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Abstract. The well-known results concerning the equilibrium of a translation invariant quantum
lattice system - existence of the pressure and of the time automorphisms, variational principle for the
pressure - are generalized to a large class of quantum lattice systems with potentials not exhibiting
covariance under the group of lattice translations.

I. Introduction

It is well known [1] that for a quantum lattice system with a suitable inter-
action φ(X), XcΈv, the pressure P(φ) and the group of time automorphisms
τt(φ) exist in the thermodynamic limit. In proving these results one makes re-
peatedly use of the translation covariance of the interaction:

(1)

where X + α, aeΈv, denotes the set obtained by translation of X, and τa is the
canonical isomorphism of the bounded operators on Jt?x onto the bounded
operators on ^ x + a, τa: B(J4?x)^>B(Jtf?

x + a). /Our notation is as usual: to each site

x of the v-dimensional lattice Έv we attribute a copy J^x of a finite dimensional
Hubert space JίC, and Jfx= (X)«#U But there are systems for which (1) does not

xeX I

hold: consider, for instance, two-component crystals, crystals with impurities, or
systems with inhomogeneous external fields, or even stationary non-equilibrium
systems. We shall concentrate here on systems in equilibrium. It will turn out
that, due to the fact that our observable algebra is assumed to be quasi-local,
τt(φ) can be defined for all interactions satisfying a temperedness condition which
is an obvious generalization of the usual one: There is a norm \\\φ\\\f, f(ξ) = eocξ,
which has to be finite; iϊφ satisfies (1), \\\φ\\\f conincides with the usual norm \\φ\\f

which is assumed to be finite in [2], where the existence of τt(φ) is demonstrated
for translation covariant potentials. Furthermore, one can show that τt(φ) de-
pends continuously on φ. These results are contained in Section III. (Precise
definitions and notations will be found in the following section.) The existence of
the pressure is ensured by a weak form of temperedness, but, in addition, Eq. (1)
has to be replaced by a condition which guarantees the existence of a mean of the
"local" pressures PΛo+x(φ) for fixed Λo. We can deal either with "asymptotically
translation covariant potentials" describing a lattice with a locally disturbed
potential, or, what is more interesting, treat potentials describing "randomly
scattered impurities" in addition to the regular lattice interaction. This class of
potentials will turn out to be a fairly large one. This is done in Sections IV-VI.
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Finally, in the last section, a general variational principle will be proved:

P(φ) = sup(s(ρ)-£(ρ ;</>)),
gey

where s(ρ) is the mean entropy density and E(ρ; φ) the energy density in the state ρ
which is not necessarily translation invariant.

II. Notations and Definitions

Our notations are mainly those of [1]. By X, YZ,Λ,A9... we always denote
finite subsets of the lattice Έv; N(X) is the number of sites in X. X + a, aeΈv

denotes the set X translated by a.
An interaction φ is a function on the lattice Έv: X \-> φ(X) e B(Jίfx)9 φ self-

adjoint; we identify J^XuY with 3^X®J^Y and, similarly, AeB(3tfx) with A®tγ

e B(JΊ?XUY) if Xc\ Y = 0. With this identification, the algebra si of observables is
the norm closure of the inductive limit Λ-> oo of the local algebras siA ^ B(JfΛ).
An element A e s$ is called strictly local if A e srfA for some A.

The Hamiltonians associated with φ are HΛ(φ)= ]Γ φ(X). Given HΛ, we
XCΛ

define the local pressures and the local time automorphismus

PΛ(Φ) = N(Λ)-1 log ΎrΛ exp(-HΛ(Φ)), ΎτΛ = trace over MfΛ ,

τ?(φ)A = exp(it HA(φ))Aexp(-itHA(φ% ACs/Aι, A,CA;

and the pressure and the time automorphism group

P(φ) = lim PΛ(φ), τt(φ) = extension to si of lim τf(φ),
Λ^-oo Λ-+ oo

provided the limits exist.
We denote the van Hove limit A -• oo by lim. Likewise, lim means the limit

in the sense of Robinson: A-+oo such that A eventually contains every finite
subset of Έv. For translationally non-covariant potentials, it is necessary to take

lim in defining P(φ); the time automorphism τt(φ) are obtained with the help
AΊΓRCO

of the Robinson limit.
y — te> Qf> - } denotes the set of states over the algebra sί\ the subset of

translation invariant states is denotes by ^ 0 . The restrictions of a state ρ to local
algebras sίA are given by positive trace class operators of trace 1 which will be
denoted by ρΛ : ρ(A) = Tr^ρ^^ for A e sίA. Notice that, for A C A\ ρΛ = Tr^'^ρ^'
(= partial trace over ^A»\A\ The local entropy associated with a state ρ is given by

Let f(ξ) be a positive function over IR+ we define two /-norms of φ by

\\φ\\f= sup \\φ\\x

f, \\Φ\\x

f= Σ \\Φ(X)\\f(N(X)); (2a,b)
xeΈv

 X 3 X

00

Σ IIΨWH (3)
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Clearly, | | 0 | | /^ \\\Φ\\\f, both norms coincide with the usual one for translation
covariant interactions. By 3$f,&f, &J we denote the following Banach spaces of
interactions:

J } = { 0 , 11011/< 00}, (4a)

^ <oo}, (4b)

J*J = [φ G ggf φ translation covariant}. (4c)

The time automorphisms τt(φ) can be defined for all φe3§f with f(ξ)^eaξ for
some α > 0 ; the pressure will be shown to exist for φ from a subspace of 3$1/ξ.
For that purpose, we have to find a substitute for the translation covariance of φ.
Equation (1) can be replaced by the condition of asymptotic translation covari-
ance (ATC):

Definition 2.1. An interaction φ is called /-asymptotically translation covari-
ant, φ e Jp_if

(i) 0 e « / ,
(ii) for arbitrary s>0, there exists a finite set Aε(φ)cΈv such that

Σ \\φ(X + a)-τaφ(X)\\f(N(X))<ε (5)
X3X

for all x and a for which x φ Δε(φ), x + aφ Aε(φ).
Besides ATC, this condition means a sort of uniform temperedness which we

need in order to show that any φ e 3§f can be approximated by finite range
potentials. Such a potential could describe a crystal with a local impurity. A more
interesting case is the following: we consider a potential φ — φT-\-φR with a
translation covariant part φτ and a part φR describing randomly scattered im-
purities (RSI-potential).

