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Abstract. The question how to determine lower many-point functions in terms of higher ones,
which we call the descending problem, is discussed for the (φA)ί + 3 model of quantum field theory.
Equations to be considered are non-linear non-compact operator equations in complex Banach spaces.

Several sufficient sets of conditions for convergence of successive approximation schemes are
presented for small values of the renormalised coupling constant. Local uniqueness of solution is
proved under certain conditions.

I. Introduction

Usually, quantum field theory is concerned with expression of higher many
point functions in terms of lower ones. But as will be discussed in Chapter VI,
this problem does not seem to have unique solutions even for polynomially non-
linear interactions unless a perturbative approach makes sense. Now let us ask
the converse question. Suppose GN (N fixed) were known or substituted by a model
function satisfying the causality condition etc. Is it then possible to determine
Gn (n < N)Ί This is a relevant question, because 1) for example, for Yukawa type
interaction the lowest observable processes correspond to four point functions;
and 2) if one begins with G° (bare propagator) and point vertex, one ends up with
divergences and ghosts except in superrenormalisable models. (Here G2 stands
for the two point function in the Heisenberg representation and Gn(n^4) stand
for amputated connected n-point functions.)

In this note we pursue the Green's function approach to quantum field theory.
By Green's function approach we mean that once the equations for Green's
functions (many-point functions) have been derived, one can forget field operators
and deal exclusively with Green's functions.

Let us take the {φ^i + 3 model and suppose that G4 is given. Then our problem
is concerned with the existence and uniqueness of the following equation:

G2(p) -{p2- m2 - iεy1 gr ) d{p'2)) d(p"2) -f^

-$d4qι d*q2 G2(qι) G2(q2) G2(p" -qγ- q2) G^(qu q2, p" - ^ - q2, -p") (1.1)

This equation incorporates a technique of renormalisation introduced by Taylor
[1]. Let us define σ as follows

σ(p2) = G2(p)-G°(p).
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Fig. 1. Selfenergy part [Gf 3 * O 4 ]

Then the equation to be considered is written in the following form:

S [ σ ] = ( φ - J ) [ σ ] = 0 (1.2a)
where

ΦM(P2) = 0r ί dip'2)) dip'^—ζ^liGV + σr^GΛip"2)
ml ml a{p )

r 1 ( }ί *2

'G°(p)\p2~m2-iε + gr J

Here asterisk * is a short hand for convolution (see Fig. 1). From now on we write
P2 P'2

 d2

[...] (p2) instead of J d(p'2) f d(p" 2 )___-[ . . . ] (p" 2 ) . It is convenient to so
ml ml «(P )

normalise G4 that G 4(0 50,0,0)= 1. Then our gr corresponds to g2 in the con-
ventional normalisation.

Some comments are in order. An advantage of (1.2) over (1.1) is in the fact
that Φ does not have a pole at p2 = m2 and is expected to be small for small g and
small ||σ|| if G4 is suitably chosen. If one renormalises Φ with subtraction constants
Z and δm2, Φ[_σ] has two poles that cancel each other only when σ is the solution
Eq. (1.2). Neither G2 itself nor Σ (proper selfenergy part) nor (G°)~1G2 is suitable
as object to be found as fixed point of a mapping in a function space because G2

and Σ are not bounded while G2 and (G°)~* G2 are not small when g is small. The
advantage of dealing with σ is in the fact that σ(p2) should not have a pole and
decreases as \p2\~x when |p 2 | —>oo. If one evaluates Φ[σ] for a σ with \σ{p2)\
>c-\p2\~\ one gets Φ[σ] ip2)~\p2\~ι when |p2 |-»oo. Therefore the Eqs. (1.2)
guarantee the desired asymptotic behavior of σ as long as the G4 is so chosen that
the integral [(G° = σ)*3 * G 4] is meaningful, and consequently a function with the
asymptotic behavior ~ | p 2 | ε (ε> — 1) cannot be a solution of the Eq. (1.2). (In
order to make the integral [(G° + σ ) * 3 * G 4 ] meaningful for σ with σ(p2)~|p2|ε

the α in the condition (1.3) below must be > 1 + ε.)
Because our Eq. (1.2) is uinhomogeneous", it does not have a trivial solution

σ = 0. [For the Eq. (1.2a) to have a trivial solution, G4 has to be so chosen that
[(G 0)* 3 * G 4 ] ip2) -^CQ + CiP2. c0 and cx being arbitrary constants.]

