P&vM ~ &K(p)hv(P) = h (-p)h^p) + h}{-P)δj\ip) (A v.i 2)

Taking into account [Eq. (43)] we get:

( A V 1 3 )

which yields

|W, Sn = J dpθ(p0) {δj9i_p)[2Ax δ(x) + Ax2 δ'(x) + βx2 δ(x)] ( - j

2 s , ,\t I δ \ ? r ? V r 11 (AV.I4)
2 δ(x) \δ \ xj δ + δ δ + δ * δ ^

+ yx2 δ(x) \δh{.p) \- j x

+ O(ε).

Since the propagator attached to the ̂  and ̂  legs have only simple poles the β
dependent term in the righthand side of Eq. (AV.I4) is of order ε. This does not
happen for the term involving δj- because the (^, ̂ ) propagator has a double pole.

However we have

xGyg(p2)= G&&(p2) + Regular terms . (AV.I5)
y

Since the (^, ̂ ) propagator has no pole we have:

_ A ^
x δj§ {p)Z= δj9 ip) Z + Regular terms . (A V. 16)
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Thus

\s/,ST\= \dpθ{po)hh(_p)[_2Axδ(x) + Ax2δ'(x)-Axδ(x)-](- jx)δj9ip)

+ yx2 δ(x) [δ,,,.Jh(p) + δ m . J s , Λ + 0(8) (AV.17)

= J dpθ(p0) {yx2 δ(x) ih.i-JjfiP) + hh-Jj.ω']} +

The vanishing of the A dependent terms is due to the absence of double poles
in the 'S and "? propagators.

As a consequence we get:

& (A V.I 8)

where y * is the Slavnov operator which characterizes the anti-time ordered
functional.

Indeed Eq. (A V.I8) is a consequence of the symmetry of both s/ and [s/, ¥~\
with respect to the transposition and the complex conjugation of the sources.
We are now in condition to state the following identity:

Slhys(J) i\ dpθ(Po)yx2 δ(x) ίhβl-P

+ hh - P) h, (P) + hi (- p) hn

= Slhys(J) I dpθ(po)yx2 δ(x) U

+ h,ι-pΛh«P),y) + ί^ hn-Pdhv<p) ( A V )

+ hii -P)ίh9 (p). ̂ ] ] + 0(e) eλ^ Sphys(J)\,, = 0

= S;hys(J) {j dpθ(po)yx2 δ(x) ihii-

} # 0(δ)} S p h y s (J)U 0 = 0(ε).

In the first step of this reduction, the 0(ε) term takes into account contributions
of the kind:

Sthys(J) j dpθ(po)yx3 δ(x) % ( - p ) ^ ( p ) e ^ S p h y s ( J ) | i = 0 .

The second step makes use of the Slavnov identities

y s(i) = 0
y (AV.20)

and takes advantage of the zero source condition by commuting £f to the left
and &* to the right.

The last step is a trivial consequence of Eq. (A V.I8). Going back to the expres-
sion for srf, and taking into account the symmetry property, one gets Eq. (104)
of Section IV.
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Appendix VI. A Class of Local Gauge Invariant Operators

In order to define a local operator Θ(x) of dimension d, we shall first consider
an effective lagrangian.

(x) Nd[Θ(x)-] (A VI. 1

where ω is a classical field of Dimension 4-d.
The first criterion for gauge invariance is

ί (AVI.2)

where 9 is the operator defined in Eq. (43). Assuming that Eq. (AVL2) has
solutions, they are in one to one correspondence with those found at the tree level.
They will be further specified by as many physical normalization conditions as are
necessary to specify physical operators of this type at the tree level (namely
modulo the ideal generated by operators which vanish on the physical subspace).
It follows that Θ is ambiguous up to a linear combination of operators whose
tree approximations vanish on the physical subspace.