Definition 2.2. A RSI-potential φR= £ φx + φJf is given by

(i) a set / CΈV of "randomly distributed" impurity sites, i.e. obeying condi-
tion (R) to be defined in Section V,

(ii) potentials φx "centered around x", i.e.

φx(X) = 0 unless x e X , (6)

which describe the interaction of the impurity at x with the undisturbed lattice;
furthermore,

φx(X) = τx-yφy{X-(x-y))9 if x,yel, (7)

(iii) a potential φjf describing the interaction among the impurities,

φR

v(X) = 0 unless Xcl, (8)

τaφR

v(X) = φR

v(X + a) if I d , X + α C / . (9)

Equations (8) and (9) suggest that φ^ can be derived from a translation
covariant potential, say, φw by
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In view of physical applications, this seems reasonable. Equations (7)-(9) imply
that we are dealing with one sort of impurities only. Actually, we can cope with
an appreciably larger class of "generalized RSI-potential" (see Definition 5.4) con-
taining sums of RSI-potentials and potentials describing interactions among dif-
ferent kinds of impurities.

The definitions of s(ρ) and E(ρ; φ) will be given in the last section.

III. Existence of Time Automorphisms

In this section, we consider interactions φe^f, with f(ξ)^eaξ for some
positive α. We put α — 1 in order to simplify the formulas.

Definition 3.1. The /[-/-seminorm of φ is defined by

N(Λ)

ιιi0iιi/= Σ / W s u p Σ \\Φ(χ)\\-
fc=l xeΛ χ:xeχ> c Λ,N(X) = k

C l e a r l y , \\\φ\\\f i n c r e a s e s w i t h i n c r e a s i n g A , a n d s u p \\\φ\\\f = \\\φ\\\f. T h e r e s u l t s of
ΛcΈv

this section depend on the following.

Lemma 3.2. Assume φu ..., φne £f, f(ξ)^eξ"1, and let A be strictly local, say,
AE^/ΛO. Then, for A{DΛO, i = l , 2 , ...,n,

\\[HΛn(φn), lHAn_SΦn-ά [ ... [HM{φx\A\ .

Σ - Σ [Φn(Xnl[Φn-ΛXn-l\l
ίCΛί XnCΛn

£n\2»\\A\\exp(N(Λ0))Yl \\4ι

ί = l

This is a generalization of Lemma 7.6.1 of [1], and can be proved by the same
method.

Theorem 3.3. Assume φe$f with f(ξ) ^eξ~1. Then, for A e sdM,

τt(φ)A= ]imτf(φ)A= lim εxp(itHΛ(φ))A exp(- itHΛ{φ))
Λ-> oo Λ-+ oo

R R

exists, defining a strongly continuous one-parameter group of automorphisms

Proof Put φi=^φ and At = A, i= 1, ...,n, in Lemma 3.2, then

|| \HA{Φ\ <ΓΊI = n! \\A\\ exp(JV(Λ0)) (2 \\\φ\\\f)
n, (11)

where [...](w) denotes the iterated commutator:

[B, ^ ] ( 0 ) = A, [B, A~\{n) = IB, IB, ^ ] ( " - 1 } ] .

We have

The rest of the proof can be copied word by word from the proof of Theorem
7.6.2 of [1] which rests on (12) and the analog of (11).
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Remark 3.4. Contrary to what holds in the translation invariant case, the
lattice translations do no longer commute with the time automorphisms defined
by an arbitrary φeέ§f. We have instead

τt{φ)τx = τxτt{φx), (13)
where φx is defined by

Theorem 3.5. For fixed Aes$ and fixed t, the mapping φ^->τΐ(φ)Λ is norm-
continuous on £f equipped with its Banach space topology.

Proof. We consider a sequence φa converging in ||| ... |||j-norm to φ. Notice that

π - l (\Λ\

= Σ [HA(Φcί, IHΛ(Φ«) - HΛ(Φ), LHΛ(Φ), ATlY"-'-1' • { '

Application of Lemma 3.2 with At = Λ, i = 1,..., n, φx = =φr = φ,φr+1 = φ(X — φ,
Φr+2^ '" ^Φn^Φa yields an estimate for the norm of (14), which, together with
(12) and | | | ψ α | | | / ^ M for some M, gives the desired result.

IV. Existence of the Pressure: Definitions and Preparatory Lemmas

In proving the existence of the limit A -> oo of PΛ we shall proceed partly
along the same lines as Ruelle [1]. We start considering potentials of finite range.

Definition 4.1. (i) The local range A(x; φ) of φ is given by

A(x;φ)= U x> ®(x;φ)= {XCΈV

Xe9{x\φ)

(ii) φ is of locally finite range if

φe^0 = {ψ;A(x;ψ) finite for all xeΈv}.

Lemma 4.2. The following conditions are equivalent:
(i) U(A{x;ψ)- x) is finite,

X

(ii) There exists a finite set A(ψ) and a function χ κ α ( x ) e F such that

(iii) There exists a finite set Ar(ψ) such that ψ(X) = 0 unless X CA'(ψ) + a(X)
for a suitable a(X) e Έv.

Proof. Clearly, (i) implies (ii), (ii) implies (iii). Let us assume (iii). If X C A (x ψ),
then x e X,ψ(X) φ 0, hence X C Δ\ψ) + a(X), 0eX-xCA'(ψ) + a(X) - x, and thus
X — x C A" (ψ) = U (A' (ψ) — y\ A (x ψ) — x C A " (ψ), and A" (ψ) is finite because

yeA'(ψ)

A'(ψ) is finite; therefore, (i) holds. Q.E.D.

