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Abstract. The general definition of quantization is proposed. As an example two
classical systems are considered. For the first of them the phase space is a Lobachevskii
plane, for the second one the two-dimensional sphere.

It is generally accepted that the quantization is an algorithm by
means of which a quantum system corresponds to a classical dynamic
one. Furthermore, it is required that in the limit /—0 where h is the
Planck’s constant, a quantum dynamic system change to a corresponding
classical one. This requirement is called the. correspondence principle.
It is quite obvious that there exist quite a lot quantizations obeying the
correspondence principle; the quantum description of a physical
phenomenon is more detailed than the classical one, and so there are
certain phenomena the difference between which is displayed in their
quantum description, whereas their classical description does not show
this difference.

The following intuitive method of quantizing the classical dynamic
systems with a flat phase space has become well known since the
Schrédinger equation was first written down. If a system has n degrees
of freedom, its phase space is a real linear space %£>" of dimension 2n,
and the observables are the functions f(p,q), p,q€ Z*", p=(p;..-P»)
q=1(q;...q,), where p;, q; are the momenta and coordinates. The Hilbert
space of states of a corresponding quantum system is a space of functions
f(x), x=(xy, ..., x,) of n real variables with a summable square. The
operators in L*(#") py, 4, are compared to the classical momenta and
coordinates, py, q, using the formulas

) D =xef (), () )= 2L

i Oxg

(0.1)

A “quantum observable” — the operator f(p,§) obtained by “replacing
the real variables p;, g; by the operators p;, §; in f(p, g)” corresponds to an
arbitrary observable f(p,q). However, the operators p;,4; do not
commute, and so this algorithm is applicable, provided that the analytical
expression for f contains no products such as p;q;. For the case of arbi-
trary f(p, q) the algorithm in question should be specified. One of such
specifications which posseses a number of remarkable features is due to
Weyl [1].

* The Moscow State University.
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In a case when the phase of a classical dynamic system is not plane
it contains no natural coordinates p;,q; and so all the quantization
methods based on the special features of these coordinates prove
inconsistent. The mechanical systems whose phase space is not plane
seem to be more frequent than they are thought to be. The simplest
example is a solidstate body with a fixed point (here a two-dimensional
sphere serves as a phase space). The topicality of such systems in field
theory has recently become increasingly apparent.

This paper is aimed at defining the mathematical nature of quantiza-
tion algorithms. A general definition of quantization of an arbitrary
mechanical system is proposed. Then this general definition is exemplified
by the systems with one degree of freedom for which the phase space
is a Lobachevskii plane or a sphere.

§ 1. Classical Mechanics

1. Definition. In a general case the classical mechanics will be
defined as a pair (IR, w) where M is some differentiable manifold and w
is a skew-symmetric tensor field on this manifold. The field w in local
coordinates should have components w'/(x) satisfying the condition®
dw*f o™ 0P

Bk ak — 1
p +w o +w pp 0. (1.1)

Let us denote by /(M) a set of differentiable functions on IN. o7 (W)
is a commutative and associative algebra with respect to the standard
addition and multiplication, and is a Lie algebra with respect to the
Poisson bracket

w’*

. 0f 0g;
=o' 2L, .
[f.g] =00 22t (12)
The fact that the Poisson bracket (1.2) defines the Lie algebra, ie.
that the Yacobi identity

[fla [f2’f3]] + [f3’ [fla fz]] + [f2’ [f3’f1]] =0 (13)

is valid, is equivalent to the Condition (1.1). This is easily verified by
direct calculations. Furthermore, from this it also follows that the
Condition (1.1) is independent of the choice of coordinates.

In a case when det |w'/|| +0 there exists an inverse matrix |jo;;(x)]|
for every x e M. The Condition (1.1) is written in terms of the matrix
elements as w;;
Jw 0wy, 0wy
0x ox ox'

The Condition (1.4) implies that the external form w = w; jdx"/\dx{'
is closed. Conversely, if a nondegenerate external form o = w;;dx’ A dx’

L =0. (1.4)

! Tensor notation is meant here and in similar situations in what follows. In particular,
the double twice repeated index stands for summation.
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is given on the manifold 9 then its components w;; satisfy the Relation
(1.4), and the inverse-matrix components satisfy the Relation (1.1).
Consequently, in this case (I, w) where w is the tensor field with com-
ponents ', is a classical mechanics.