If one takes G4 with asymptotic behaviour

GΛPu Vi, P3 ? PA) = 0(1) when Maxfl/vΊ)-* oo

as has been the case in the Landau approximation [Landau, Abrikosov and
Khalatnikov (2)], then [(G° + σ)* 3 * G 4] (p2) behaves asymptotically as
O(\p2\ Iog(|p2|/m2)) and a ghost ensues. So, let us take a more reasonable model
for G4 with the following asymptotic behaviour:
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Then [(G° + σ)*3*G4](p2) behaves asymptotically as O(\p2\) (not
because of renormalization) without a logarithmic factor so that Φ[σ] (1.2b)
does not have a ghost pole for small g and small ||σ|| (the norm will be specified
below). Of course, (1.3) is not a necessary condition for the absence of a ghost.
Alternatively, one can take, e.g.

) Ϊ g Σ

For the mapping under consideration, most of known methods are not applicable.
Let us discuss some of those methods briefly.

The mapping Φ is not a compact (completely continuous) mapping of Urysohn
type in any metrizable function space because the external variable appears in the
operand [Taylor (1)]. No topology has been found so far, in which the mapping Φ
is compact. The non-compactness of the mapping can be more easily seen in the
Eq. (1.1): Because G2 appears as a factor outside of the integration, the image of a
bounded domain of infinite dimension can be neither of finite dimension nor be
confined in a Hubert cube. Therefore, the theory of Fredholm mappings (Elworthy
and Tromba (3)) is not applicable.

The mapping is not a contraction mapping, either. Though, for small g,

(1.4)
and

1 (1.5)

one cannot verify the following inequality:

where

and Φ [0] stands for Φ evaluated on the zero function.
Similarly, it seems impracticable to find a domain on which Φ is strictly

contracting, even if such a domain exists. Therefore one cannot apply the fixed
point theorem for holomorphic mappings (Earle and Hamilton [4]).

The so-called ^4-proper approximation scheme (Petryshyn [5], Schiop [6])
is not applicable, either. The main obstacles are the infinite interval of integration,
principal value integrals, expected branch points of solution at thresholds, and
the convolution. For example, though the non-linear mapping

i

K [u] (x) = u(x) J ds K(x, s) u2(s)
0

with a kernel of the form
i

K(x,s)=\dtL(x,t)L{t,s)
o
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with a continuous symmetric positive-definite L, is not completely continuous,
one can apply Ritz' method to the integral equation

U-K]u(x)=f(x), /GL2(0,1)

which resembles our Eq. (1.1) (for the φ3 model) (Schiop [6]).

II. Newton-Kantorovich Scheme

Now, we come to the Newton-Kantorovich scheme.
Take the general form of operator equation

P(x) = 0, (2.1)

where P is a non-linear operator defined in the sphere S(x0,r) = {x\\\x — xo\\ ̂ r}
in a Banach space X with a range in a Banach space Y. The operator P is assumed
to be "smooth" so that it has Frechet derivatives at least up to the second order
in the domain S(xo,r). If [ J P ' ( X O ) ] 1 can be defined as an linear operator from
P[S(x0, r)] into X, then one can write the first approximation to the solution of
the Eq. (2.1) as follows:

Xi^o-CΠxo)]"1^). (2-2)
Similarly

Xn-Xn-l-mXn-l)!-1 P(Xn-l) (2-3)

Then a sufficient set of conditions for convergence of the approximation scheme
(2.3) is given as follows:

Theorem 1. Let there be such an element xoe S for a given mapping P that the
following conditions are satisfied:

1) For the element x0, the mapping Pf{x0) has an inverse Fo = [P'(xo)]~x which
is bounded in norm:

(2-4)

2) F 0 P(x 0 ) is bounded:

IIFoWil^o; (2-5)

3) The second Frechet derivative P"(x) is uniformly bounded in norm:

\\F'(x)\\^K V x e S , (2.6)

S being defined below;

4) Constants Bo, η0 and K satisfy the condition

ho<ί/2. (2.7)

Then the equation P(x) = 0 has a solution x* in the sphere defined by

S = {x | | | j c-x o | | ^ r } (2.8a)

r = N(h0) ηo = (l-(\- 2h0)
112) ho " η0 • (2.8b)

And the speed of convergence is given by

\\x*-xn\\^2'-n{2h0)
2n-'η0. (2.9)
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This and the Theorem 2 ~ 5 below are adapted from Jankό's book [7] (see also
Vainberg [8]).