Definition 4.3. φ is of globally finite range if the conditions of Lemma 4.2 hold.
The set of these φ's is denoted by ^ 0 0 .
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We are now concerned with potentials e£Sf with f(ξ)^ ί/ξ. Note that $f is
a very large space; it is not at all obvious wether J Q Π J J is dense in $f, certainly,
^ 0 0 is not

Lemma 4.4. The closure U£ o of &00 in || ... \\f-norm is the set of all φe$f

such that £ ||(/)(X)|| f(N(X)) converges uniformly in x, i.e. for ε > 0 , there is a
XBX

finite Λ0(ε) such that

X \\φ(X)\\f(N(X))<ε.
X:xeX(tΛ0(ε) + x

Proof Assume uniform convergence, and define

ίφ(X) if there exists xe X: XcΛ0(ε) + x,

^ ( A ) = | 0 otherwise.

Then it follows that φε^φ in || ... Hj-norm, and φ ε satisfies condition (iii) of
Lemma 4.2. The other direction is straightforward.

Proposition 4.5. Suppose φ,ψe^f with f(ξ)^ί/ξ.

(i) \PΛ(φ)-PΛ(ψ)\ύ sup \\φ-ψ\\x

fS\\φ-ψ\\f.
xeΛ

(ii) The function PΛ( ) is convex on &f.
(iii) \PΛ(φ)-\ogd\^\\φ\\f,d=dim^x.

This is nothing but the content of Propositions 2.2.2 and 2.2.3 of [1] stated for
potentials in $f\ the proofs of [1] remain valid because we have

\\HΛ(Φ)\\ = Σ Φ(X) N(xy
xeΛ X xeXcΛ u ,. -v

^ Σ 11011/ = N(^) 11011/ if /(£)^V£
xe/t

This is the analog of (2.9) in [1], the other equations and conclusions of the proofs
in [1] need not be changed. Now we restrict ourselves to interactions of globally
finite range. Proposition 2.3.2 of [1] then reads, with A(φ) as in Lemma 4.2 (ii),

Lemma 4.6. For φe&00, ΛίnΛ2 = Q, let NiA^A^ be the number of points
aeΈv such that Aιn(A(φ) + a)φ0 and A2n{A(φ) + α)φ0, then

\N(Λ1uΛ2) PΛίuΛ2(φ) - N(AX) PAi(φ) - N(Λ2) PΛl{φ)\

S\\HΛiuΛ2(φ)-HΛi(φ)-HΛ2(φ)\\SN(ΛuΛ2)\\φ\\1/ξ.

The proof is the same as in [1] since it is based on (15).
We consider the box

Λ{a)={xeΈv; -a{^x{<a\ i= 1,..., v,(a\ . . . , α v ) e Z v } , (17)

and its mutually disjoint translates Λp j= 1, 2,..., which constitute a covering of
Έv. Our definition of Λ(a) is slightly different from the definition in [1] because
we want to have Λ(a)^>co as a-+co (i.e. ακ->oo, κ = 1,..., v). Let N~(Λ) (resp.
ΛΓ/ (̂ 4)) denote the number of translates contained in (resp. with non-empty inter-
section with) A. itΛ-g oo, then, by definition,

N-(Λ)-+oo and N-(Λ)/Na

+(Λ)-»ί .



Quantum Lattice Systems 89

If we choose a and A large enough, we may conclude from (16) as in the proof
of Proposition 2.3.2 of [1] that

:ε, φe&00. (18)

For translation covariant potentials, we would have PΛj(ψ) = PΛ(.(I)(Ψ)> a n <^ (18)
would read \PΛ(ψ) — PΛίa)(ψ)\ < ε demonstrating the existence of lim PΛ(ψ). This

Λ-^oo

is the point where we need a condition ensuring that the following holds:
N

(M) lim N'1 ]Γ PΛ(Φ) exists for suitable sequences {Λj} of disjoint translates
N-oo j = ί

 J

α—• o o

of Λ(a) and for α-> GO.

In the following section, we shall demonstrate it to hold for RSI-potentials,
and in Section VI for ATC-potentials. (M) in turn ensures the existence of

lim PΛ(φ). This holds for finite range potentials φ G ̂ O O . Due to Proposition 4.5,

the functions PΛ(φ) are convex and equicontinuous on &1/ξ. Hence we have

Lemma 4.7. Let lim PΛ(φ) exist for φ e @> C ̂ O o Then PΛ(φ) converge for

all φeS)i\ f(ζ)^ i/ξ, to a convex \\ ... \\j-norm continuous function P(φ) on Θj\

Here, 3)f denotes the || ... Hj-norm closure of Q).

V. The Case of the RSI-Potentials

Let Φ — ΦT^~ΦR be a potential consisting of a translation covariant part φτ

and a RSI-potential φR as given by Definition 2.2. We have to make precise what
is meant by "random distribution" of a subset / in an infinite lattice Έv. Let A
be any finite set, and let us consider the distributions d(A + a) of impurities in
A + α, a G Έ\

Definition 5.1. Two distributions d = d(A + a), df = d(A + af) are called of the
same type, d ~ d\ if d(Λ + a) — a = d(A + a') — α'.

