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Abstract. Infinite systems of particles in v-dimensions are considered. The pair inter-
action is assumed to be C2, finite range and superstable. The existence of a time evolution
which satisfies the infinite equations of motion in a set of full equilibrium measure is proved.
This measure is proved to be invariant; so a dynamical system is obtained.

1. Introduction

The first step in the construction of rigorous statistical dynamics
is to prove an existence theorem for the time evolution itself. Let
3£ — {(#,•), (pt)} be the phase space of the system of particles. The formal
infinite equations of motion read as

- 4 ; l ) > (1.1 a)

fc(0) = fc mqi(0) = pi. (Lib)

The problem is to find a function x(f):lR-»ΐ such that when inserted
into Eq. (1.1) both sides of the equation make sense and are equal.
To obtain dynamics significant in statistical mechanics we need that
the allowed set of initial conditions X C £ be of full equilibrium measure.

This problem has been solved by Lanford [1] and [2] for one dimen-
sional particles interacting pairwise via a C2 finite range potential. By a
different approach Sinai [3], has obtained similar results for singular in-
teractions. He considers one-dimensional hard-cores interacting via a
finite range pair potential possibly diverging at the hard core length.
He proved that in a set of full measure the particles fall into finite clusters
and that for a finite time the clusters do not interact with each other.
A similar technique has been used in the v-dimensional case for small
enough densities. In general in more dimensions the cluster structure
cannot exist for all values of temperature and chemical potentials. For
the one dimensional case the extension to long range interactions has
been obtained in [5].
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In this paper we solve the problem for v-dimensional systems.
The pair interaction is assumed to be C2, finite range and superstable.
It is proved the existence of a time evolution which satisfies the infinite
equations of motion in a set of full equilibrium measure. This measure
is proved to be invariant, so a dynamical system is obtained.

We sketch the proof1. We construct S(t) for |ί|^τ as the limit
(coordinate by coordinate) of the partial flows Sα(ί). Sa(t) is the time
evolution in which the particles outside the sphere Z(2α, 0), with center
in the origin and radius 2α are frozen, those inside move interacting
pairwise and in the field of the external ones with elastic collisions on the
boundary of the sphere. An estimate on the possible displacements
of the particles under the partial flows is obtained (Theorem 2.1). Then
by use of an iterative procedure applied to the integral equations of
motion it can be shown that the sequence Sα(ί)x is Cauchy (in α)-
coordinate by coordinate, (Theorem 2.2). Then it is possible to show that
the limit

S(t) x = lim Sα(ί) x
α—*• oo

satisfies the equations of motion.

In Section 2 we give notations and definitions used throughout the
paper and then we state the results. In Section 3 we give the proofs.

2. Definition and Results

We first give some notations and definitions.
D 2.1. Phase Space. Let

3£ = [x = (q, p) I q = (. . ., qh . . .), qt e IRV, such that for every bounded

Δ C IRV, Card (4 n Δ) < + oo p : q C IRV-+IRV} .

In £ we shall identify points which differ only for permutations. Then <£
becomes the physical phase space of an infinite system of particles moving
in IRV; for every xe3E, q denotes the spatial configuration and p(q) the
momentum of the particle qeq. For every Lebesgue measurable bounded
Z l C l R v we define analogously the finite phase space X(Δ). We denote
by Q the set of spatial configurations associated to 3E.

The natural topology on X is the local topology defined by the
following requirement. The net xα->x iff for every open bounded set
Δ CIRV such that qndΔ — 0 we have

4α n Δ -> q n Δ point by point in BRV

D 2.2. Interactions. Let Φ :IR+ -»IR such that
(i) Φ is C2.

(ϋ)

An outline of these results has been given in [6].
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(iii) Φ is superstable, that is Φ = Φ' + Φ" with Φ' stable and Φ" a
non-negative continuous function such that Φ"(0)>0, Ref. [7,8].

For x e 3E(zl) we define

4'D, (2 la)
g Φ 4 '

«,9'e4χ

= /ϊ(2/«)-1 Σ [pfo)]2, (lib)

and for z = (<f , p'), <f n zl = 0

U(x z) = β ( U ( x ) + ^ X Φ(k7-4Ί)l (2.2)

I *6l II g'eg' J

D 2.3. Equilibrium Measure. We define the equilibrium measure v
on 3£ by the following conditions:

(i) let π be the natural mapping of 3£ onto <2, then the image of v
induced by π on Q, v(s), is tempered (Ref. [7], Eq. (5.12); Ref. [9]).

(ii) for fixed q the conditional distribution of the momenta p(q\
qeq, is the direct product of Gaussian distribution with mean 0 and
dispersion β(2m)~ί.

