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Abstract. Discrete eigenvalues of the electronic Hamiltonian with dilatation analytic potentials
for ionized diatomic molecules are shown to depend smoothly on the distance r of the nuclei for r
finite and non vanishing. Furthermore the spectrum is analyzed at r = 0 and r = oo and the eigenvalues
turn out to be continuous.

Introduction

In quantum theory of molecules one of the most important tools is the method
of Bom and Oppenheimer [1]. Prerequisites for a successful application of the
method are spectral properties of the so called electronic Hamiltonian. The analysis
of those is the subject of this note and is a part of a general study of the method
of Born-Oppenheimer done in collaboration with Combes, Duclos and Gross-
mann [2, 3].

The problem discussed by Born and Oppenheimer is the following: Consider
the Hamiltonian for a system of N non relativistic particles, S of them with mass
M and L = N — S with mass m,

..χs,y1...yI). (1)

Think of M and m being the mass of nuclei and electrons respectively. Then the
mass ratio κ4 = m/M is small and the problem arises to formulate a perturbation
theory in K useful to get information about spectrum and eigenfunctions of H.
Such a perturbation theory is obviously singular because the small parameter
multiplies the differential operator Σp2

s which can not be expected to be in any
sense small compared to the rest of H. In their paper they give a formal but
physically well motivated and successful account of such a perturbation theory.
It turns out [3] that the problem can be cast in the frame of singular perturbation
theory [4]. Here we will discuss the so to say zero order problem and analyse
the spectrum of the electronic Hamiltonian Hel(xί...xs) which is gotten from
H by putting M = oo or K = 0.

To concentrate on the relevant part of the problem let us consider just the
Hamiltonian for an ionized diatomic colecule

(2)
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Introducing Jacobi coordinates and separating of the kinetic part of the center
of mass motion, H transforms into

1 4 1 4

2m x 2m y

+ V2(y-(ί-i/r)x)+V3(x),

γ _ γ γ /^

y = (ΣMixί/ΣMi)-yί

r=M1/M2 + i .

Setting τc = 0 we get the electronic Hamiltonian which depends parametrically
on the configuration x of the nuclei

1

2m y 1

Here H(x) is considered as an operator on L2(d3y). The last term in the definition
of Hel(x) acts trivially on L2(d3y). Hence we are left with the analysis of the
operator I

unitarily equivalent to the nontrivial part of Hel(x):

H ( x ) = T ( i / r x ) {Hel(x)-V3(x)} T(- 1/rx) (6)

where T(a) is the natural unitary representation of the group of translations on
L2(d3y).

The spectral properties of H(x) will be discussed under the general assumption
that Vl9l=l929 are dilatation analytic (d.a.) potentials [5]. In a slight modification
of the original concept we call V a d.a. potential if the following conditions are
satisfied:

i) F(l + //o)"1 is compact,
ii) D(λ) V(i + HQ)~I D(λ)~l,λeR\, has an analytic extension as bounded

operator on L2(d*y) from R+ into the sector

Sφ = [λ e C 31 Reλ{ > 0, |arg^z| <φ9l=ί929 3}
for a φ> 0.

Here D(λ) is the natural unitary representation of the dilatation group R+

(7)

The Yukawa and the Coulomb potential are dilatation analytic. We will avoid
throughout the paper to use methods not generalizable to the case of many
particle systems. This generalization and the analysis of the eigenfunctions of
H(x) will be the subject of a separate publication.

1 Since the elements of R+ have components strictly positive there is no problem with the
definition of the square root. If more general canonical transformations on phase space are considered
this situation might change [10].
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Computer calculations have been very helpful for getting ideas about the
general behaviour of the discrete spectrum of H(x) [6]. For the case of the ionized

e2

Hydrogen molecule, where Vl(y)= V2(y)= —r-r,e denoting the electric charge,

one finds the following results: The discrete eigenvalues of H(x) depend smoothly
on x for x Φ 0. In fact they depend only on r = x. For r approaching zero they
converge to eigenvalues of the Coulomb problem with charge 2e. The lowest
eigenvalue μ(x) is monotonίcally increasing with r. For r = 0 it has the value
— 4 in units of Rydberg (Ry = ^me) and approaches — 1 for r-»oo. It never inter-
sects any other discrete eigenvalue. This and the monotonicity property do not
hold for some other eigenvalues. The eigenvalues of H(χ = 0) are degenerate.
The degeneracy is reduced for x Φ O . A similar situation seems to hold at r = oo.

Let us now outline the organization of the article and summarize at the same
time the results. In the first chapter local properties of the spectrum of H(x)
are analyzed.