The proof of gauge invariance then proceeds as usual (Chapter III). Keeping
terms of the first order in ω, one looks for the most general solution of

j , ω ) (AVI.3)

which is of the form

Ux)'] (AVI.4)

where the second term in the right hand side of Eq. (A VI.4) is a perturbation of
the ω dependent part of the solutions of Eq. (AVI.2) in the tree approximation.
Testing now Eq. (AVI.4) with the physical normalization conditions which
specify Θ(x) shows that the problem reduces to check that the perturbations of
operators which have null physical restriction in the tree approximation retain
this property to all orders.

Finally the stability of the physical subspace under application of Θ(x),
up to the zero norm states is a consequence of Eq. (A VI.2) as follows from a slight
generalization of the argument in Chapter IV: defining S(ω) by replacing Z(J_,η)
by Z(Ji,η,ω) in the LSZ definition of S in the overall Fock space, Θ(x) is defined
according to

Θ(x)= — 5 " 1

ί δω(x) ω = 0

n « . ( A V I 5 1

i δω(x)
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Let Eo be the projector on the physical subspace generated by φί and Aτ

μ quanta.
One wishes to show that

E0Θ(y) Eo = Eo

i.e.

δS

δω(x) δω(y) "° δω(x)
SE

δω(y)
E

where the unitarity of S has been used.
Equation (A VI.7) follows simply from

EQSEQS' EQ = EQ

(AVI.6)

(AVI.7)

(AVI.8)

which is the result of Chapter IV and from the identities

δS

δω(x) δω(y)

F δ S SF

δS

°̂ δω(x)

„ δS*

δωiy)

F

(AVI.9)

which are consequences of the first criterion for gauge invariance:

δ

δω '
(A VI. 10)

and of the argument in Chapter IV.
Example, a) d = 2 C = + 1.

Θ is a linear combination of {φί9 φ\, φl,AμAμ,cc},
SfΘ is a linear combination of {φ2c, φιφ2c, cdμAμ, δμcAμ}; so is the term O(ω)
in ^Z(J,27,ω).

Thus there is no anomaly i.e. there exists one invariant local operator which
is a perturbation of

which is non zero in the physical subspace. This operator is completely determined
by e.g.

and can serve as a gauge invariant interpolating field operator for φ l f i n .
b) d = 3 C = — 1 vector operator.
It is trivial that dμGμv solves the problem:

i ( • 9μiVι - dμidVi) δJv {Xi)ΣphysZ\J=η = 0 = 0 (λ = oc, ml).
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Appendix VII

This appendix is devoted to the main steps involved in the treatement of an
extended class of gauges involving quadratic terms odd under charge conjugation.
In the tree approximation, the Slavnov transformation [cf. Eq. (24)] is now taken
to be:

δφ1 = — λeφ2c

δφ2 = λe(φι+v)c (AVII.l)

δc = λ(dμAμ + ρφ2 + σφί φ2) = λ&

The most general lagrangian fulfilling the corresponding Slavnov identity is now:

(AVII.2)

-cc+
σ V

2 e 2

where now

c ., . = M(x,y) = [• +Qev + e(Q + συ) + eσ(φl — φ\)Λ (x)δ(x — y). (AVII.3)
δA(y)

Keeping the normalization conditions Eq. (31) unchanged Eq. (32) is unchanged
except for Eq. (32.3) which now reads

Rrr\

(AVII.4)

But due to Eq. (32.8) (β = 0), the overall algebraic system Eq. (32) is unchanged.
We now turn to the details of the Slavnov identity which we shall express in linear
form as in Eq. (43). Before doing so we need to introduce at least one external
field y coupled to φx φ2, to which we assign dimension two and odd charge con-
jugation quantum number. The corresponding term however undergoes a variation
under the Slavnov transformation (AVII.ί), which forces us also to introduce at
least one field coupled to (φ\ — φ\)c. However, for later use, we shall right away
introduce three fields of dimension one, β = (βl9β2, β3) coupled to three independ-
ent linear combinations of: ^ = (^u^2^3) = (φlc, φ\c, AμAμc) and also a field
of dimension dimension zero τ coupled to Aμc dμc. Thus we have introduced
external fields coupled to a system of operators which is closed under Slavnov
transformations. The most general lagrangian invariant under charge conjugation,
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ΦΠ neutral and consistent with power counting is now

o,Lη, 7, β, τ) = if (g>) + ηγ{zx cφί + z\ c) + η2 z2 cφ2

IΨIΨ2 2V-2 3^ μ μJ (AVII.5)

