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A Simple Proof of the GHS and Further Inequalities
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Abstract. We formulate and prove a general set of correlation inequalities for spin - 1/2 Ising
ferromagnets with pair interactions. One of these is the Griffiths-Hurst-Sherman inequality. The proof
is obtained using Gaussian random variables.

1. Introduction

We consider a system of N Ising spins with ferromagnetic pair interactions
and non-negative external magnetic field. The probability μ(σ) of any configuration
σ = (σ 1 ?... ,σN), σt = ± 1, is given by the formula μ(σ) = Z~1exp(—βH(σ))9 where

β = (kτy\
H(σ)=-~ΣJijσiσj-hΣσiί ^ = ̂ 0 , ft^O, (1.1)

Z iΦj i

Z=Σexp(-)8 i/ (σ)) . (1.2)

In the sequel, we set β = 1. Given spin sites ij, fc, we define the third Ursell function

u3(ij, k) = <σiσjσfc> - <σf> <σ7 σfc> - <σ, > <σt σfc>

where the bracket < > denotes the expected value with respect to the measure μ.
The Griffiths-Hurst-Sherman inequality (hereafter GHS inequality) states that

u3(i,j,k)£0. (1.4)

An important consequence of this inequality is that the average magnetization
per site is a concave function of magnetic field h, a fact needed for the proof of
certain critical point exponent inequalities [1]. It has also been used by Preston [2]
to show the absence of phase transitions in the thermodynamic limit for h φ 0.

Inequality (1.4) was first proved by Griffiths, Hurst, and Sherman [1] and later
by Lebowitz [3]. Our proof is completely self-contained and, we believe, is much
simpler. It is based on ideas introduced by Monroe and Siegert [4], who obtained
simple proofs of the GKS inequalities [5]. Similar methods have also been used by
Monroe [6] to prove certain FKG inequalities [7]. At the end of the next section,
we mention additional new inequalities which are proved by the same technique.
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2. Sketch of Proof and Further Results

For convenience, we assume ί=ίj = 2,k = 3. Our proof is based on the
identity [8]

J

valid for any symmetric, real, positive definite matrix v and for any N complex
variables ξt. The right-hand side of (2.1) can be considered as the expected value
Ex\βxpΣί<i<Nxiξi'] with respect to the Gaussian density function

'J

(2.2)

where x = (x 1 ?,
one can show

,xN). If v is a non-negative matrix, then given integers n t ^

Π (*,)"
i=l

= 0 if
i=ί

N

^0 iϊ Σ "/
; = l

is odd,

e v e n

(2.3)

To use (2.1), we identify the variables ξt with the spin variables σf and form a
matrix v = J with off-diagonal elements Jtj, diagonal elements all equal to a
number J o = JH large enough to guarantee that J is positive definite. We then let
(x1,..., xN), (yl7..., yN% (zί,..., zN), (wί9..., wN) be independent sets of Gaussian
random variables, where the random variables in each set have joint density
function f3. Writing E to denote expectation with respect to the product measure

W), we show that

D
dxι ' dyt ' dzι

g(x9 y, z, w) (2.4)

where K is some positive constant, D denotes a sum of products of partial derivati-

ves involving — — , ——, ——, \— 1,2, 3, and a is a certain function of 3c, v, F, w.

dxt dyt dzt

The crux of the proof is to reexpress (2.4) in terms of new variables α = {αz}, J8 = {βt},
Y= {γt}, and δ = {δz}, l=ί,... ,N, obtained by a certain orthogonal transformation
of 3c, y, F, w. A remarkable simplification then occurs, and we have

u3(ί,2,3) =
-[ 5 d d

' te~ dy2 ~dδ:

-g(ot,β9γ9δ)\9
(2.5)

where g is the transformed g. The GHS inequality (1.4) then follows from (2.3).
Our method has the following consequence. Let 3) denote a product of partial

derivatives of the form

π dδ,
(2.6)
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where i, j , /c, / range over all lattice points {1,...,N} and n*, nf9 nk

y, nt

δ are non-
negative integers. Each such 3) gives rise to a sum c@ of correlations.