As a consequence let /e !}(£, v) then for every A (ClRv) bounded and
Lebesgue measurable

(2.3)
Jc 3£(J)

where

D 2.4. Equations of Motion. For x = (q,p) the equations of motion
are formally written as

m%i = ~ Σ ̂

q.(Q) = q. mq.(0) = Pi, (2.4b)

where (qt), (pt) are respectively the set q labelled in some way and pt = p(qi).
D 2.5. Topologies on £. We first denote the spheres in IRV as

Σ(r,d)={xe]Rv\\x-d\<r;delR\r>Q}, (2.5 a)

Σ(r,Q) = Σ(r). (2.5 b)

Given a labelled configuration (qh pf) and r > 0 we define a seminorm on
the labelled configurations y = (q'ί9 pΊ) as

ήfί e<ΐx^Σ(r,Q) /o /C\
(Z.OJ

aV b = max(α, fc) α, fc e 1R .
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The family of seminorms || | | r > J C for reIR + define the product topology
on the labelled configurations of X relatively to x.

Let £c3E be the set such that there exist K^ and K2 elR defined as
follows:

(a) \Pi\^Kllog(\qi\Ve)^Kl\og+\qi\.
(b) V d e I R v , L e I R + such that log+ |d|^L then Card(xnΣ(L, d))

^K2L\_
On ϊ we define a norm as

||x|| = sup {inf^i I Condition (a) holds); im%K2| Condition (b) holds)} .

(2.8)

D 2.6. Partial Flows, By S*(f) we denote the flow under which the
particles outside Σ(2α, 0) are frozen. Those inside move pairwise inter-
acting in the field of the external ones with elastic collisions on the
boundaries.

In the following theorem we shall state the initial conditions for
which dynamics will be proven to exist.

Theorem 2.1. Let ϊ(c) be

ϊ(c) = {x e 3E I Vτ > 03α(x, τ) : α ̂  α(x, τ) sup sup |Sα(ί) p(q)\ ^ ca .

Then for every c> 0 v [ί (c)] = 1.

Note that a stronger result than Theorem 2.1 can be obtained, in
which the momenta do not grow faster than c(α)1/2 for some c. However
for the sake of brevity we shall use the above formulation.

We are now able to introduce the set of initial conditions 3£ as

c>0

In fact by Theorem 2.1 £ has full equilibrium measure and we can con-
struct the global flow S(t) as limit on ϊ of the partial ones, as will be
shown in the next theorem.

Theorem 2.2. For every x e ΐ the following holds

lim S«(t)x = S(ήx (2.9)
—α— > oo

both in the local (D 2.1) and in the product (D 2.5) topologies of ϊ. For
every τ the limit is uniform in |ί|^τ and ||S(ί)x|| is bounded for |ί|^τ.

The following theorem shows that the evolution S(t)x satisfies the
equations of motion and that the equilibrium measure is S^-invariant.

Theorem 2.3. For every x e ΐ.

(i) S(t) x satisfies Eq. (2.4) for t e R
(ii) S(t) x is the only solution of Eq. (2.4) in 3£.

(in) S(t) :X-^XandS(-ή S(t) = 1 for every t e R
(iv) (£, S(ί), v) is a dynamical system.
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3. Proofs

In the sequel we shall frequently use the following theorem due to
Ruelle [7].

Theorem 3.1. Let v be a measure on Q that is tempered and satisfies the
equilibrium Eq. D. (2.3) (zϊ), then

(i) v is regular, [10].
(ii) Let v(s} be the measure on Q defined in D. (2.3) (i). Then for every

Lebesgue measurable set A C IRV with diamΛl — LΛ>\ let

P(m, A) = v(s)[{<? E Q\Caτd(qnΛ) ^ m}]

then there exist y > 0, δ < oo such that

P(m, A) = Qxp{-ym2/Lv

Λ + δm} .

Proof of Theorem 2.1. The proof will be obtained in the following steps.
(a) v[M]= 1 where

M= x€3£|3a(x):a^a(x) sup
( (qeqnΣ(2")}

(b) v(N)= 1 where N = (J N(s)

(c) For every τ e IR+ and c> 0, v[3£(τ)] = 1 where

3E(τ) = {x e 3£ 1 3 a(x? τ) : a ̂  a(x, τ) sup sup |Sa(f) p(^)| < ca .
I | ί |^τ^egnl(2 a )

Conditions (a) and (b) together imply that v(X) = 1. Since

by Condition (c) we complete the proof. Therefore we only have to
prove (a), (b), and (c).