Now let us apply this theorem to our descending problem. Let us take Banach
space E of continuous complex-valued functions σ defined on 1R such that |σ(p2)|
and \p2σ(p2)\ are bounded, and define the norm || || by

||σ|| = oc1 sup |σ(x)| + α2 sup |yσ()/)| (α l 5 α2 > 0). (2.10)
ye\R

There is no point in taking a more sophisticated norm, because there seems to
be no norm with respect to which our mapping is compact.

The first and second Frechet derivatives of Ξ are

Ξ'iξ;ξΊ = Φ'ίξ;ξΊ-iξ'

}

18g2l(G° + ξ)*2*ξ'*G4] l(G° + ξ)*2*ξ"*G4]

(The second Frechet derivative is a bilinear operator.) Frechet derivatives
Ξ' lζ ζ'li (p2) a n d Ξ"Lζlζ\ζ"'](p2) have no poles at p2 = m2, because the zero of
the denominator is compensated by the zero of the numerators, so that ||Ξ'[£; ] | |
and ||Ξ" [£;•,•] II are bounded for ξ with sufficiently small norm.

To find the first approximation σί from the zeroth approximation σ0 = 0 one
has to solve a linear integral equation, i.e. to invert the Frechet derivative. Graphical
representation of the first approximation is given in Fig. 2.

By power counting for small g one finds a rough estimation

because ||Φ'[O ]II = (?(#), ||/|| == 1 while integrations contribute finite factors.
On the other hand | |Φ[0] | | =O(g), | |/0|| = 0 so that

(2.13b)

V£eS(0,r). (2.13c)
Hence

= O(g2), (2.14a)

(2.14b)

Fig. 2. The first approximation σv Here thin line stands for G°
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i.e. there is a finite interval </ = {g\g1 > g>0} such that for a value of g in /,
h0 < 1/2, and consequently the scheme converges. (We need not deal with quasi-
norms of non-linear operators.) From Fig. 2 one can easily see that σ1 has already
all the expected branch points (thresholds) though their numerical coefficients are
modified by higher approximations.

A branch points of the type (p — pn)
an{an > 0) does not affect integrability even

if it coincides with a simple pole.
As for uniqueness of solution, we have the following theorem:

Theorem 2. Suppose that the following conditions are satisfied:
1) There exist an element x0 e X such that F(x 0 ) has inverse F 0 = [p /(x0)]~1

and
B; (2.15)

2) \\F0P(x0)\\Sη0; (2.16)

3) Lipschitz condition

\\F(x1)-F(x2)\\£K\\x1-x2\\Vx1,x2eS={x\\\x-x0\\<2η0}<:X; (2.17)

4) h0 = B0Kη0^ί/2. (2.18)

Then the equation P(x) — 0 has only one solution in the sphere S.

For the descending problem, one gets the following estimation:

so that one finds h0 = O(g2) < \ for sufficiently small values of g, and consequently
the solution is unique in S. This theorem, however, does not guarantee global
uniqueness of solutions. For global uniqueness one has to use Altaian's method
[9] of contraction with non-linear majorant. We shall come back to this question
in Chapter IV.

III. Approximation Schemes of Order 3

There are approximation schemes involving the second Frechet derivatives.
Let us consider the scheme

xn+ , = xn-FnP(xn)-kFnP\xn) [_FnP{xnψ
2 (3.1)

which is called the method of tangential parabolas. We have the following theorem:

Theorem 3. Let the following conditions be satisfied:

1) F(x) = [P'(x)] ~x exists for any x e 5(x0, r) and is bounded

\\F(x)\\ίB; (3.2)

2) | | F 0 P ( x 0 ) | | ^ 0 ; (3.3)

3) \\P"(x)\\^M, \\F"(χ)\\£K Vx€%,r) ; (3.4)

4) hoko = BMηoko<ί, (3.5)

where
1 M - 2 ( l + V 2 ) 3 } 1 / 2 (3.6)
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Then the scheme (3.1) converges to the solution x* of the equation P(x) = 0 and the
speed of convergence is

||x -x j | g r ( f t o fco) 3 ' - 1

> (3-7)
where

r = (ί+ho/2)_ηoΣ(hokΰr-i. (3.8)
« = 0

For the descending problem (1.2), each step xn->xπ+i amounts to solving two
linear integral equations consecutively. It can be easily seen that the third Frechet
derivative

p e

is also bounded as a trilinear operator for small g and small \\ξ\\. For small g and
σ0 = 0, one gets the following rough estimation:

M = O(g)

so that one finds

>)<1. (3.11)

Another scheme called the method of tangential hyperbolas is defined by the
following formula (Jankό [7], [10], [11], Collatz [12], Mirakov [13], Jankό and
Balazs [14], Balasz and Jankό [15])

v _ y _ ΓΓ _ π p»(x \ rf p(x γ\~\-iF P(χ ) Π 12)

where

Fn = ίP'(χn)Tι.