It is shown that the discrete eigenvalues can be indexed such that they are
continuous in xeR3. Furthermore there exists a possibly different choice of
indexing the discrete eigenvalues such that they are real analytic in every variable
separatly, for xe#3\{0}. The first statement is a consequence of norm resolvent
continuity (n — r continuity) of H(x\ x e R3.

The second one is very much linked to dilatation analyticity of the potentials.
For x-»ooH(x) converges in the strong resolvent sense (s — r convergence) to
Jtf,(oo)

Hl(co) = H0 + Vl, / = 1 , 2 . (8)

It turns out that eigenvalues of H^co) are only stable in the sense of Kato [4]
iff they do not belong to the spectrum of H2(oo). An analoguous statement holds
for the convergence of H'(x)=T( — x)H(x)T(x). H'(x) converges in the s — r
sense to ί/2(°°) The eigenvalues of H2(oo) not in the spectrum oίH1 (oo) are stable.
In a second chapter we discuss global aspects of the spectrum. Results on global
analyticity are demonstrated and bounds on the discrete spectrum are given.
Some statements can be sharpened for the case of Coulomb or Yukawa inter-
action. In particular, the eigenvalues are differentiable at x = 0.

Throughout the whole article we always suppose the potentials to be dilatation
analytic. In anouncing the lemmas we will not restate that assumption again.

Chapter 1: Local Properties of the Spectrum of H(x)

In this first chapter we will mainly prove some results on the resolvents of
H(x) and H(λ,x) (to be defined later). This will allow us to apply standard
arguments of perturbation theory to get information on local regularity properties
of the discrete eigenvalues μ(x) of H(x) as a function of x.

The operator H(x) is selfadjoint with domain D(H(x)) = D(H0) independent
of x E R3. This is due to the general hypothesis mentioned in the introduction,
that V1 and V2 are dilatation analytic potentials hence a fortiori H0 compact.
V1 and V2 are therefore Kato tiny [7]. Since HQ is translationally invariant
T(x) V2T( — x) is Kato tiny too. Hence H(x) is the sum of H0 and a Kato per-
turbation.
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Let (z — H(x))~1 be the resolvent of H(x). Then one has the following

Lemma 1. The resolvent of H(x) is norm continuous in x for xe R3.

Before entering into the proof let us introduce some standard notation:
If a sequence of operators {Tn} converges in norm (strongly) to T for n-^oo we
write Tn^ T(Tn^ T) for π->oo. The resolvent set of an operator T is denoted by
ρ(T), the spectrum by σ(T\ the essential spectrum by σess(Γ) and the discrete
spectrum by σd(T). The union of the spectra of #1(00) and H2(co) plays an essential
role. Therefore we introduce the notation

) u σd(H2(oo))

σ = σ(H1(oo))uσ(H2(oo)).

A function T(z) of a complex variable z with values in the set of closed linear
operators on a Hubert space X is called analytic of Typ A at z0 [4] if there exists
a complex neighborhood D of z0 such that

i) D(T(z) = D(T) is independent of z.
ii) T(z) u is analytic in D V u e D(T).
If in addition T(z) selfadjoint for z G Dr\R then T(z) is a selfadjoint holomorphic

family of linear operators. Discrete eigenvalues of H(x) are denoted by μ(x\
x 6 R3. If we want to look at them as a function of one variable only we use
μx(κ) = μ(κx\ K e R. If x is fixed and if there is no danger of confusion we write
just μ(κ) for μx(κ).

Proof of Lemma ί. We show first norm continuity of T(x) V2T( — x)(z — H0)~1

for zeρ(H0). By the standard telescoping trick one gets

T(x)V2T(-x)(z-H0Γ
1 = T(x)tV2(z-H0Γ

1T(-x)-V2(z-H0Γ
1l

+ Γ(x)72(z-H0Γ
1.

Since Γ(x)^> 1 for x->0 and F2(z — H0)~ 1 compact the second term of (9) converges
in norm to V2(z — H0)~ \ (Theorem A). For the same reason the expression in the
bracket converges in norm to zero and because T(x) is unitary the first term
of (9) converges in norm to zero.