Given Λ, there are 2N{Λ) possible different types d^ of distributions, r = 1, 2,...
..., 2iV(yl). If / is distributed at random, we expect every type d^ to occur with a
well-defined probability if we look at an arbitrary translate A + aoϊA. Probability
is used here in the sense of relative frequency of occurrence as it is common in
physics. To be precise we shall assume the following:

(R) Let {Aj}j = o,i,2,... be a covering of Έv by mutually disjoint translates
Aj = A(a) + a,- of the box A(a) defined in (17). Let N(r; a; k) be the number of α/s,
j^k, with d(A(a) + fly) — a3 = d^a). Then the following limit exists:

lim (1/fc) N(r; a; k) = v(r; α), r = 1,2,..., 2N{Λ{a)). (19)
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This completes the definition of RSI-potentials. It is sufficient to require (19)
k

for those cases where Λk — (J Λj form a H — ^-sequence. We shall always assume
7 = 1

that without further mentioning. For the sake of simplicity, we suppose (R) to
be fulfilled for all aeΈv although we could do with an infinite sequence an -• oo
in most cases.

The essential consequence of (R) is
Lemma 5.2. Let the function f{Λ) depend only on the shape of A and on the

type of the impurity distribution d(Λ), i.e.

= f(d(Λ + ά)-a), (20)
then

liml/fcΣ/(Λ(α) + β;)= Σ v(';«)/(<#U (21)
7 = 1 r=\

The proof is trivial.
Notice that the sum of two RSI-potentials φ^ and φ\, with respective impurity

sets It and respective probabilities v, (r;α), i= 1,2, is not a RSI-potential in the
sense of Definition 2.2. Nevertheless, we can add them without loosing the im-
portant Lemma 5.2. (20) has to be replaced by

f(Λ + a) = f(dί(Λ + a)-a, d2{Λ + a)- a), di(Λ) = ΛnIi9 i= 1,2 (22)

and in (21), v(r; a) has to be replaced by v(r; s; a) = v(r; a) v(s; α), with the sum-
mation running over 1 ̂  r, s ^ 2N ( y l ). The generalization to more than two sets I{

is obvious; we have

Lemma 5.3. Let the function f(A) depend only on the shape of A and on the
types of the impurity distributions d^A), i = l , . . . ,n . Here, d^Λ) — Anlt; and
/f, i= 1,...,«, are supposed to fulfill (R). 77i^n ί/ie Zϊ'mzί

*-,«> j = 1

exists.
If we want to consider more than one kind of impurity, we not only have to

add two or more RSI-potentials but have also to introduce an interaction between
different impurities. This leads to a more general definition of RSI-potentials.

Definition 5.4. Let IiCΈv, z = l , ...,fc, be randomly distributed sets, i.e. ful-
filling (R). Let di(A) = ΛnIi denote the distribution of the z-th impurity, φ is
called a generalized RSI-potential if

i=i,...,k, implies φ(X + a) — τaφ(X). (23)

This is a fairly comprehensive class of potentials :
(i) Any translation covariant potential is in that class: take fc= 1 and Ix =ΈV.

(ii) The sum of two generalized RSI-potentials is again a generalized RSI-
potential (with a possibly larger set of impurity sets /,).

(iii) Trivially, a RSI-potential is a generalized RSI-potential.
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(iv) A potential of the following kind is a generalized RSI-potential:
φ = φτ + φR + φR + φί2>, with a translation covariant part φτ, two RSI-potentials
φι

R and a potential φί2 describing the interaction of the two impurities, where
φί2(X) = 0 unless X = X1κjX2 and X1Cll9 X2Cl2, provided φ12 fulfils (23) for
i = 1,2, [i.e. a relation similar to (9)].

Now we have to make sure that our potentials have finite norm and, moreover,
can be approximated by potentials of globally finite range. For RSI-potentials,
we have the following results:

Lemma 5.5. Let φR= Σφx be a RSI-potential If φXoe3Sξf{ξ) for any x0eI,
_ xel

then φR e 36 m .

Lemma 5.6.Let 0 e I and assume that φ° is centered around 0.
(i) Let φ° be of locally finite range, then φR9 φR(X)= £ τxφ°(X-x), is of

globally finite range.
(ii) Any φ° e$fl can be approximated in || ... \\fί-norm by finite range poten-

tials φ® centered around 0.

(iii) If\\φ°a-φ°\\ξm^Othen \\φRu-φR\\f-+0,φRβ(X)= ΣτχΦ°ΛX-x)
xel

The proofs of these Lemmas will be left to the reader. As a consequence of
Lemma 5.6, a potential φR as defined in Lemma 5.5 is e &f

QQ, where ^{Q denotes
the || ... ll^-norm closure of ^ 0 0 . If φ{f, defined in (8) and (9), is - in the sense
of (10) - derived from a potential φw e 36j9 it follows trivially that also φ^ e 36f

0Q\
furthermore, the approximating potentials e^00 are also RSI-potentials. As
regards arbitrary generalized RSI-potentials, we take this property as an addi-
tional assumption; henceforth we consider potentials given by the following
definition:

Definition 5.7. &{= {φe &00; φ generalized RSI-potential}f.
{...}f denotes the \\...\\f-norm closure of {...}. S6S

R is a closed linear subspace
. Collecting our previous results we are now able to prove

Theorem 5.8. Assume φe^f

R, f(ξ)^l/ξ. Then lim PΛ(φ) = P(φ) exists if

A-+CO in the sense of van Hove and Robinson, and it is independent of the chosen
sequence A. P{φ) is a convex continuous function on ^R.

Proof Suppose φe3$f

Rr\&00. Because of (23),

PΛ(Φ) = NiAΓ1 log Tr^ exp(- HA(Φ))

does not depend on where A is situated but only on the shape of A and on the
types of di(Λ). Application of Lemma 5.3 then ensures the existence of

timί/kΣPΛj(φ) = P(a;φ), (24)
0 0 j= i

where Aj are disjoint translates of A(a). Let Λ-—>oo, then the sequence of Ajs

contained in A eventually yields a covering of Έv; and (18) and (24) give, for suf-
ficiently large ao(ε) and sufficiently large A0(ε; a),

\PΛ(Φ)-P(a;φ)\<2ε if α>α o (ε) , Λ^Λ0(ε;a).
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Let α l 5 α 2 be larger than αo(ε/4), and choose ADAo(ε/4,aί)κjAo(ε/4,a2\ then
|P(α t φ) — P(a2 0)| < ε, hence lim i^ WO exists.