2. Mapping of Classical Mechanics. Let (M, w,), (M,, w,) be classical
mechanics with nondegenerate tensor fields w?’, w%f, w,,w, are the
corresponding external forms. The diffefomorphism 9, — IR, mapping
w; into w, will be called a mapping ¢: (M, w,)—(M,, w,). More
specifically if y=¢@(x)eM,,y'=¢'(x) are the local coordinates of the
point y and x* the local coordinates of the point x, then

oyt o0y
wl,aﬂ(x)=w2,ij5x—a—7;}:7'

3. Examples. 1) M=%A* is a plane with coordinates p, q.

w12=_w21=1,
_0f og Of dg

2) M=K' xR — is a two-dimensional cylinder. The coordinates
will be denoted by p, q. Moreover, pe #*, ge K* ie. p is an arbitrary
real number, — oo <p < o0, q is the point of a circumference, 0 < g < 2.
The differentiable functions on IR are periodic in g with period 2.
The tensor w and the Poisson bracket have the previous form.

3) M=K'x K" is a two-dimensional torus. The coordinates p, g
independently run over the circumference, 0<p<2n. 0=<g<2n. The
differentiable functions on M are periodic in each of the variables with
period 2n. The Poisson bracket has the form (1.5).

4) M =S? is a two-dimensional sphere. The measure on S invariant
under rotations has the form du=r?sinfdo A df, where r is the radius
of the sphere,

The same expression serves as the 2-form required. Therefore the
Poisson bracket in polar coordinates has the form

t (afag of ag). 16

r?sin 6

Lf.91= dp 00 80 0o

In what follows it is more convenient to use complex coordinates
instead of the polar ones on S2.
These coordinates are introduced using the stereographic projection:
0
|z| = 2rctg7 , argz=¢.

The external form w in these coordinates is

1 z7 \ 72 _
w=7i—(1+z’7) dzndz, 1.7
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and the Poisson bracket has form

rosalis Z(EE- LB

5) M= #? is a Lobachevskii plane. We use the Poincare model for
the Lobachevskii plane: the Lobachevskii plane will be identified with
a circle (of radius 2r and with its centre at zero) in a complex plane.
On the Lobachevskii plane there is an external form  invariant under
movements. This form is an element of an invariant volume

1 zz \?
= — _— —. 1.
w T (1 4r2) dzndz (1.9

The corresponding Poisson bracket has the form

z\2(of 69 Of dg
) (az 3;*3;5) (110)

[ﬁw=m@

6) Let G be an arbitrary Lie algebra, C¥ its structural constants,
i,j,k=1,...,v. As M we consider a v-dimensional Euclidean space %’
conjugate of G. We set

W' = Clixk. (1.11)

The Property (1.1) follows from the Yacobi identity for G. This example
is closely associated with Examples 1), 4), and 5). Example 6 was con-
sidered previously in [2].

6,) As G we consider the Heisenberg-Weyl algebra. Let e;, e,, €,
be a basis in G, with the standard relations

[eex]=eq, [er,eq]=[ez,€,]=0.

The coordinates in %3, corresponding to ey, e, e,, will be denoted
by & p, q. In this case w'? = —w?! =¢, and the Poisson bracket has the
classical form:

_[of 6g  Of Og
at=e(5 5~ oy o0

6,) G is a Lie algebra of group SO(3). If in G one chooses a standard
basis ey, e,, e5, with the relations [e,, e, ] =3, [e5, e, ] =e,, [e,, 3] =¢;,
then the Poisson bracket takes on the form

x! x2 x3
_|of of of

[f.g9]= T o adl (1.12)
dg 09 0Og

oxt  ox* 0x3
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Let us introduce the polar coordinates x!=rsinfcosq,x?=r
-sinfsin @, x> =rcos6. On replacing the variables, we obtain from (1.12):

- (220 2y
rsinf \ 00 O¢ dp 00
Thus, for the functions f at fixed r the Poisson brackets (1.12)
transforms, with an accuracy up to a multiplier, to (1.6).
In a similar way the Poisson brackets are connected on the Lie
algebra of a three-dimensional Lorentz group, and on the Lobachevskii

plane.
§ 2. Quantization

1. General Definition. The associative algebra U with involution,
possessing the properties to be given below, is identified as the quanti-
zation of a classical mechanics (I, w).