Now we can prove the statement of the lemma. Consider the Neumann
series which converges for z sufficiently negative (this is generally true for per-
turbation of H0 which are Kato tiny, Lemma 4)

00

(z - H(x)Γ ' = (z - Ho)' 1 £ ((V, + T(x) V2 T( - x)) (z - HO)' 1)" . (10)
π = 0

Since every term of the sum is norm continuous at x = 0 and the convergence
of the sum is uniform in x the resolvent is norm continuous at x = 0. The gener-
alization to x e R3 and zee (H(x)) arbitrary goes along standard lines and will be
omitted. Π

The norm continuity of the resolvent (z — H(x))~ 1 has the following consequence
for the spectrum of H(x):

Theorem I. Let Vl and V2 be d.a. potentials and μ(x0)eσd(H(x0)) for x0eR3

where H(x) is defined by (5). Then μ(x) is continuous in x at x = x0

2.
2 Here and in the following such statements should always be understood in the following sense :

There exists a labelling of the eigenvalues such that μ(x) is continuous at x = x0.
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Proof. The statement follows essentially from Lemma 1 . The proof is a
slight generalization of a standard argument in the theory of operator valued
functions of one to the case of several variables. We will not repeat it and refer
to [4, p. 107]. It is well known however that just this generalization is in general
not trivial at all. Π

Notice that in Theorem 1 nothing is said about the possibility of continuing
μ(x) into a larger region containing x0. The statement is purely local. Theorem 1
can also be proven by the following reasoning. Lemma 1 implies the stability of
the spectrum [4, p. 437]. This however implies continuity of discrete eigenvalues.

To get more information on the smoothness property of discrete eigenvalues
we introduce the family {H (λ, x)} of selfadjoint operators:

) = D(λ)H(λx)D-1(λ), λeR3

+. (11)

Thereby we used the notation introduced previously (7). Since D(λ) is unitary
the spectra of H(λx) and H(λ, x) are identical

σ(H(λx)) = σ(H(λ,x)). (12)

H(λ, x) has the following remarkable property

Lemma 2. The operators H(λ, x\ λeSφ are a holomorphic family of selfadjoint
operators of typ A.

Remark. H(λ,x) is up to now only defined for λeR+. The generalization
is given in the proof below.

Proof i. H(λ,x) is selfadjoint with domain D(H0) for λ real: We know that
H(λx) has this property and it remains to show that D(H0) is invariant under
D(λ\ a fact which follows easily from the definition of D(λ).

2. H(λ, x) with domain D(HQ) is closed for every λ e D: H(λ, x) is defined on
D(HQ) as follows. For ueD(Ho) there exists a v such that u = (z — H0)~1 v if z
is in the resolvent set of HQ. Since V1 and V2 are dilatation analytic H(λ, x) u can
be defined by

+ T(x)D(λ)V2D(λΓ1(z-HQΓ1T(-x)v.

Due to the fact that D(λ)VlD"l(λ) and T(x) D(λ) V2D-1(λ) T(-x) are H0-
compact for λ e D they are H0 bounded with bound arbitrarily small
[7, Theorem A 1]. A stability property of closed operators under such perturbation
implies that H(λ, x) is closed [4, p. 190].

3. H(λ, x) is analytic in λ for λ e D: It is enough to show existence of H(λ, x)
(z — H0)~~l as an analytic function of λeD with values in the set of bounded
operators. This however is an immediate consequence of dilatation analyticity
andEq.(13). Π

Since H(λx) and H(λ, x) are unitarily equivalent for λ real the previous lemma
leads to the statement of

Theorem 2. Let V1 and V2 be d.a. potentials. Then for every component of x,
say for instance x1 e R, there exists a labelling of the discrete eigenvalues μ(x)
Eσd(H(x)) such that they are real analytic in x1 for xeR3\{0}. // μ(x) is non-
degenerate then μ(x) is real analytic in all the variables together.
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Remarks. 1. Notice that here also nothing is claimed about the global domain
of analyticity. We will have to say something on this problem in the following
chapter (Theorem 8).

2. The fact that μ(x) is only analytic in every variable separately is the origin
of some technical troubles. To avoid them we will discuss mainly functions of
one variable KG R,

μx(κ) = μ ( κ x ) , xe R3 fixed , (14)

if we are to deal with global aspects of discrete eigenvalues. It is readaly seen
that μx(κ) is real analytic in K: e #\{0} under the conditions of the above theorem.

3. The discrete eigenvalues of H(x) can be considered as functions of r = |x|
only. This is a particularity of diatomic molecular ions. The eigenvalues are
real analytic in r e R+ due to the Theorem 2.

4. The reader might be astonished by the statement of real analyticity in
every component. The following two comments might clarify the situation:

a) The following classical example shows the problems of perturbation
theory for holomorphic operator-valued functions of several variables. Let
p be the 2 x 2 matrix

p= i
holomorphic in p e C2. The σ,'s are the Pauli matrices, p has the special repre-
sentation

p = \p\ (P+ (p) - P- (p)), P± (p) = i(l ± ."

A natural choice of indices for the eigenvalues is the following:

The μ's are continuous but not real analytic in every component of p. There is
another choice

for p 2 φ O

for P = ®

For this choice of the labelling the eigenvalues are real analytic in p^^eR but
neither continuous in both variables nor real analytic in p2 e .R.