Theorem 1. Define

N N N N

#1= Σ »Λ *2= Σ »/. ^3= Σ V , ««* ^4= Σ »Λ

i = l j=l k=l 1=1

We then have the following:

a) c2 ^ 0, if each Ni9 i = 1, . . . , 4, is oJJ;
b) c2 ^ 0 , ί / e a c h Ni9 ί=ί,... 94, is even: (2.7)
c) Cg> = 0, m α// oίftβr cases.

When ft > 0, ffte oddness or evenness of N1 is not to be considered.
The simplest of these §) correspond to elementary GKS inequalities; e.g.,

^ = d/daι gives rise to < σ f > ^ 0 ; 3 = (d/dβi) (d/dβj) gives rise to < a ^ >
— <σ̂ > <σ7 > ̂  0 (see Appendix for calculations). In future work, we shall investigate
the explicit forms, in terms of the spin variables σh of the inequalities in Theorem 1
as well as generalizations of them.

3. Proof of GHS Inequality and Theorem 1

We first note that the Bolzmann factor exp ( — H(σ)) can be written as

(3-D

- e x p r 1 £ j Π e x P i ( χ i + h)σi)I>
\ z / L ί = i

since each σt

2 — 1. Thus,

/ NJ \ Γ N

Z = 2N exp γ-\ E, Π coshfo + ft) , (3.2)

and, for example

<σ1><σ2σ3> = σ ! exp(-H(σ))jU-Σσ2σ'3 exp(-H(σ'))
JLZ

= 2™Z->Qχp(-NJ0)hE-x\^Yl>

F r 3 a

where K = 2 4 i V Z " 4 e x p ( - 2N Jo), and

N

, y, F, iv) = Π cosh(^ + ft) c o s h ^ + ft) cosh(zf + ft) cosh(wf + ft), (3.4)



36 R. S. Ellis and J. L. Monroe

and where we have used (3.2) twice for the Fand vv variables. Therefore, to prove
(2.4), we take the same K and g and define

5 d c

Xι ' dyt ' dzt j dxί dx2 dx3 dxγ dx2 dy3 dxx dy2 dy3

_ d d d d d d

dxλ dy2 dx3 dx1 dy2 dz3

The representation of M 3(1, 2, 3) with this particular D is not unique, for D may be
replaced by any differential operator obtained by performing the same permuta-
tion to the three sets of variables (xi9yi9zi9Wι), i= 1,2,3. This follows from the
permutation invariance of g(x9 y9 F, vv) and of fj{x)fj(y)f j(z)fτ(w).

For each i = 1,..., N9 we define new variables (αi5 βh γi9 δt) by the formula

(3-6)

The orthogonal matrix in (3.6) is the direct product with itself of the matrix

which is analogous to the one used in [4]. In the Appendix we show
- 1

that 2(d/dβ1)(d/dy2)(d/dδ2)) corresponds to the differential operator D given by
(3.5). Also, g(x, y9 J9 w) goes over to

g(oίjjj)= ΠΦήfer^i), (3-7)
where f=i

ί(αf, βi9 yh δi) = cosh2(a£ + 2h) + cosh2j8f + cosh2yi + cosh2δf

+ cosh [ - (αf + 2h) + βt + yt + δj + cosh [(αf + 2Λ) - βt + yf + 5 J

+ cosh [(αt + 2ft) + ft - yf + δ f] + cosh [(α£ + 2ft) + ft + yf - ί J .

(3.8)

Since fj(x)fj(y)fj(z)fj(w) transforms to fMfj(β)fΛγ)fj(δ), (2.5) results. We
claim that ί(α, , ft, yi? 5f) is a sum of terms of the form

(yi)
fcy(^ί)

/Cc5, (3.9)

where A and B are non-negative coefficients, jaJβJyJδ are non-negative
integers, and fcα, fe^, fey, /ĉ  are positive odd integers. This is proved at the end of this
section. Given this, the GHS inequality (1.4) follows. Indeed, g is then a sum of
terms of the form

CΠ(α ί + 2ft)''(r(r ίΓ(ί ί)
Λ, (3.10)

i=l

where Σli9 Σmi9 Σni9 and Σpt are either all odd or all even and the constant C is
either negative or positive, respectively. In the odd case, with ft ^ 0, the derivative
operator (d/dβί)(d/dy2)(d/dδ3) working on (3.10) either gives zero or converts
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(3.10) into an expression containing an even number of β/s, y/s, and δ{s. Also,
when the term Π^α,- + 2h)h is expanded, there appear an even number of ot/s (as
well as an odd number, which gives zero in (2.5)). Hence by (2.3) the contribution
of (3.10) to the ^-expectation in (2.5) is non-positive. In the odd case with h = 0 and
in the even case with any /z^O, the contribution of (3.10) to the ̂ -expectation
in (2.5) is easily shown to be zero.