1) There is a family A, of associative algebras with involution, such
that

1,) the index h runs through the set E on the positive side of the real
axis, where 0 is a limit point (0 is not involved in E).

1,) The algebra U consists of the functions f'(h) taking values in A4,
The involution and multiplication in % are connected with the involution
and multiplication in 4, in a usual way: (f©)(h)=(f(h))® where @,
o are the involutions in W and A, respectively, (f; ® f,) (h) = f,(h) = f,(h),
where ®, » are the multiplications in U and A4, respectively. In the
remainder of the paper the involution and multiplication in algebras 2
and A, are denoted by the same symbols.

2) There exists a homomorphism ¢ of algebra U into algebra .7 (9N)
of the differentiable functions on 9t with standard operations of addition
and multiplication. The homomorphism should have the following
properties

i) for the any two points x,, x, € M there is a function f(x)e @ (A)
such that f(x;) =+ f(x,),

i) o4 ra—gn) =il ol =)/,

where * denotes the multiplication in U, and [ -, -] denotes the Poisson
bracket in <7 (IN),

iii) o(f7)=o(f),
where f— f¢ stands for the involution in , and the line for a complex
conjugation.

2. Special Quantization. By this quantization is meant one which has
two additional properties.

3) Algebra A, consists of the differentiable functions f(x), x € M.

4) Algebra U consists of the functions f(h, x), f(h, x)e A, for
fixed h.
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5) Homomorphism ¢ : A — o/ (IN) is given by
o(f)=lim f(h,x).

A consistent theory is now available only for special quantizations
[3,4]% All the special quantizations hitherto investigated also posses
the following properties.

6) Algebra A4, has unity, and here the function f,(h, x)=1 serves as
this unity.

7) Algebra A4, is an algebra with a trace. In this case

Spf=cff(x)du(x) (2.1)

where du(x) is some measure on MM and c is an indefinite multiplier>.

Note that if the tensor field w'/(x) is not degenerate, i.e. if on M there
exists an external closed form of the second degree w=w,;dx' A dx’
then on I there exists a natural measure

du(x) = cw?.

3. Functor of Quantization. Let B, B, be algebras constructed
in analogy to quantizations: there exist algebras B, he E,, B?, he E,
such that B, consist of the functions f(h), he E; taking values in B{.
The homomorphism y: B, —B, of algebras with such structure is
called admissible, if it is generated by homomorphisms 1, of algebras
B (wf) (W)=, f(h).

(In order for the admissible homorphism B, >3, to exist it is
necessary that E, CE,.)

The admissible isomorphism of algebras B; is defined in a similar
manner.

We fix the set of classical mechanics & and the category A~ of the
mappings of the elements of &. Let the quantization 2 correspond
to every classical mechanics (M, w) e &.

The correspondence (M, w) ~A will be referred to as the functor of
quantization, if for any pair of classical mechanics (M;, w,) e &,i=1,2
related by (MM,, w,)=P(M,, w,), ¢ A", there exists an admissible
homomorphism ¢ such that the diagram

(MM, @) wmemenr Ay 2 /(M)

¢ J ‘5] ¢*I (2.2)
(M, ) ~erees Wy ——— (M)

2 References [7] gives two separate examples of quantizations which are not special.
Manifold 9 in the first case is a two-dimensional cylinder, and in the second a twodimen-
sional torus. In natural local coordinates the Poisson bracket in both the cases has the
form (1.5).