4. Finally we mention that some special examples to be considered later
indicate that μ(x) is in general not analytic at x = 0 but only continuous
(Theorem 1).

Proof of Theorem 2. 1. μ(λ)εσd(H(λx)) is real analytic in every component:
If two components of λ e R3 are fixed, the operators H(λ, x) are analytic in the
last variable (Lemma 2). Now the statement follows by well known arguments
on perturbation theory in one variable [4, p. 386].

2. If μ(λ) is non degenerate then it is real analytic in λ<= R3: The projector
oίμ(λ)9
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is analytic in a complex neighborhood of λ and has dimension one. Due to the
formula

μ(Λ) = Trace #(A,x)P(A)

this implies the statement.
3. The statement of Paragraphs 1 and 2 hold for μ ( x ) e σ d ( H ( x ) ) if x z φ O

for /=1,2, 3: The mapping φ\λ^φ(λ\ φ(λ)l = λl/xh mapps a complex neigh-
borhood of e = (l, 1, 1) onto a complex neighborhood of x - φ is analytic.

4. The statements of the first two paragraphs hold for μ ( x ) ε σ d ( H ( x ) ) if
x φ O : We will reduce this case to the one discussed previously. There exists a
rotation R of R3 such that (Rx)t Φ 0; / = 1, 2, 3. Yet if(x) is unitarily equivalent
to the operator H'(x),

H'(x) = H0 + V[ + T(Rx) V^T(-Rx)

//(x) and H'(x) have the same spectrum and H'(x) falls in the same class of
Hamiltonians if we can show that V{ is dilatation analytic together with V{.
This however will not be true for R arbitrary. However if R is chosen sufficiently
close to i this is true as we will argue now.

The unitary representation U(R) of the rotation group

has the following commutation law with D(λ):

D(λ) t7(Λ) = ΠμίλΓ1)1 U(R)D(λ')

k

~1
In the following we suppress the index of Vl and write just For V = U(R) VU(R)~1.
If V is a d.a. potential the operator

is compact for λ real. This follows from (15) and the boundedness of U(R\

D(λ] Πz-tfoΓ1 D(λΓl = U(R)D(λ') V(z-H0Γ
1 D(λ'Γl ^R)'1 . (16)

Hence the first condition for V to be a d.a. potential is met. Yet the analytic
continuation of (16) into a Sector Sφ, is possible if R is not too large. This is again
a consequence of (16) and the following obvious fact: Let φ' < φ then for a ε > 0
every transformation T(R) with | | jR— 11| <ε mapps Sφ> into Sφ. Π

Now we come to the discussion of the spectrum oϊH(x) at x = oo. The situation
is quite complicated since H(x) converges in the strong resolvent sense to H1(oo)
(Theorem 3) and not in the norm resolvent-sense (Remark 2 following Theorem 4).
Not every point in σd(Hι(ao)) is stable but the spectrum of H(x) is continuous
(Theorem 5 and 6).

The next theorem shows that the behaviour of H(x) at x = oo can be put in
the framework of singular perturbation theory:

Theorem 3. Let V{ be d.a. potentials, 1= 1,2. Then H(x) converges to H^ao)
in the strong resolvent sense.
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This theorem implies already that for any μeσd(Hl(co)) and (α, b) open
interval in R with μ e (α, b) the intersection of (α, b) with σd(#(x)) is not empty
for x sufficiently large. This is due to standard theorems on operators converging
in the 5 — r sense [4, p. 472].

Proof of Theorem 3. 1. It is enough to show strong convergence to zero of
T(x) V2T( — x)(z — H0)~l f°Γ M-»OO and z non real: Consider the resolvent
equation

z-H(x)Γ1-(z-H1^))-1u = (z-H(x))-1T(x)V2T(-x](z-Hί(^))-ΐu. (17)

The right hand side has a norm smaller then l lmzp 1 times \\T(x)V2T( — x)
(z — H^oo))" 1 u\\. Yet (z — f/^oo))" 1 w is in D(H0) hence there exists a υ such that

Therefore the right hand side of (17) is dominated in norm by

\Imz\- *\\V2T(-x)(z-HQr*v\\.

2. V2 T( — x) (z — HQ)~ 1 converges strongly to zero for |x|->oo and z non
real: By hypothesis V2(z — H0)~1 is compact. It has therefore the standard
representation [8, p. 204]

V2(z-H0Γ
l= Σ V Θ/ , λ^Q. (18)

i = l

Consider now the expression

\\V2(z-H0Γ
1T(-x)φ\\2 = \\Σλlel(fl,T(-x)φ)}\2

= Σλ2

ί\(fί,T(-x)φ)\2

converging for every x in particular for x = 0. For every ε>0 independent of
x e R3 there exists a N(ε) such that

Σ λ f \ ( f ^ T ( - x ) φ ) \ 2 < ε / 2 . (20)
i>Λί

Now the first N terms of (19) converge to zero each one separatly due to the lemma
of Riemann and Lebesgue. Π

The next technical statement will be the main tool for the discussion of the
spectrum of H(x) at x = oo. The proof will be given in Appendix B.