Λw^co

The rest follows from Lemma 4.7. Q.E.D.

Remark 5.9. Notice that in (R) we did not make any assumption about the
magnitude of the probability of a given type of impurity distribution for a fixed
A(a). (In speaking of a "random" distribution, one could try to justfy the require-
ment that d{2{a) and d%]

a) occur with the same probability if they contain the same
number of impurity sites.) This leaves open the possibility of a superimposed
partial regularity of the impurities which could — in a real crystal — be caused by
an interaction between them. Actually, even a completely regular distribution of
impurities, i.e. a φR exhibiting covariance under a subgroup of lattice translations,
fulfils (R). This case can already be treated in the usual framework of covariant
potentials if one considers the periodicity cells as elements of a new lattice Έv.
Clearly, the outcome has be the same as above (see Appendix).

VI. Locally Disturbed Potentials

If there is only a local concentration of impurities, in other words, if the
potential is disturbed locally by an operator, say, e j / y l o , one does not expect a
change in the pressure as A goes to infinity. Indeed, if we consider asymptotically
translation covariant potentials φe^a

f (see Definition 2.1), then the following
results hold:

Theorem 6.1. // φe&ljξ, then lim PΛ(Φ)^PA(Φ) exists defining a convex
A > oo

continuous function on $\^. HR

Definition 6.2. φt and φ2 are said to be/-asymptotically equal, φλ ~ φ2, if, for
ε > 0, there is a Δε such that || φ1 — φ2 \\f <ε for x φ Δε.

Theorem 6.3. Suppose φt ~ φ2, φί e 3Sf and φ2 e 3$f, f(ξ) ^ ί/ξ. Then

(i) φί ε 3$^

(ii) P(φ1) = P(φ2).

Corollary 6.4. // the translation covariant potential φ is "locally disturbed" by
φ\ i.e. φ'eθa

f9φγφ + φ\ then P(φ + φ1)- P(φ).

Proof of Theorem 6.1. We first take ψ e J o o n J J . Combination of Defini-
tion 2.1 and Proposition 4.5 gives

l ^ + c W 0 - ^ W 0 1 < ε (25)

provided A and A + c lie outside Δε(φ). Now let us choose a large a and a suf-
ficiently large A such that Δε(φ)cΛ(a) and ADA1<UA2, where Aί = A(a),
A2 = A(a) + 2a. Clearly, all translates A } of A(a), Λj C A, j = 2,..., N~(A), lie outside
Δε(φ\ hence we can apply (25) to A2 and Aj9j>2. The role of N~(A)~1ΣPΛj(φ)
in (18) can now be taken over by PΛl(φ); consequently, as is easily seen, lim PΛ(φ)

A *• GO

exists. The rest follows from Lemma 4.7 and

Proposition 6.5. &oon£%a

f is | | . . . \\f-norm dense in &a

f.

The proof is a bit clumsy but straightforward, and is left to the reader.
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Remark 6.6. For the proof of the existence of P(φ\ φeέ%00, we could have

done with a weaker definition of asymptotical translation covariance, for instance,

by assuming || Σ (Φ(X + a) — τaΦ(X)) = N(Λ)ε if A and A -f a are outside some

Δ'Xφ). But this is not sufficient to prove Proposition 6.5.

Proof of Theorem 6.3. (i) φ2 — φι is readily seen to fulfil Eq. (5) of Defini-
tion 2.1, hence φχ = φ2 — (Φi — Φi) e 38} because 08} is a linear subset of £8f.

(ii) According to Proposition 6.5, φγ and φ2 can be approximated by φίa and
φ2a, respectively, φ l α , φ2ae38oon@la

f. If α is large enough, we have A2rλΔt

= (A(a) + 2a)nΔε = 0 and therefore

\PΛ2(Φu) ~ PΛ2(Φ2«)\ ύ sup IIφ l a - φ2a\\} < 3ε .
xeA2

Reasoning as in the proof of Theorem 6.1 we get the desired result.

Remark 6.7. It is to be expected that a theorem similar to Corollary 6.4 also
holds for a generalized RSI-potential disturbed by φ' e &}, φ' j 0. In this case, the

k

role of PΛ2(φ) is taken over by lim i/fc £ PΛjiΦ\ where {^^=0,1,2,... i s a covering

of Έv. But we can do with a covering of 2£v — Γ, where F is a suitable finite set
containing Δε, and argue along the same lines as in the proof of Theorem 6.3.

VII. Extremality Property of P(φ)

It is well known [3, see also 4] that P{φ\ φ e J*J, can be obtained by a vari-
ational principle:

)= sup (S(Q)-Q(AΦ)). (26)

Here, Aφ= Σ φ(X)N(X)~1 is the observable of the mean energy per site and

s(ρ) is the entropy density,

s(ρ) = lim SQ(Λ)/N(Λ), SQ(Λ) = - ΊτAρΛ \ogρA . (27)
A—*• 00

H

SQ(A) is well defined for arbitrary ρ e £f, but the limit in (27) is only known to
exist for ρ e <9Q (see, for instance, [1], where (27) is shown with A = A(ά)-+ 00, the
generalization is due to [5, 6]). Since we want to consider non-covariant poten-
tials, we cannot expect from the very beginning that an invariant equilibrium
state can be found. There is a second difficulty in proving a variational principle:
Aφ9 as defined above, is the observable of the energy density only for translation
covariant potentials. In general, it has to be replaced by HΛ(φ)/N(A) or by
AΦ{Λ) = N(A)-1 Σ AX

Φ,AX

Φ= Σ Φ(x)/N(x\ a n d > o f course, the limit A->oo has
xeA XBX

to be taken at a suitable moment in the computation. One readily checks - for

instance, with the help of a modification of Lemma 3.8 in [7] - that I I ^ Λ )