(a) The proof is completely analogous to the one of Ref. [3] and here
we only sketch it. Let

By use of the equilibrium equations we have

ί Jv(z)ρf f d(q\ ί
Ic(2«) n = 0 [I(2α)]" (IR)"V

• exp { - U((q)n I z) - T((p)n) + βμn} + P(Q?\
where

ρ>δ*2/γ. (3.1)

By use of Theorem 3.1 we have
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where
(3.2)

and therefore the Condition (a) is proved.
(b) We estimate v[JVc(s)] by use of Theorem 3.1. We have

(c) By (a) it is sufficient to show that Σαv(.Rα)<oo where

ca; sup
qjeΣ(2")

We choose ρ according to Eq. (3.1) and we write

v(R,)£g.+ j dv(z)°£ f d(q)n ί dipUnO-'W'm)-""2

β 3)

where gα is defined in Eq. (3.2).
We shall now estimate Eq. (3.3). We fix n in the sum of Eq. (3.3).

Let -Mn be the corresponding phase space. .Mn is a Riemannian manifold
with boundary in the usual metric ds2 = Σn

i = ί(dpf + dqf). In Mn we
consider the open submanifolds of codimension 1

where pi is the s-coordinate of the vector pt e IRV. Proceeding as in Ref. [4],
we generalize the Lemma of p. 492 of Ref. [3] where the one-parametric
group Tt must be read as 5α(ί). Here we only give the main steps. We obtain

Σc(2«)

υ

(3-4)

Σc(2") n=l Ai

{- Ul(q)n\z] - T((p)n) + βμn} v((q)n)

where

, J = 2 / , (3 5)

»((«).)='
Inserting Eq. (3.5) into Eq. (3.4) we have

v(Ra) ^ #α + exp( — c2α2) τv(2πβ~1 w)~1 / 2 ρ2αv f dv(x) Fα(x) (3.6)
ie

where



Time Evolution of Infinite Classical Systems 181

We introduce the following partition of the space Γ(s), s e 1RV

sk and xk are the coordinates of s and k respectively.
Let ^0CΈV be the minimum set for which

(J
se^o

where r0 was defined in D. (2.2) (ii).
There exists a < oo such that

We have

Fα(x)^F £ Card(xnΓ(s))

where
d

Then using Theorem 3.1 we have

o Σ m exp[-ym2(r0J/vΓv 4- <$m] .

Inserting this estimate into Eq. (3.6) the thesis is proved. Π
Proof of Theorem 2. 2. We first show that the limit (2.9) exists in

the product topology. We consider | f |<; i and xeί. Then for every
jR0 > 0 we shall prove that

f sup \\S«(t)x-S«-l(t)x\\Ro<oo (3.7)

where || \\Ro means || \\RθtX and was defined in D (2.5). Equation (3.7)
proves that Sa(t) x is a Cauchy sequence in the product topology.

Let us write the integral equations for

Sα(ί)x = x + ΓW ζΛ(t) = (ξ*(t),ιf(t)).

ζ«(t) = J dτA*i[ζ«(τ}~] + elastic collision on the boundary of Σ(2α) where
ό

= ft + ifi, Σi - Φ(l9< + ί? - «; - «l «« e 2(2")
j φ i ^^i

so that C?(ί) = 0 for |ί| ̂  1 whenever q; ̂  Σ(2α).
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For qt e Σ(R0) and for α ̂  α(x; 1) sufficiently large so that Eq. (3.10)
below holds

where
Sf.ii,

0

Ji + ξf(t1)-qj-ξcί(tί)\)-Φ(qi + ξr1(tι)-qj-ξΓ1(

We easily have

where ~

F = max
x g O

2cα + R0 + r0 <Ξ c'α + R0 = K j .

(3.8)

(3.9a)

(3.9b)

(3.9c)

Equation (3.8) was obtained by the same estimate on the momenta
given in Theorem 2.1 and in the hypothesis that

For c ̂  1 we have

Card G^

Therefore using Eqs. (3.8) and (3.1 1) we obtain

sup icnO-CΓ'WI

(3.10)

(3.11)

We define n(α) as

n(a) = Integer part of
c'α

and we iterate π(α) times the above procedure to obtain

(3.12)

π(α)

)(c'α)vπ(α)c/α[π(α)!]~1 . (3.13)

Equation (3.7) is then verified by the estimate (3.13). Therefore we have
proved that uniformly in |ί| ̂  1

ftW = £/(*)< V i e Z .
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We shall now prove that the solution x -f- ζ(t) is bounded in the norm
of Eq. (2.8) The essential point is that there exists meZ so that for every
#0 = 2αo the following holds

suj3 ||Cα(0-^(011*0^1 β^y^ma0. (3.14)

This because by Eqs. (3.13) and (3.12)

00

IICy(ί)- ζ"(t)\\Ro 5 Σ (2Fr<«VαΓ<«Vα)(n(α)!)'1 £ 1
mα§

for m sufficiently large and every α0 eZ + . By Eq. (3.14) we have that

\\ζβ(t)\\Ro^l+cma0^2cma0 (3.15a)

and therefore

(3.15b)

By use of Eq. (3.15b) and by proceeding as in the proof of Lemma 3.2 of
Ref. [1] we obtain that ||x + ζ(ί)ll is bounded for |ί| ̂  1.