Lemma 3. Let ze(C be in ρ(H(x))r\ρ(H1(ao))nρ(H2(co)) for x in a neigh-
borhood of infinity. Then the operator E(x, z) defined by

V2(z-H0Γ
1T(-x)

z)

is a bounded operator. The norm of E can be estimated as follows: Consider ε>0
and a compact set K C C such that the distance d(K, σ) > ε.

Then there exists for every η>Q a δ(η,K) such that \\E(x,z)\\ <η for zeK
and δ\x\ > 1.
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Notice that E(x, z) exists as a bounded operator for every z e e(Hj(oo)), / = 1, 2.
This is a consequence of the following formula (see Appendix B) :

E(x,z)= Σ T(x)V^lT(-x)(z-H0Γ
1 ϊtfz-^ίoo))-1. (22)

/ = !

The following statement shows that the spectrum of H1(co) has some aspects
of stability at infinity:

Theorem 4. Let Vί and V2 be d.a. potentials and K a compact set in C such
that Kπσ = 0.

Then there exists a δ(K)>0 such that KCρ(H(x)) for every x with \x\ δ> 1.

Proof. Since K is compact there exists a δ such that \\E(x, z)\\ <^ for zeK
and |x| <5> 1. The following formula for the resolvent is well defined

(z -#(*))- ̂ (z-HΛα)))-1^-^

-1

for zε K and |x| δ> \.
Remarks. 1. Consider λ e σd and K = ^((51? <52)

1? <52) = {z e (C I (5! < \λ - z\ < δ2 < 00} .

Then R(δ1,δ2)Cρ(H(x)) for |x| sufficiently large. This property is stronger then
the first condition of stability for the spectrum of H(x) at x = oo [4, p. 437].

2. Formula (23) permits the definition of projectors

P(x)=~r$dz(z-H(x)Γ^ Pl(π)=^-$dz(z-Hl(π)Γ1l=i,2(24)

where Γ is the circle around λ e σd with radius j(δί + δ2) From (21) one concludes

The last term can be estimated in norm

1

2πi f
<Max\\(z-H(x)Γ1\\\\E(xyz)

zeΓ

where η can be made arbitrarily small according to Lemma 3 if only |x| is big
enough. This proves that P(x) does not converge in norm to PI(OO) but rather that

||P(x)-Λ(oo)H||F(x)|| = ||F(0)|| for |χ|->oo (25)

where we used the abreviation

F(x)=T(x)P2(co)V2(λ-H0Γ
1T(-x).

Notice however that F(x)AO for |x|-»oo and

O for |x|-^oo.
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For the spectrum of ^(oo) to be stable it is necessary and sufficient that the
projectors P(x) converge to P^oo) in norm. This is in general not correct as it has
been demonstrated above. However the following statement holds:

Theorem 5. Let Vl and V2 be d.a. potentials and let λEσ^H^oo)) but not
in σd(H2(co)). Then η is stable. Every other point of σd(H1(oo)) is unstable.

Remark. We knowalready that the first condition of stability is met for every
AEσd(Jc/1(oo)) (Remark 1, following Theorem 4). Hence instability arises only
through violation of the second condition i.e.

where P(x) and PI(OO) has been defined previously (24). Yet PI(OO) is a projector
on an eigenspace related to an eigenvalue of /^(oo). Similarly P(x) projects among
others on an eigenspaces of H (x) with an eigenvalue μ(x) converging to λ. There
is good reason to assume the dimensionality of this eigenspace to be equal to the
one of PI(OO) for \x\ sufficiently large. Yet there is an eigenvalue μ'(x) converging
to λ, because Hf(x) converges strongly to H2(co) and λeσd(H2(oo)). μ'(x) is of
course eigenvalue of H(x) too. P(x) projects by definition on the corresponding
eigenspace too, for |x| sufficiently large. It seem therefore reasonable that the
dimensionality of PI(OO) is not larger or equal then the one of P(x). So much
for motivation and interpretation of Theorem 5.

Proof. It is readaly seen that in this case F(x) = 0. This is so because P2(oo) = 0
for Γ sufficiently small. Yet the assertion follows from Eq. (25).

The above statement proves already that the limit points of σd(H(x)) for
|x|-»oo contain the points of ^(H^oo)) not in σd(ff2(oo)) since this is a direct
consequence of stability of this part of the spectrum [4, p. 439].