3 The linear functional Spf defined on some subset A, C 4, is termed a trace, if the
sets A, and Sp f have the properties 1) if f, * f, € A, then f, * f; € A}, 2) if f, *f, € A, then
Sp(fi * f2)=Sp(f2 = f1). It is clear that the functional Spf is defined with an accuracy
up to a multiplier.
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is commutative. Here ¢,, ¢, are the homomorphisms used in defining
the quantization and ¢* is the mapping of the functions, which is conjugate
of the diffeomorphism ¢.

The functor of quantization will be denoted by Q. If the correspondence
M, w)~U is a functor, we write A =Q(M, w) in order to emphasize
this point.

The quantization functor Q is termed special, if all the quantizations
A= Q(IN, w) are special.

4. Naturalness. For objects concerned with special quantizations
there is an important concept of naturalness. Let £~ be some category
of mappings of classical mechanics, (I;, w;), A,,i=1,2 the classical
mechanics and their quantizations.

The admissible homomorphism y: A, — A, is called natural with
respect to X, if exists a mapping ¢ € A", p(IM,, w,) = (M, w,) such that

W) (hx)=f(ho(x), xe,. (2.3)

The Relation (2.3) implies that at fixed h the homomorphism v is the
mapping of the functions, conjugate of the difftomorphism ¢. Therefore,
using not too strict notations we write v = @*.

The special quantization functor Q is termed natural with respect
to A, if @ =¢* in the Diagram (2.2).

The special quantization 20 = Q(IM, w) where Q is the special functor,
is reffered to as natural with respect to the category 4/, if the functor Q
has this property.

Remark. One can show (see [7]) that there is no quantization functor
Q natural with respect to the category of all the mappings of classical
mechanics.

5. Groups of Motion. Let (IR, w) be a classical mechanics and G a
transformation group 9 contained in some category " of the mappings
of classical mechanics. The latter circumstance implies, in particular,
that the transformation 7, in ./ (9):

(7)) ()= f(gx) (2.4)

is an automorphism of the Lie algebra of Poisson brackets.

Let A be the quantization of the mechanics (M, w) natural with
respect to /. From the above definitions it follows immediately, that
the Transformation (2.4) is the automorphism of all algebras 4,,.

6. Equivalency of Quantizations. Let U be quantization of the
classical mechanics (M, w), E a set of the values h, S some one-to-one
transformation of E. The mapping S generates automorphism S$* of the
algebra A:

($*1) (W)= f(sh).

Now let U, A, be the quantizations of the same classical mechanics
(M, w). The quantizations A, and A, are called equivalent, if

1) there is an isomorphism ¢:U; ->A, and an isomorphism
S*: 9, - A, (of the type mentioned above) such that the isomorphism
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¢S*: A, > A, is admissible, 2) the diagram

_oS*
\ / (2.5)

is commutative. Here ¢, are the homomorphisms used in defining the
quantization.

In a case when on I acts the transformation group G, contained in
the category with respect to which the quantizations A, and 2, are
natural, the notion of a natural equivalency is introduced. In addition
to (2.5), the diagram

£ l J (2.6)

A, 25,9,

should also be commutative. Here 7, is an isomorphism of the type (2.4).

§ 3. Supercomplete Systems of Vectors*

At present the quantization is constructed for classical mechanics
for which the phase spaces are so-called complex symmetric spaces.
They include the Lobachevskii plane and a two-dimensional sphere.
In all these cases the quantization is constructed by a general method
which will be presented here in an abstract form.

1. Main Definition. Let H be a Hilbert space and M some set with
measure do. The system of vectors e, € H, a € M is called supercomplete,
if for any f, g € H there holds the Parseval identity

g):.r(f,ea)(ewg)da‘ (3.1)

Let us denote by du(x) a measure absolutely continuous in do
dp(0) = (e, €,) dot. (3.2)

Note that a supercomplete system generates the imbedding of H into
the space I*(M) according to the formula

J=S@=(f e)

From now on we assume that the space H is realized as the subspace
I2(M).
From (3.2) it follows, in particular, that

ea(ﬁ) = (eav eﬂ) = (e/b ea) = E[}—@ . (33)

4 In this section the contents of Ref. [5] is given in brief.



General Concept of Quantization 161

Let f’u be an orthogonal projector on e,. The function

_ (de,e,)

Al@)=Sp(dR)= "= (3:4)

is called a covariant symbol of the operator Ain H,. The function /f(oc)
with the use of which the operator A4 is representable as

A= A(®) Bdu(x) (3.5)

is called a contravariant symbol of the operator A.