+ J1φ1 + J2φ2 +JμAμ + ξc +ξc

and the Slavnov identity assumes the general form which will be needed later:

5fσZc=^Zc + \dxl-σξδy
σ C C J L y _ _ ^ (AVII.6)

+ y{λ1Πδξ + λ2δξ + λ2δηί + bδp} + d βδτ-](x)Zc = 0
where however in spite of the huge number of parameters involved in (A VII.5)
the coefficients in Sfσ are always constrained by

d'b = Q (AVII.7)

because bioo(B~1)ii — (B~1)2i and dfoojBί3 (i= 1,2,3). One can in fact verify di-
rectly that this is the only constraint on the coefficients of the Slavnov identity.

We are now ready to prove that one can fulfill a Slavnov identity of the type
(A VII.6) to all orders in h, with coefficients constrained by Eq. (A VII.7). Per-
forming a Slavnov variation of the type (AVII.l) on an effective lagrangian of the
form1 N4^((£,J,η,7, β9τ) [cf. Eq. (AVII.5)] yields:

^Z^^c^Z (AVII.8)
1

where the first 23 zl/s are listed in Eq. (26), and the last nine zl/s are:

(24) \dx[yc]{x)

(25) ldx\yΠc\{*)

(26) \dx\_yN,[cφJ]{x)

(27)

(28)

(29) μ μ

(30,31,32) j^[^iV4[^cδμc]](x). (AVII.9)

After elimination of the Δ s which are naϊve variations, one is left with an ifeff,
including source terms such that only Δ2l, Δ22, Δ2?) and a linear combination of
3̂o> ̂ 315 ^32? namely: Δ33 — b j dx\_βN^\_Aμc dμcj] (x) remain on the right hand

side of the Slavnov identity which reads:

^Zc = (c21Δ21+c22Δ22 + c23Δ23 + c33Δ33)Zc. (A VII. 10)

Now recall that £f is the naϊve Slavnov^identity associated with the Slavnov
transformation we started with, hence d-b = O. Now compute <9"2ZC, which

1 If a monomial is of the form ε M(φ) where ε is an external field to which dimension d was assigned,
iV4[εM(φ)] means ε-/V4_d[M(φ)].
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because of this condition has the same form as the ΦΠ equation of motion
integrated through ~ξ.

We have:

^2Zc=^lc21A21+c22A22 + c23A23 + c33A33-]Zc. (AVII.ll)

The same argument as before shows that <9p2Zc has coefficients identical with
those occuring in the ΦΠ equation of motion, except for the mass term, and that

c 2 1 = c22 = c22 = c33 = 0. (A VII. 12)

At this point the Lagrangian depends on 24 parameters since 28 relations were
imposed on the initial 52 parameters. Together with the 14 independent parameters
of the Slavnov identity we have 38 parameters which can be fixed by the 9 nor-
malization conditions in Eq. (31)2 together with 26 others fixing the couplings
with the external fields3. It is a matter of routine to verify that the corresponding
system is soluble the condition d-b = O being preserved. Three parameters are
then left free: e2, a, σ. The gauge parameter σ could be fixed by imposing an extra
normalization condition on Γψ2φ2. We now extend the proof of the gauge in-
variance of the scattering operator. In order to do so, we shall decompose again
the insertion Δλ generating an infinitesimal variation of the gauge parameter λ
according to

and we shall show that it is possible to choose the two insertions Δλ and As

λ satis-
fying the same requirements as in Chapter III, Eq. (68) and Eq. (73). First of all,
let us write Eq. (AVII.6) in the form.

the first six sf's are listed in Eq. (76) the remaining four are:

sβ=\dxllδy-\{x)

sΊ= Ux[yΠδξ~](x)
[ s (AVII.15)

s8= \dx[yδξ](x)

s9= $dxlγδηj(x).