More details on the spectrum of H(x) at x = oo are given in the following

Theorem 6. Let V± and V2 be d.a. potentials and μ(x) e σd(H(x)) continuous
in x for xeR3 and \x\ > r.

Then μ(x) is continuous at infinity and

μ = lim μ(x) e σd u {0} .
|x|-»oo

Remarks. 1. In the following chapter we will show that μ(x) is already well
defined for |x| >r if r is sufficiently large (Corollary 2 of Theorem 8).

2. If λ e σd then there exists μ(x) e σd(H(x)) such that μ(x) continuous in x for
|x| > r and λ = lim μ(τcx). This is again a consequence of Theorem 6 and Corollary 2

K— >• oo

of Theorem 8.
Proof of Theorem 6. 1. The set P of limit points of {μ(x)j |x| > r} is not empty:

According to Theorem 7 the function μ(x) is bounded from above and below

- M < μ(x) < 0 . (27)

Hence by the Bolzano-Weierstrass theorem there is at least one point in P.
2. There is only one point called μeP: Assume the existence of two points

μx and μ2 in P, μί Φ μ2. There exists a compact set K CC such that ReK C (μ1? μ2)
and Knσ = ReKnσ = 0. Yet according to Theorem 4 there exists a δ>Q such
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that Kr^σ(H(x)) = 0 for all x with |x| δ > 1. Because of the continuity of μ(x) in x
this contradicts the assumption.

3. μeσ du{0}: Inequality (27) forces μ to be in the closed interval [ — M, 0].
If μ<£σdu{0} there is a compact set K containing μ such that ReKnσd = 0.
According to Theorem 4 the spectrum oΐH(x) does not interset K for \x\ sufficiently
large. This contradicts the assumption μeP. Π

This concludes the analysis of local properties of σd(H(x)). Of course we could
have discussed equally well H'(x) = T( — x)H(x) T(x). The statements of this
chapter apply to H'(x) if Vv and F2 are interchanged and x is replaced by — x.

Chapter II. Global Properties of the Spectrum

In a first section bounds on μ(x) e σd(H(x)) will be given. The next section
concerns the global domain of real analyticity. The results are not fully satis-
factory, because we have neither been able to give necessary and sufficient con-
ditions for crossing eigenvalues (μl(x)Eσd(H(x))), /=1,2, μ1(x0) = μ2(xo\ AhM
> μ2(x\ μ±(x'}<μ2(x'} in a neighbourhood of x0) nor for the absorption of
discrete eigenvalues into the continuum. However some more precise results
are known for x in a neighborhood of infinity and for Coulomb and Yukawa
potentials. This will be the topic of the last section of this chapter.

To get an upper bound on every μ(x) e σd(H(x)) we make use of stability
of the essential spectra

σeS8(H(x)) = (7e8S(H0) (28)

for //0-compact perturbations. A lower bound is easily derived from

Lemma 4. [9]. Let V be a Kato tiny perturbation of H0. Then V(z - Ho)"1 AO
for Re z -» — oo .

Remark. The above statement is of course wellknown and we will give a
proof only because it is short and for convenience of the reader.

Proof. Let ε > 0, Then there exists a finite real number b(ε) such that

\\Vφ\\<&\\H»φ\\+b\\φ\\ for all φ

This implies for z with Rez < 0

For |z| > b(ε\ Rez < 0, the right hand side is smaller then ε. Π

Theorem 7. Let Vγ and V2 be d.a. potentials. Then there exists a finite M e R
such that μd(H(x)) C [ - M, 0].

Proof. From (28) one gets the upper bound. For the lower bound consider
the Neuman series

(z-H(x)Γί=(z-H0Γ
1 Σ {(V1 + T(x)V2T(-x))(z-H0Γ

1r (29)
«^o

which converges for

llto + ΓM^n-xJKz-tfoΓΊl^^^^ (3°)

This is the case for z sufficiently negative (Lemma 4). Π
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Global analyticity of μx(κ) can in general not be demonstrated. There are
arguments which makes one believe that eigenvalues can get absorbed in the
continuum for appropriate values of K ruining so global analyticity. However
eigenvalues which are sufficiently below the threshold of σess(H(x)) are globally
analytic. This is the statement of

Theorem 8. Let Vγ and V2 be d.a. potentials and μx(κ) e σd(H(κx)) real analytic
at κ=i. Then the following alternative holds: Either μx(κ) gets absorbed into the
continuum i.e. there exists a real KO φ 0 such that 0 = lim μ(κ\ μx(κ) analytic

K^KQ
in [1, KO); or μx(κ) real analytic for K e ̂  + \{0}.