To complete the proof of Theorem 2.2 we prove that

in the local topology of 3E. That is, for every R0 > 0

lim (q + ξ*(t))nΣ(R0) = (q + ξ(t))nΣ(R0) (3.16)

and the same for the momenta. This is ensured by the convergence of
ζα(0 in the product topology and by the estimate (3.15).

Define α(#0) as

a(R0) = M{βεΈ + \2β - 2cmβ ̂  RQ} < + oo .

Then for α > α(.R0) the particles of x + ζα(ί) and x 4- C(0 which are in
Σ(R0) are those initially inside Σ(2α(Λo)), therefore Eq. (3.16) is implied by

lim||ζβ(ί)-ζ(ί)ll2 (Ho) = 0. D
α-» oo

Proof of Theorem 2.3. (i) We have by Theorem 2.2 that

ηt(t) = lim rfi(t) = lim - j dτ ̂  -j- Φ(\qt + ξf(τ) -q - ^(τ)|)

= lim - f dτ Σ (R ^ — Φ(|βί + ξ?(τ) - q; - ξj(τ)|)

J -̂* «-*r^ ^^0

= - rfτ

0
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where
α, = inf {β eΈ + |9i e Σ(2')} ^ = 2"

j) = inf {β e Έ + \2β - 4cmβ > rϋ + £;}.

Further

ξi(t) = lim ξ}(t) = lim f dτ(Pi + rf}(τ)) = f dτ(p£ + ^(τ)).
o o

(ii) The unicity theorem reads as follows. Let x(ί): (— τ, τ)->ΐ which
is a bounded [in the norm of Eq. (2.8)] solution of the equation of mo-
tion (2.4). Let x(t) = x(0) + ζ'(ί) then unicity means that

We first note that there exists λ < oo such that

ICiWI^λα, . , (3.18a)

lίiWI^λα,., (3.18b)

where α f was defined in Eq. (3.17). The proof of Eq. (3.18a) follows from
the assumed boundedness of | |x(ί)ll Since it is analogous to the one of
Lemma 3.2 of Ref. [1] we shall omit it. We proceed now in a way comple-
tely similar to the one of Theorem 2.2. We consider ||((ί) — C'(0llκ 0

 an<^
we iterate rc-times the procedure of Eq. (3.13). Therefore the particles
we consider will be in the sphere Σ(Rn) where

with
+ \n^ Integer part of {{2β-R0)(r0 + 2λβΓ1}}

Therefore as in Eq. (3.13)

ICi(ί) - CίίOI ̂  (2F')n(c'an)
n+i(n \)~ ί (3.19)

with vanishes as n diverges.
(iii) It follows directly from (i).
(iv) It is sufficient to show that for every v-measurable set E C ΐ and

every fixed f, also S(—t)E is v-measurable and that v(S(—t)E) = v(E).
This amounts to say that for every ε > 0 there exist v-measurable sets Άε

and Fε such that

Άε 3 S( - t)E D Fε v(Άε -Fε)<ε. (3.20)

To prove Eq. (3.20) we use the regularity of the measure v [see Theorem
3.1 (i)] to find an open set Aε and a closed set Fε so that

v(Ae-Fe)<s. (3.21)
We then have

Af - lim inf S«(- t) {/lenϊ} 3 S(- t) {Xenϊ} D S(- f)E (3.22a)
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because of Eq. (2.9) read in the local topology D. (21) and because Aε

is open. By complementarity in £ from Eq. (3.22a) we obtain

F* = lim sup Sa(~ t) {Fεnί } C S(- t) {FεnX} C S(- t)E . (3.22b)
α-» oo

By Liouville theorem in £[Z(2α)] and the equilibrium equations

v(Fβ) = v[S«(-ί){ί'εΠΪ}] v(Aε) = v[Sα(-ί){Λπί}] (3.23)

since v(ί)= 1. By a classical theorem in measure theory, [10] IΠ.4.8,
and by Eq. (3.23)

v(A*) ^ lim inf v[Sα(- ί){4 εn}] - v(AE\ (3.24a)
α — > oo

v(F6*) ^lim sup v[Sα(- t){Fenί}] = v(FJ. (3.24b)

Finally Eqs. (3.21)_-(3.23), and (3.24) together imply Eq. (3.20) with
A* = Ae and F* = Fp. D
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