— HΛ(φ)/N(A)\\ tends to zero as Λ-^-^°o? provided φe^1/ξ; therefore, it does

not matter which expression is chosen. Unfortunately, lim ρ(HΛ(φ)/N(A)) need
A-> 00
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not exist. We define the entropy density and the energy density for arbitrary
states and arbitrary potentials by

Definition 7.1. s(ρ) = sup lira sup Sρ(/L) /N(Λ),
{Λ}H.R A^CO

E(ρ;φ)= sup \imsupρ(HΛ(φ)/N(Λ)).
{Λ}H.R Λ-+00

sup denotes the supremum over all H — .R-sequences.
{Λ}H,R

If ρe£f0, then (i) s(ρ) = s(ρ); (ii) lim ρ(HΛ{φ)/N(Λ)) exists if φe^{ and
ΛΊ¥^CO

equals E(ρ;φ); (iii) E(ρ;φ) = ρ(Aφ), provided φ is translation covariant. In a
recent paper [8], Lima and Naudts have introduced non-covariant potentials
which are "uniformly averageable". For these potentials, they define the mean
energy in a state ρ e f/0 by lim ρ(Aφ(Λ)). This clearly coincides with our definition.

A-> oo

The condition of being uniformly averageable seems to be more restrictive than
our conditions on φ, nevertheless, their class of potentials does not have an
obvious connection with our set &f

R.
The quantities E and s can be used to state a generalized variational principle:
Theorem 7.2. Assume φ e J £ , f(ξ) ̂  ί/ξ. By Theorem 5.8, lim PΛ(φ) = P(φ)

Λ-

H,R

exists, P(φ) being independent of the chosen sequence. P(φ) is given by

)). (28)

Proof. We proceed in three steps: first, we show

)); (29)

second, we exhibit a set of states ρa, a e Έv, such that

- ρa(HΛ(ΦJ) ^ P{φ) - sa (30)

for all sufficiently large members A of a suitable H — .R-sequence {A}, where εa

can be made arbitrarily small for large a; and finally, we demonstrate that, for
these states, the following holds:

S{Q")= lim NiAΓ'S^A), E(ρ°;φ)= lim ρ*(HΛ(Φ)/N(Λ))9 (31)
A * oo A *• oo

H,R H,R

independent of the chosen H — .R-sequence. From this last statement, together
with (30), we get

s(ρ*)-E(ρa;φ)^P{φ)-sa9

and hence the converse of (29), which then completes the proof of Theorem 7.2.

Proof of (29). With the help of the concavity of the logarithm and Peierls'
inequality, one easily checks Sρ(A) — ρ(HΛ(φ))^ logΎΐΛe~HΛiφ\ Therefore

s(ρ)-E(ρ;φ)^ sup lim supiV^)" 1 ίSρ(A)- ρ(HΛ{Φ))~\
{Λ}H, R A^GO

(32)

^ sup l i m s u p N t y i r M o g T r ^ ^ ^ - sup li
{Λ)H,R >1->OO {Λ}H.R Λ-+
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Because lim PΛ(φ) = P(φ) exists independent of the chosen sequence,
A • oo

H,R

sup limsupPy l(φ) and lim PΛ(φ) coincide yielding (29), since (32) holds for
{Λ}H.R Λ ^ OO A £ oo

arbitrary ρ e Sf.

Proof of (30). Let again {Aj}j=li2f.m. be a covering of Έv, where Aj = A(a) + aj
are mutually disjoint translates of the box A(a); aγ = 0 . We define a state ρα by
prescribing its density matrices ρΛ for A = /lj and for /t = finite union of some Ay.

We now consider a // —i^-sequence {Λ} where the A's are composed of translates
Aj. [It is sufficient to show (30) for a suitable sequence.] We then find

and, consequently,
jeJ jeJ

) = r ' .Σ (34)

where fe is the cardinality of J. Let us write Sρa(Aj) = — Tr^.ρ^.logρ^ = Tr^ρΛ j HΛj(φ)
+ N(Aj)PΛj(φ) and insert it into (34):

) 1 £ (35)

According to (24) and the reasoning thereafter, the second term on the r.h.s. is
arbitraily close to P(φ) if φ e έ%00 and if a and A = uAj are chosen large enough.
Since PΛ(φ) is continuous in φ e &lfξ, uniformly in A, according to Proposition 4.5,
the same is true of P{φ\ and we can replace the condition φe&00 by φe£$f

R.
The proof is practically complete if we can show that

HΛj(φ)/N(Aj)-HΛ(Φ)/N(A) < ε for large a and A . (36)

According to the assumptions of Theorem 7.2, φ can be approximated by some
φae&00. Now remember Eq. (16) and the conclusions leading from (16) to (18).
By exactly the same reasoning, we find

N(ΛY (37)

which, together with (15): \\HΛ(Φ~ Φa)\\^N(A) \\φ-φj1/ξ implies (36).

Proof of (31). Instead of (31), we establish a slightly more general proposition.

Proposition 7.3. Assume φ,ψe έ$j/ξ and let ρa be given by (33) (i.e. defined with
the help of φ). Then the limits lim SQa(Λ)/N(Λ) and lim ρa(HΛ(ψ)/N(Λ)) exist

A • oo A > oo

yielding s(ρa) and E(ρa;ψ% independent of the chosen H — R-sequence {A}.
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Proof, a9 φ, and ψ are fixed throughout the whole proof. Let us first consider
H — R-sequences {A} where A = KJA). A) are mutually disjoint translates of A(b\
covering Έv. b is assumed to be an odd multiple of a, b = (2m + 1)α, in order that
A] and A can also be written as unions of translates Aj = A] of Λ-(α); a and ^ are
the same as in the definition (33) of ρa. Notice that SQa(Λ^)/N{Λ^) and