Proof. Let I = (a9b)cR be the domain of real analyticity of μx(κ\ Assume
furthermore a or b to be finite and not zero. We will show that μ(a) respectively
μ(b) vanishes. The proof will be given for one end point of / only. Let a be finite
and not zero. We denote by P the set of limit points lim μ(κn), κnel, κn-+a for

n~* oo

ft— »co. An argument identical to the one used in Paragraphe2 of the proof of
Theorem 6 shows P to contain one point only. From this follows the existence
of a unique limit μ(α)

μ(a) = Urn μ(κ) .

If μ(ά) Φ 0 it is in σά(H(a)). Therefore μ(κ) has to be analytic at K = a (Theorem 2).
This contradicts the assumption that a is boundary point of the domain of
analyticity.

From Theorem 8 one draws the following two conclusions :

Corollary 1. Consider a point μeσ d . Then there exists μ(x) e σd(/f(x)) such
that μx(κ) = μ(κx) is analytic in κ> 1 and lim μx(κ) = μ.

Proof. By Theorem 3 and Theorem 1.14 of Ref. [4, p. 431] every real neigh-
borhood U(ε) of μ has a non empty intersection with σά(H(x}) for \x\ >r, r
sufficiently large. Call μ + (μ_) the adjacent points of μ in σd larger (smaller) then μ.
Due to Theorem 4 there exists an r such that K C g(H(x)) for |x| > r where K
denotes the set

Chose now μ(x) e σd(H(x)) such that |x| > r and μ(x) e U(ε). Then due to Theorem 8
μx(κ) = μ(κx) is analytic in [1, oo). It converges to μ for /c->oo (Theorem 6).

Corollary 2. Let KC<C be a compact set with Kr\σ = 0 and δ>Q such that
KCρ(H(x)) for \x\δ>i. Then for a given x with | x |<5>! every μx(κ) = μ(κx)
εσd(H(κx)) such that μ(x)<ReX is not only analytic in K at κ= 1 but has a real
analytic extension into the interval [1, oo).

Proof. μ(κ) is analytic at κ=i. Due to the assumption and the continuity
of its analytic extension μ(κ ) < ReK for every K > 1 in the domain of analyticity.
Hence μ(κ ) can not get absorbed in the continuum and the second case of the
alternative (Theorem 8) holds. Π

This terminats the general analysis of the spectrum of H(x) for arbitrary
dilatation analytic potentials. In the last section we comment on the case of
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Yukawa and Coulomb potentials, i.e.

The discrete spectrum of ίi/(oo) for α = 0 is of course well know

1 mg?
(31)

For α>0 there is only a finite number of points in σd. The lowest eigenvalue
μ0(x) of H(x) is bounded from above

This is a consequence of

cx)), (32)

and the minimax principle [4, p. 61]. This bound is optimal because μ0(x)
reaches the bound for |x| ->oo (Theorem 6).

The discrete eigenvalues are functions of r = |x| only. They are analytic in
r € (0, oo ) and continuous at the boundary. For the special case of the Coulomb
of Yukawa potential they are differentiable as it will be shown now for the case
α = 0.

Consider a discrete eigenvalue μ(r) and a corresponding eigenvector φ(x).

μ(r) = (φ(x),H(x)φ(x)).

For the derivative one gets

(33)

where we set for convenience x = (r, 0,0). At x = 0 the eigenfunctions are known.
They behave for y~0 nonsingular, i.e. the converge to a finite constant (zero
included) for y-»0. For large y they decay exponentially. An explicite calculation
shows μ'(0) to be finite, hence by symmetry zero.

There are many questions even in this simple case still to be analyzed. So
one expects the lowest eigenvalue μ0(r) to be monotonically increasing in r and
not to cross any other eigenvalue. We will come back to these problems in our
analysis of spectral projectors of electronic Hamiltonians.

Acknowledgements. It is our pleasure to thank J. M. Combes, A. Grossmann, R. Schrader,
D. Uhlenbrock and D. Williams for many helpful discussions.

Appendix A

The aim of this appendix is to prove Theorem A which is used several times
in the main part of the article. As a preparation we state the following

Lemma A. Let Tn be a sequence of bounded linear operators on a Banach
space X, converging strongly to T. Then Tn converges uniformly on any compact
set in X.
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This is a consequence of the principle of uniform boundedness. For a proof
we refer to [4, p. 151]. Now we are ready to give a simple proof of

Theorem A. Lei {Tn} be a sequence of bounded linear operators, nεZ+,
on a Banach space X converging strongly to a linear operator T. Then the sequence
{TnK} converges in norm to TK.

Proof. K mapps the unit ball into a compact set McX. On M the 7 '̂s
converge uniformly i.e. for every ε > 0 there exists a N(ε) such that

\\(Tn-T)Kφ\\<e\\Kφ\\Vφ, ||0|| = 1, n>N(ε).