The definitions show that the covariant symbol is uniquely defined
for any operator whose domain contains e, for all « € M, in particular,
for any bounded operator.

It might be that various operators have the same covariant symbol.
Below we shall see that this is not so in the cases of interest: there is a
one-to-one correspondence between the operators and the covariant
symbols. As regards the contravariant symbols, they are defined, in
general, not for all bounded operators and not always uniquely, but the
operator can always be uniquely reconstructed from the contravariant
symbol.

Note that (3.5) yields an important interpretation of contravariant
symbols. Let us denote by B an operator in (M) such

(Bf)(@)=A@ f(2)

and by T the orthogonal projector from I*(M) on H. The formula
(3.5) is equivalent to

A=TBT. (3.6)

The importance of co- and contravariant symbols being considered
simultaneously consists in the fact that they can be used to obtain the
estimates of upper and lower bounds for the spectral characteristics
of the operator A. We give the most important relevant results.

1) Let 9(A) be a Hopf set of the operator A, i.e. the set of a complex
plane, consisting of all numbers such as (A f, f ),°|| fll=1, 2(A) the set
of the values of the covariant symbol A anod 2(A) a convex hull of the
set of values of the contravariant symbol A. The inclusions

D(A)C D(A) C D(A) (3.7)
are valid.

In a case when the operator A is self-adjoint, (3.7) yields in particular,
the estimate of its spectrum (the covariant symbol of a self-adjoint
operator is real, and, if it has any contravariant symbol /f, then it also
has a real contravariant symbol which is ReA). For a self-adjoint
operator, it also follows from (3.7) that

Sup|A(«)] < || A| <Sup|A ().
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2) Let ¢(t) be a convex (downward) function of a real variable. Then

§ @(A(@)) dp(@) Sp p(A) = [ p(A(@) du() . (3.8)

In a case when the operator A is semi-bounded from below, the con-
vergence of the integral on the right-hand side of (3.8) implies the existence
of Sp(A), and the existence of Sp¢(A) implies the convergence of the
integrals on the left-hand side of (3.8).

3) If the contravariant symbol of a self-adjoint operator is semi-
bounded from below, then

e—“4=3g2(7@-%ﬁ7r, (3.9)

where B and T are the same operators as in (3.6).

2. Algebra of Covariant Symbols. Let A be a bounded operator in H,
and A(x) its covariant symbol. We show that the action of the operator
on the vector defined by the formula

(Af) (@)= f(B) A, %) Lo e) du(B) (3.10)
(e/z, eﬂ)
where (/f |
_ e, ¢
M%m—(%%) (3.11)

is the continuation of the function A(x) to M x M.
Using repeatedly (3.1), we have:

(Af) @ =(Af,e)=(f, A*e) = ([, e5) (eg, A*e)) AP

— [ (Aey, e (B dB=1 1 (B) AR 0) 2% ay(p).

(e/} ’ eﬂ)

It follows immediately from (3.11) that if A=A, -A4,, A, A,, A, are
the covariant symbols of corresponding operators, then

A =T AL 08) Ao ) (2 ). (1)

The algebra with the multiplication law (3.12), which consists of the
symbols of bounded operators, is a basis for the further construction.
In what follows the manifold 9%, which serves as a phase space in
classical mechanics, always plays the role of the set M.