To prove Theorem 1, first assume h>0. In cases a) and b), regardless of the
parity of Nί9@ operating on (3.10) either gives zero or converts (3.10) into an
expression containing an even number of αf's, β/s, yf's, and <5f's (again expand
Π̂ oCj + 2Kfι). Such a term gives a non-positive contribution in case a), a non-
negative contribution in case b), to the ^-expectation in (2.5). In case c), there are
no non-zero contributions. When h = 0, we must consider the parity of Nt because
then the αf variables are on the same footing as the βt, yh and δt variables.

To prove (3.9), we expand the cosh terms in (3.8). To ease the notation, we drop
the subscripts in αf, βh yh and δt. The first four terms in (3.8) give rise to terms of the
form in (3.9), with A > 0 and B = 0. Each of the last four gives rise to terms of the
form

A'[&J(OL + 2Λ) + εjβ + e3

fy + ε/(5]2",

4 ' ^ ϋ , w = 0, i = l , 2 , 3 , 4 ,
where

(3.12)

But

(3-13)

= B'Σ Σ lsAx + 2h)T«(s2ίβrβ(£3ίy)mΛ£4ίδrδ,
ΐ = 1

where Bf>0 and the outer summation extends over all non-negative integers
mα, mβ, mv mδ with sum In. Hence, either none, two, or all four of the m's are odd.
In the first and third cases, we have terms of the form in (3.9) (A > 0, B = 0, and
A = 0, B > 0, respectively). If two of the m's are odd, then when the inner sum over i
is done, there results a zero. This completes the proof of the GHS inequality and
of Theorem 1.

Appendix

We first do the calculation for the GHS inequalities, then for the GKS inequal-
ities mentioned in the text. For convenience, rather than write partial derivatives
like (d/dβ1)(d/dγ2){d/dδ3) and (d/dxί)(d/dy2) (d/dx3), we write βyδ and xyx,
respectively.

GHS. The expression βyδ goes over to

i(-x + y-z + w)(-x-y + z + w)(x-y-z + w)=T1 + T2 + T3, (A.I)

where the terms in 7\ contain only a single variable, those in T2 two different
variables, and those in Γ 3 three different variables. We see that

Ti = jϊ(xxx + yyy + zzz + www), (A.2)
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which goes over to xxx/2 after permutation. The terms in T2 fall into three separate
groups: those where the repeated variable appears in the first and second slot,
in the first and third slot, and in the second and third slot, respectively. Taking
into account the signs and permuting, we see that the three groups contribute
— xxy/2, — xyx/2, and — xyy/2, respectively. Finally, T3 contributes xyz. Thus,
2βγδ goes over to

xxx — xxy — xyx — xyy + 2x yz, (A. 3)
which is D in (3.5).

GKS. @) = d/da1 goes over to (x + y + z 4- w)/2, which is equivalent to 2x. Hence,

^ = 2 < σ i > . (A.4)

§) = (d/dβi) (d/dβ2) goes over to (— x + y — z + w) (— x + y — z + w)/4, which is
equivalent to xx — xy. Hence

(A.5)

Since we are in case b) of Theorem 1, the expressions in (A.4) and (A.5) are both
non-negative.
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Note Added in Proof. One consequence of the GHS inequality is the negativity at h = 0
of the Fourth Ursell Function «4(/, /, k, /). This also follows directly from Theorem 1. Indeed,
9 = (d/doίi) (d/dβj) {d/dyk) {d/dδύ can be shown to give rise to u4{i,j, k, I) at h = 0. Since this § is covered
by case a) of Theorem 1, the negativity of M4 follows.