For'this scheme we have the following theorem:

Theorem 4. Let the following conditions be satisfied:

1) \\F(x)^B <oo VxeS(xo,ib/), (3.13a)

κ=Σ (hfr-^i; (3.13b)

2) | | x 1 - x 0 | | ^ ? / < o o ; (3.14)

3) ||P"(χ)|| < M, IIP '̂WII ύN9 Vxe S(xθ9 kη) (3.15)

4) Λ / < 1 ; (3.16)
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where
(3.17)

' 1 } 1 1 2 . (3.18)

Then there is a solution x* of the equation P(x) = 0 in the sphere S(x0, Kη) and the
speed of convergence is

(3.19)

For our descending problem with a small g one gets the following estimations

= O(g), M = O{g), 1

=O(g-112) r = Kη = O(g)j ( ' j
N = O(g), f=O(g-112), r = Kη

so that for sufficiently small values of g one finds

hf = O(g3/2)<ί. (3.21)

We have a useful theorem for even more general schemes of successive ap-
proximations of the form

*„+1 = x» - [ / - ( / - λAnΓ' A J FnP(xn), (3.22)

. (3.23)

(An is a linear operator.) The scheme (3.22) is reduced to the method of tangential
hyperbolas, the method of tangential parabolas and Vohandu's method when
λ = - 1,0, - 2 , respectively (Jankό [7]).

Theorem 5. Suppose that the following conditions are satisfied:
1) F(x) = [P(xJ]~1 exists for any xeS and is bounded:

\\F\\SB (3.24)
where

S={x\xeX,\\xo-x\\<{2 + (ί-\λ\)hoηo}H(2-\λ\hoy
1} (3.25a)

H=f ( M o ) 3 " " 1 ; (3.25b)
H = 0

2) \\F0P(x0)\\<η0; (3.26)

3) \\P"(x)\\^M, \\P"(xι)-P"(x2)\\^K\\x1-x2\\Vx,x1,x2eS; (3.27)

4) hoko<i, (3.28)
where

k0 = (2 - |λ| Λo)-' β ( l +11 + λ|) (2 - |A| Λo) + iΛ0

Γ 1 ] 1 / 2

TTjen ί/ie scheme converges to a solution x* <?/ the equation P(x) = 0, and the speed
of convergence is

μ | / J o ) - 1 . (3.30)
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If this theorem is applied to our descending problem, one gets, for small g
following estimate:

,2\ h _r\t»-U2\( (3.31)
η = O(g)9 M = O(g),

K = O(g), h0 = O(g2), k0 = O(g~11

unless \λ\ is very large, so that one can except

h0k0 = O(g3l2)<ί, (3.32)

namely, convergence of the scheme.

IV. Is the Solution Globally Unique?

So far we have been concerned with the existence and local uniqueness of a
solution with small norm for small values of the effective coupling constant.
In order to insure the absence of ghost in Φ [σ], it appears that the norm of σ
need not be small for small values of g. Unfortunately, the Theorem 2 does not,
however, imply global uniqueness of solutions, σ must tend to zero as #-»0
because g G4 ought to tend to zero. For otherwise irreducible higher many point
functions would blow up. This, however, does not imply that σ and G4 must be
analytic in g at g = 0. Rather, to ensure the existence of a solution to the Eq. (1.2),
G4 should be specified so as to make the integral [Gf3 * G 4] behave decently for a
given finite value of g, not for the whole interval 0^g^g0<co. On the other
hand, for a small value of g, the expression

does not have a zero other than at p2 = m2 for σ's with relatively large norms and
I m ^ remains negative definite. It appears that, roughly speaking, the admissible
values of ||σ|| increase as ~ g~1/3 when g tends to zero. If one takes a zeroth ap-
proximation σ0 with | |σo | | =O(g~1/3), then one finds

), (4.2)

so that one can expect h0 = O(gί/3)< 1/2.
To answer the question whether a successive approximation starting from a

zeroth approximation with norm ~O(g~ 1 / 3), the most powerful method so far
available is Altman's method of contractor with non-linear majorant [9].