Qa{HΛί{ψ)/N{λ$))9

considered as functions of Ap depend only on the types of the impurity distribu-
tions d^A)) belonging to φ and ψ, i.e. they satisfy the analog of Eq. (22) with A
and A + a replaced by A] and Ay. This suffices to reach the conclusion of
Lemma 5.3 with A(b) in place of A(a). Therefore, the following limits exist [with
b = a and b = (2m + 1) a, respectively]:

and

E(ρa; ψ; b) = lim k'1 £ ρa(HΛί(ψ)/N(yή)).
0 0 7 = 1

Because (J yl) = IJ ylj1 for some J\ we conclude from (34) that lίm Sρa(A)/N(A)
jeJ je.J' Λ~"GO

^s'(ρa) for H-R-sequences {AEKJA)}, b = (2m+ i)α.
Invoking the strong subadditivity of Sρ(Λ) [5, 6] we get

for arbitrary H — R-sequences, and due to the independence of the special sequence,
s'(ρa) = s(ρ«).

Equation (37) does not only hold for A=uAj, but for an arbitrary sufficiently
large A from a H — R-sequence {A} if the summation runs over all translates Aj
contained in A; together with (15) (with ψ — ψa instead of φ) we conclude that
E(ρa ψ b) has a limit as b -• oo, which is independent of the chosen H — R-sequence
and thus coincides with E(ρa; ψ). Q.E.D.

Theorem 7.2 looks as neat as the corresponding theorem [Eq. (26)] for
translation covariant potentials, however, it is not, the reason being that upper
semicontinuity in ρ of s(ρ) cannot readily be shown. Moreover, it is not obvious
that E(ρ; φ) is linear in φ for all ρ e Sf. Let us recall what is known for the trans-
lation invariant case [3, 9, 10].

(a) s(ρ) is upper semicontinuous on 5^, hence the supremum sup (s(ρ) — ρ(Aώ))

= P(φ), φ e &I/ξ, is attained for some ρφ. ρφ is called an equilibrium state, s(ρφ)
[resp. ρφ(Aφ)~] is the corresponding equilibrium entropy (resp. energy) density.

(b) A linear functional α(ip) on $[ίξ is called a tangent functional at φ to the
graph of P( ) if

P(φ + ψ)^ P(φ) - α(v>), Φ, Ψ e <0ΐ/ξ. (38)
An equilibrium state ρφ e £^Q defines a tangent functional aφ by ρφ(Aψ) = ocφ(ψ)
and vice versa.

(c) Let T C όSl/ξ denote the set of potentials such that the tangent functional
OLΦ at φ to the graph of P( ) is unique. Then OLΦ = w-limα^ where o$ are tangent
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functionals at φ to the graphs of PΛ( ); and

QΦ(AΨ)= lim N(Λ)-1 τrΛe-HΛ{φ)HΛ(ψ)(ΊrΛe~H^r\ φ,ψe@ΐlξ. (39)
yt->oo

Now we consider the case of a generalized RSI-potential. Let again T denote the
set of those potentials for which the tangent to the graph of P( ) is unique. Since
upper semicontinuity of the entropy density is lost, there is no ful counterpart
of (a). Nevertheless, we can define the equilibrium entropy (resp. energy) density.

Lemma 7.4. E(ρ; φ) is a continuous function of φ on &ι/ξ.

Proof From Definition 7.1 we get

E(ρ; ψt + ψ2) g E(ρ; Ψl) + E(ρ; ψ2) (40)
and

\E{ρ;ψ)\ύ\\ψ\\i/ξ (41)

because of \ρ(HΛ(ψ)/N(Λ)\ ^ \\HΛ(ψ)/N(Λ)\\ ^ \\ψ\\1/ξ. Thus it follows that

- \\ψiII i/ξ ̂  - E(ρ; ~Ψi) = E(ρ; Ψι+ψ2- Ψi) ~ E(ρ; Ψι) -E(ρ;- ψ2)

E{ρ; ψ2) ~ E(ρ; ψx) = E{ρ; ψ2) S \\ψ2II iiξ,

hence E(ρ;ψί + ψ2) — E(ρ;φi)->0 as ιp2-+0 in | | ... ||1/ξ-norm. Q.E.D.

For ρ = ρα, we have the equality sign in (40) because

E(ρa;ψ)= \imρ«{HΛ(ψ)/N(Λ)),
Λ-* oo

i.e. E(ρa;ψ) is linear and continuous in ψ. Therefore, {E(ρa; -);ae Έv} is a relatively
compact set in the dual {βf^f of 0R. P( ) is considered as a function over $f

R,
and, as usual f(ξ) ^ί/ξ. With this in mind, we can formulate what can be proved
instead of (a), (b), and (c):

Proposition 7.5. Let ρa be defined by (33) with a generalized RSI-potential φ.
(i) Any point of accumulation of {E(ρa; ); a e Έv} defines a tangent functional

Eφ{ψ) at φ to the graph of P{ ).
(ii) To every Eφ(ψ), there corresponds a point of accumulation sφ of {s(ρa);

), and
φ φ (42)

(iii) If φeT, then Eφ{-) and sφ are unique, and Eφ(ψ)= lim aφ

Λ{\p\ where
Λ H κ> oo

aφ

A are tangent functionals at φ to the graphs of PΛ(-); furthermore,

Eφ{ψ)= lim N{A)-ιΊτΛe-HΛ{φ)HΛ{\p){ΊvAe~HAΦ))~ι

A * oo

A

sφ = lim NiAia))-1 Sρa{A(a)). (44)

Proof (i) and (ii) are consequences of Theorem 7.2 and the inequality

P(φ) ^ s(ρa) -E(ρa;φ) + ε, ε arbitrary small for large a , (45)
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which follows from Proposition 7.3 and the proof of Theorem 7.2. Let φ e l { ,
then we have

P(φ + ψ) ^ s(ρa) - E(ρ«; φ + ψ) = s(ρa) - E(ρ«; φ) - E(ρa; ψ)

)

and ε tends to zero for any sequence αv->oo characterizing a point of accumula-
tion, say, Eφ{ -) of {E(ρa; -)};aeΈv}. Due to (46), Eφ(ψ) is a tangent functional,
and from (45), Eq. (42) follows with the corresponding point of accumulation sφ.