The derivative of ίfσ with Respect to the parameter λ is obtained by differenciating
the cf's and the vectors b and d. Since we know that b d = 0 [Eq. (AVII.7)]
independently on λ, we have the equation:

= O. (A VII. 16)

2 Using the same kind of arguments as in Appendix III it can be shown that the condition given
in Eq. (31.8) is a suitable normalization condition and that the mass term in the ΦΠ equation of motion
has the same coefficient as the corresponding term in

3 The simplest additional normalization conditions are:

z\ =a2 = a3 = a5 = u = v = w =
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We can parametrize dλb and dλd by introducing the two cartesian triplets:

b,bl9b2

-+ i -Γ (AVII. 17)
d,dί9d2

in the form:
δλb= £ xWdi + z(X)b2d

i= 1,2

Thus we have to find a non physical Δλ satisfying the equation:

9'σl=ΣiSλc\λ)si

' = l , 2 £ = 1 , 2

The insertion Δλ is a linear combination of a basis of covariant non physical
insertions which can be found as follows.

First we introduce, in analogy with Eq. (78) three operators Qiε with δg6 = δy.
By the same construction as in Chapter III we get three insertions zlf of co-
variances c^i (i = 4, 5, 6).

Then using the generalized action principle [6] we can complete the basis of
covariant non physical insertions as indicated in Table (A VII. 1).

Insertion

h

i

h
A' = — \ dx\r\

i

Δβ =-7Γτί ί / x l

Table A VII. 1

Covariance

2 , 2 * C l S l

i < 5 ξ ] ( x ) - C 1 S 3 -

-b βΠδdix)

-c9s9

-c9s8

Δ"β =-^rldx\b βδηι-\(x) -s9

Δ'}> =-^\dx\br βd δβ] W ί dxib, βδj (x)

Δ μ l d [ b β d δ ] ( ) \dx[_d2b βδτ-b2ylδβ\{x)
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It is evident that one can find a particular solution of Eq. (A VII. 19) as a
linear combination of these insertions and of the three Jf's. In the same way one
can get other non physical insertions which are listed in Table (A VII.2).

Table AVII.2

Insertions Covariance

h (

Δr = —

Δy =—\dx\yδf~\(x) ~ c 6 s 6 + Σ c^ + yb δβ
1 ί = 7 , 8 , 9

h ,
Δ" = — \dx\yδr~\(x) c λ 5 8 + c7sQ - ces.

Δ''JU

h " * - "- *- ίx\ o

yfdx[fef j8δί](x) 0

jidxlbrβδ.Jix) 0

J r f C ^ S d J o ^ i ) 0

It is clear that combining linearly the insertions listed in Table(AVIL2)
with those previously considered we obtain 10 symmetrical non physical inser-
tions; in fact, because of the^ orthogonality condition Eq. (AVII.7) b is a linear
combination of the df's and d of the bf's (i = 1, 2).

Now, following the same procedure as in Chapter III, we complete the con-
struction of Δλ by studying a basis of symmetrical insertions Δs. Since we know
that, given the Slavnov identity, the complete lagrangian [Eq. (AVII.5)] depends
on 24 parameters (6 of them fixing the propagators and the couplings of the
quantized fields, and 18 specifying the external field dependence), it follows that
there are 24 independent symmetrical insertions. We have already constructed
18 independent zPs which are non physical. Thus to complete the proof of gauge
invariance we have to find six symmetrical insertions satisfying Eq. (70). Five of
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them are determined by the independent terms of the tree approximation

lagrangian [Eq. (AVII.2)] excluding — — h e - :. The sixth one is the analog of

\ [Eq. (98)]. They verify Eq. (70) as can be seen in the tree approximation.
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