Theorem 6.Let P be a closed non-linear operator with domain D c X and range
in Y, and F(x) be a linear operator satisfying the contractor inequality

\\Plx + F(x)y ]-Plx]-y\\£a\\y\\2 + b\\y\\ (4.3)

for x C D whenever x + F(x)yeD. If a zeroth approximation is chosen so as to
satisfy the conditions

^ Γ 1 ; (4.4)

(4.5)

(4.6)

2)

3)

S(x0, Bί*)cro,

II f W
q

\\Pχo\\^η, t

H^BVxεScD;

• = ay + b< 1 .
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Then the approximation scheme

xn+ί=xn-F(xn)P(xn) (4.7)

converges to a solution x* of the equation P(x) = 0 and the error estimation is

ί-qy1. (4.8)

If one applies this theorem to the Eq. (1.2), one finds that the inequality (4.3)
is satisfied by a and b chosen subject to the conditions

F [ σ ] = S ' [ > ] , \\F\\£B O(g0)\ [ ' }

whenever
σ + F[σ] η eD[/ + Φ] = {σ| ||σ|| ^fg~1/3}, (4.10)

where / is a constant that depends on details of G4. Take a zeroth approximation
σ0 with norm ~ O(g ~γ) (0 < γ < | ) and a sphere

| Φ], (4.11)
where

(4.12)

2 y ) < l . (4.13)

Then one gets the following estimate for the first approximation:

Hσ 1 | |=Oto 1 - 3 y )<i , (4.14)

while the error estimate reads

| | ( 7 1 - σ * | | ^ B ι / C ( l - 0 - 1 = O t o 1 " 3 y ) < i , (4.15)

where σ* is the solution of the Eq. (1.2). For higher approximation one finds

\\σn\\=O(g) (n^2). (4.16)

Whether the sequence σn converges to the solution obtained from zeroth ap-
proximation σ0 = 0 depends on whether the new σn eventually enter the sphere S
defined in the Theorem 2. On the other hand, there cannot be a solution with norm
||σ*|| =O(g°). There may or may not be "large" solutions with norm ~O(g~1/3).
But one cannot apply any known method to search for them.

V. Descending Problem from Higher Many Point Functions

For descending problems from higher many-point functions, the situation is
quite different. Suppose G6 were known or substituted by a model function. Then
the relevant equations are
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with appropriate regularisations (Taylor and Yoshimura [16])

Π^Γ 1AC(^ 0 + ̂ )*2](^i- ^4) (5-3)
i= 1

etc., where

d
(no summation over ί) (5.4)

and the operation D ~1 is to be carried out in such a way that the resultant expres-
sions are equal to 0 for zero momenta (0,0,0,0). This time, the unknown is the
pair {σ, G4}.

For the Eq. (5.1) to have a ghostfree solution, G4 must behave in such a way
that the contribution of the constant term 1 in the r.h.s. of the Eq. (5.2) be asympt-
otically cancelled by other terms. But this is a very strict condition and one cannot
proceed from a zeroth approximation {σ0, G4

0)} with σ0 = 0 and a G4

0) such that
asymptotically e.g.

If such a G4

0) is substituted into the r.h.s. of the Eq. (5.2), the resulting expression
does not enjoy the same asymptotic behaviour as G4

0 ), so that one cannot proceed
further, though a solution may exist.

On the other hand, if G6 corresponding to a given pair {σ, G4} were known,
one could ask whether G2 and G4 are unique for the given G£ r e d .

Now, let us define a Banach space 23 of pairs {σ, G4} with the norm

y 1 ? y 2 > 0 , (5.6)
,4-a + β

pfelR

sup

f d2 sup

4

fc=l

(5.7)

Then the problem is whether the following system of equations has a non-trivial
solution {τ, zl}φ{0,0} in 95:

T[G 4 ,σ;τ,zl]

+ g [(G° + a + τ)* 4 * (G4 + A)* 2 ] + g [(G° + σ + τ)* 3 *
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Frechet derivative of the pair of operators {T, U} is written in the form of a super
matrix:

Π f~* / I T T Γί^ A ~\

(5.13)

These expressions are rather symbolical. As for the orders of convolutions, one
has to refer to the Eq. (5.2). Let us define the norm of the super matrix by

\\{ZUy\\=ocί\\Tn\\+oc2\\Tί2\\+βί\\Un\\+β2\\Ui2\\ (5.15)

where α's and /Γs are positive constants with orders of magnitudes of appropriate
powers of mr. Then one can apply the Theorems 1 ~ 5. Let us take a zeroth ap-
proximation with norm ~O(g). Then by the Theorem 3 one gets

\\({T, UY-iy1\\SB = O(g°), η0 = O(g1/2) Λ

M = 0(g112), K = O(gίl2), h0 = O(g), I (5.16)

ko = 0(g~1/4), r = O(g1/2) J

so that for sufficiently small values of G one finds

again. Therefore, if one begins with a sufficiently small zeroth approximation,
successive approximation leads to the trivial solution because of the local unique-
ness (Theorem 2).