(iii) The uniqueness of Eφ and sφ for φ e T is trivial. The proof of (43) runs
exactly as in the translation invariant case [3, 9]: The tangent functionals o$ to
the graphs of PΛ( ) are given by

As is easily seen, any point of accumulation of {o$; A e H — i^-sequence} gives a
tangent functional to the graph of P( ). Due to the uniqueness, we have thus the
first part of (43). Take the H — K-sequence {A(a% a-+oo), then the definition (33)
of ρa yields the second equality in (43). Equation (44) is a trivial consequence of
(35) and (43). Q.E.D.

Finally let us add three remarks:

Remark 7.6. Let φ be a generalized RSI-potential characterized by k sets Ij
and the probabilities vfoj, a), j= 1,..., k. For a given A(a) and its disjoint trans-
lates A", there are k 2N{Λ{a)) different types of impurity distributions d{r\
r= 1,..., fc 2N{Λ{a)). Let d{r) be realized for A{r) = A(a) + a{r\ where Air) is one of
the translates A". We put H$a) = τ_a(r)HΛ{a)+a{r){φ\ and define ρa'r by the density
matrices

Q%a)==e HΛ^IΊτMa)e
 H ^ ,

u,v a,r u,y 1 Γ® cι,v

Clearly, ρa " is invariant under translations τ2na, and

rl Σ β" r(τx-) (49)

is translation invariant. With v(r;a)= Π v / r j ' α ) ' w e define ρa= Σv(r, a)ρa'r.
_ j=1 r

Then we have ρa e ^ and s(ρa) = s(ρa). This is a consequence of (R) and of the
results of [2]. Unfortunately, one cannot approximate P(φ) with the help of ρa.
For, in general,

lim ρa{HA(Φ)/N(Λ))^ lim ρa{HΛ(φ)/N(A)) = E(ρa;φ)
Λ-> oo Λ-+oo

because ρa is better adapted to the fine structure of the potential φ in order for
it to minimize the energy expectation value. An example will be found in the
Appendix

Remark 7.7. In the translation invariant case, Theorem 7.2 has a converse [3]:

s(ρ)= inf (P(φ)-ρ(Aφ))9 ρ e ^ .
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One is tempted to conjecture that a similar equation holds for arbitrary ρ:

s(ρ)= inf (P(φ)-E(ρ;φ)), ρeS?. (50)

From Theorem 7.2 we readily derive

s(ρ)^ inf (P(φ)-E(ρ;φ)).

Let us assume that the ρβ's converge to some ρeq for which the supremum in
Theorem 7.2 is attained. Then (50) would hold for ρ = ρeq. The proof of Theo-
rem 7.2 shows that the structure of the ρfl's - and hence that of ρeq - reflects the
structure of φ, especially its translational properties. Since φ has to be restricted
to the class 3S^ξ, we can at best expect (50) to hold for those ρ which are in some
sense translation invariant in the mean, as are the generalized RSI-potentials.

Remark 7.8. If φe&f

R with f(ξ) ^e~ξ, then τt(φ) exists, and one can look for
KMS-states [11] with respect to τt(φ). In the case of translation covariant poten-
tials, it is known [3] that those states for which the supremum is obtained in (26)
are KMS-states (with inverse temperature /J=l) with respect to the time
automorphism group defined by the potential. Because we do not have a ρeq in
the general case, we can only ask the other way round: does a τ ί(0)-KMS-state
yield the supremum in Theorem 7.2? This has been an open question even in the
invariant case until recently [12]. There seems to be a chance to carry over the
proofs of [12] to the non-invariant case.

Acknowledgement. The problem treated in this paper arose from discussions with Prof. Winnink
in Groningen whom I wish to thank. Furthermore, I am indebted to Prof. Borchers for his interest
in the subject and for stimulating discussions during the phase of completion of the paper.

Appendix: Potentials Exhibiting Partial Covariance

Assume that φ is covariant under the subgroup Ta= {τna,a = (a1, . . .,α v),
n = (n 1,..., nv\ nκ = 0, 1, 2,...}. We can apply the results for translation covariant
potentials by taking the periodicity cells as elements of a new lattice Z v : — {Zo + na\
weN v}, where Zo = {xeΈv; 0:g:xα<αα, α = 1,..., v}. To every subset

Λ = {Z0 + nya;γeΓ}cΈv

there corresponds a set A CJLy: A = (J (Z o + nya). We define φ by
γeΓ

HΛ(φ) = HΛ(Φ). (Al)

Notice that φ is uniquely defined if Hχ(φ) is given for all A CΈV. Clearly, φ is
translation covariant under the group of Zv-lattice translations, hence the van Hove
limit lim Pχ(φ) exists, and, due to (Al), equals N(Z0) lim PΛ(φ). Here A is meant

/i-> oo Λ-> oo

to be restricted to unions of periodicity cells, but this restriction can be dropped
according to Theorem 5.8 and Remark 5.9.

We can find a Zv-translation invariant equilibrium state ρφ over the algebra
si belonging to Έv by defining states ρb in the way we defined ρa'r and ρa'r [just
cancel the r in (48) and (49), replace φ by φ and A(a) by A{b)~\\ any point of
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accumulation of {ρb;beΈv} yields a ρ$ [2]. Clearly, ρ̂  can be considered as a
state over the original algebra j / , moreover, it is an equilibrium state, i.e. we have
P(φ) = s(ρί)-ρί (N(Zo)-1 £ AXΛ, s(ρ*) exists according to [2]; but, clearly, ^

\ xeZ0 I

is not 2£v-translation invariant.
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