But K is bounded in the uniform topology hence TnK A TK. G

Corollary A. Let Tn be a sequence of linear bounded operators on a Hilbert
space Y such that Ί* **T*. Let K be compact. Then KTn^KT.

Proof. It is enough to prove norm convergence of (K Ttt)* because * is a norm
continuous mapping of the bounded operators B(x) onto B(x). Yet (KTn)* = TΠ*K*
and since K* is compact together with K Theorem A can be applied. Π

Appendix B

The purpose of this appendix is to give a proof of Lemma 3. This will be done
in several steps. First we show

Lemma Bl. Let ze(C be in ρ(H(x))r^ρ(Hi(oo)) for x in a neighborhood U
of infinity. Then

(z-H(x)Γ1-(z-H1(^)Γ1=(z-H(x))-ίT(x)V2T(-x)(z-H0Γ
1

+ (z-H(x)ΓίB(x,z)

and B(x, z) A 0 for \x\ -> oo and z fixed.

Proof. Application of the resolvent equation shows B to be defined as follows:

1. (B.2)

It was shown in the second paragraphe of the proof of Theorem 3 that
T(x)V2T(-x)(z-H0)~1^0 for |x|->αo. Since V1 is H0 compact and therefore
#1(00) compact too, the statement follows from the corollary A.

Next we want to get some more information on the first term of the right
hand side of (Bl). This is given in

Lemma B2. Assume again zε ρ(H(x))nρ(H2(co)) far xeU. Then

+ C(x,z) (B.3)

and C(x, z) -̂  0 for \x\ -> oo and z fixed.

Proof. A straightforward computation gives for C the expression

T(x){(z-H,-T(-x)VίT(x)-V2)-1-(z-H2(π))-1}V2(z-H0Γ
1T(-x).

(B.4)
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According to Theorem 3 the bracket converges strongly to zero. Since V2(z — HQ}~1

is compact by hypothesis, C converges to zero in norm (Theorem A). Π
The next statement puts even more control on C in the limit |x ->oo:

Lemma B3. Under the same assumption as in the previous lemma one concludes

and D(x,z)=Vl T(x) (z ~ H2(oo))~ 1 F2(z-//0)~1 T(-x)-*>0 for |x|->oo, z fixed.

Proof. From (B.4) one gets for D' = T( - x) D T(x) the expression

D'={i-(z-HΌ-T(-x)VιT(x)-V2)(z-H2(co)Γ1}V2(z-H0Γ^

which is equal to
17 2(z-HoΓ 1. (B.5)

Yet the term T( — x) V1T(x)(z — H2(co))~1 converges strongly to zero for |x|-»oo
because for every u there exists a v such that

Now the assertion follows again from the second paragraphe of the proof of
Theorems. Since F2(z — HQ}~I *s compact

D'(x,z)-*>0 for |x|->oo (Corollary A). D

Summing up the information we get so far on the right hand side of (B.I)
we get the equation

7— £f ίr^Yr * = 7YγH<7_ R.fr^Vr1 T/_ T(—\ \(7— Hn)'1

(B.6)

The operators B and D both converge in norm to zero for |x[-»oo. The next
lemma gives more information on how these operators converge to zero:

Lemma B4. Consider ε > 0, K C C compact such that distance d(K, σ^oo))) > ε
for 1= 1,2 and zeρ(//(x))nρ(/f1(oo))nρ(//2(oo)) for x in a neighborhood U of
infinity. Then there exist for every η>Qa δ(η, K) such that \\B(x, z)|| + \\D(x, z)\\<η
for every x with δ\x} > 1.

Proof. 1. There exists a δ>0 such that \\B(x,z)\\<%η: From (B.2) one gets
for B

[ } . (E.I)

The bracket can be estimated in norm for every z e K. But since the resolvent
(z — H1(co))~1 is analytic in z, the bound can be chosen uniformly for

Yet the remaining part of B converges in norm to zero for every z 6 K. By the
same argument as above there exists a δ(η, K) such that

uniformly in z and for |x| δ > 1.
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2. There exists a δ such that ||D(x, z)|| < ^77: Of course it is equivalent to show
the same estimate for D'(x, z) = T( — x)DT(x). Changing the order of the terms in
(B.5) yields

D'(x,z)=T(-x)V1T(x)(z-H0Γ
lV2(z-H2(<x>))-1.

Yet changing x, F l5 F2,H2(oo) into — x,V29Vί9Hί(co) transforms D'(x, z) into
B(x, z) as defined in (B.2). Now the same argument as in the first paragraphe
applies. Π

The statements of this appendix are summerized in Lemma 3 of the first
chapter. There we used the abreviation E =
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