If non-trivial solutions of the Eqs. (5.8), (9) exist at all, they must not have
arbitrarily small norms, i.e. "distance" between two sets of σ, G4 corresponding to
a given G6Γred cannot be arbitrarily small.

Again unfortunately, we cannot say anything about existence or non -existence
of solutions with large norms.

VI. Ascending Problem

As a converse of the descending problem, let us consider the ascending problem
briefly. If Gn (n^N) were known or substituted by model functions, can one
determine GN+2 by Green's function equations without resorting to perturbative
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expansions? Suppose G2 were given, then G4 in the </>4 theory must satisfy the
following condition:

(G2(p))-1-p2 + mf = glGr*G4(p2). (6.1)

Then, the question is whether Γ = 0 is the only solution satisfying the conditions
of the symmetry, causality etc. of the homogeneous equation

(6.2)

or equivalently

(6.20

c0 and ct being arbitrary constants. Of course, Γ need not have branch points at
thresholds. If the Eq. (6.2) has solutions Γn, then any function of the form

G', = G4 + ΣζnΓn (CelR) (6.3)
n

is a solution of the Eq. (6.1). Therefore, if the Eq. (6.2) has at least one non-trivial
solution, Γ1? the Eq. (6.1) has a continuum of solutions. Suppose that a particular
solution (four-point function) has been somehow chosen from among infinitely
many possibilities. Then the question becomes whether there are irreducible six-
point functions that satisfy appropriate unitarity, causality and symmetry condi-
tions and the Eq. (5.2). This equation is linear in Gl"ed but non-linear in G4, so
that one cannot separate the effects of Γ on G1

6

rred.
The mapping [Gf 3 * ] maps a function of n— 1 independent momenta to a

function of n — 3 momenta, and consequently is not invertible. This is the reason
why one cannot solve the ascending problem. As the input to the Eq. (6.2) is not
of the form of power series in g, it is meaningless to demand that higher many-
point functions be expandable in powers of g.

VII. Concluding Remarks

As has been seen in Chapters II and III, if G4 is bounded as (1.4) and g is
sufficiently small, Newton-Kantorovich type successive approximations converge,
and even the first approximation generates all the expected branch points, though
their numerical coefficients are altered by higher approximations. There cannot
be a continuum of solutions to the descending problem because of the Theorem 2.
Global uniqueness of solution, however, cannot be concluded from currently
available techniques.

One cannot descend from arbitrary GN(N ^ 6) even if the GN is suitably
bounded (Chapter V). As to the uniqueness of Gn(n < N) corresponding to a given
GN that has at least one set of Gn's (nN) satisfying relevant conditions, one can
say that two sets of Gπ's cannot be too close each other if a second set exists at all.

The method developed in the present article cannot be applied to the problem
of dynamically generated mass (Maris, Herscovitz, and Jacob [17], Pagels [18]),
because in our method one has to begin with renormalised mass and regularise
the operator equation as in the Eq. (1.2).
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Now, one of the most important question of our approach to the quantum
field theory is whether one can take G4 as an input to a system of equations for
many-point functions, while the Lagrangian specifies the form of those equations.
As the input G4 cannot be given in the form of a power series in g, it is meaningless
to assume that higher many point functions can be expanded in powers of g and
consequently such an assumption cannot be used as criterion in choice of the
solution of the ascending problem. One of the conceivable criteria for choice of
the solution of the ascending problem is that HGj^H ->0 as «-• oo. But we do not
know whether there are inequivalent norms and whether the above criterion is
sufficient for singling out the physically meaningful solution.

It should be noticed that in spite of non-linearity of the problem, we have not
come to any condition for bifurcation of solutions. (The KrasnoseΓskiϊ school's
theory [19] is not applicable to our complex Banach space.) On the other hand,
it should be remembered that our problem is formulated in terms of complex
valued functions of real variable, not in terms of complex analytic functions. This
is an important difference from dispersion theories.
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