It follows from the formula (3.10) that the operator A is uniquely
defined by the function A(B, ) which is the continuation of A(x) to
M x M. In general, it is possible that two different functions A, (f, «),
A,(B, @) coincide at f=a, i.e. that two different operators have the same
covariant symbol. In the cases of interest this is not so: the function
A(p, o) turns out to be an analytic continuation of 4(x) and thus uniquely
defined from A(x).
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We indicate the formula connecting the co- and contravariant
symbols of the same operator. The covariant symbol of the projection
(pﬁea’ ea) — (eaw e[i) (eﬂ9 ea)

(eau ea) (ew ea) (eﬁ, eﬂ) .
It therefore follows from (3.5) that

operator 13,, on the vector e; is

A= J(ﬂ)%du(ﬁ). (3.43)
The formula for a trace reads
SpA =[ A(@) du(o)= | A(e) dp(e) (3.14)
and formula for the product trace
SpAB = A(«) B(o) dpu(e). (3.15)

§ 4. Quantization on the Lobachevskii Plane

1. The Space &,. We use the Poincare model according to which the
Lobachevskii plane with a curve, which equals 2, is identified with the
unit circle K in C*. The space of analytic functions in K with the scalar

product )
(fo= (4 —1)/@F0- D, @

1 dzadz
2ni (1 —z2)?
measure on the Lobachevskii plane. (The multiplier 4 — 1 is connected
with the normalizing condition (fy, fy)=1 for fy(z) =1). Let f; be the
orthonormalized basis in %,. Consider the function

is denoted through %, where du(z, z)= is an invariant

Ly(z,0) =X fi(2) £ilv) - (42)

The series (4.2) converges absolutely and uniformly in any region
such as |z| 7 < 1, || =r < 1. This fact can be proved using the technique
suggested by Bergman (see, for example [6]).

Consider the space %2, which consists of all measurable functions
. . . 1 ,
in K, square integrable in the measure <T —1)(1—zZ)W du(z, 2). Tt
is obvious that %, C.%? and the function L,(z,7) is a kernel of the
orthogonal projector from %2 into %,. Therefore, L,(z, 7) is independent
of the choice of the orthonormalized system f,(2).

The orthonormalized basis consists of the functions

Sl =) H GG 1+ ) 2~
Using these functions, we obtain that
Ly(z,0)=(1—z0) %, 4.3)
Denote L,(z, D) through ¢;(z), as the function z at fix ©.
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It follows from (4.2) that ¢,(z)e %, and for any function fe %,

(f,¢2)=f(2). (4.4)

The formula (4.4) means that a set of functions ¢; forms the super-
complete system in ,. This system was examined before in [8].

2. Algebra of Covariant Symbols. Let A be a bounded linear
operator in %,. The covariant symbol of this operator constructed by
means of the vectors ¢, will be denoted through A(z, z). Note that the
function

(A¢s, ¢2)
(45 ¢2)

is analytically dependent upon z and # coincides with A(z, z) when v=z.
Consequently, A(z,z) is an analytic function of the variables x=Rez,
y=Imz and A(z, D) is an analytic continuation of A(z, z) in a complex
region. Hence it follows that there is a one-to-one correspondence
between the operators and their covariant symbols. In particular, if
A(z,7)=a= const then the corresponding operator A =aE where E is
a unit operator in %,.
Specificity of general formulas (3.10), (3.12), (3.15) gives

Az, 0)= (4.5)

Une= ;- 1)iaeaso( ) den @0
—zb
if A=A, - A,, then
[t (1—22) (1 —vp) |t
Az, 2)= (7 - 1).“11(2, 0) A5 (v, 2) [m] du(v, ), (4.7)
(1 —23) (1 —o7) |

3. The Correspondence Principle. The operator T,

(1 —2z2) (1 — D) ¥ -

is considered in the space of continuously differentiable functions in a
unit circle. We find asymptotics of the function

0wz, 2)=(T,f)(z,2) for h—0.

First we consider the case z=0:

Az, 9= Q )M(ﬂ

mﬁ@a(——QU(ﬁ

mnmm(——mﬂmm—mwmm
Note that

1

(7_ )j“_v{)‘)hdﬂ(v D)= (L—1) {(1—x)ﬁdx=1.
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Therefore,

(T,/)(0,0)= f(0,0) +(T,, /1) (0,0) where f,(v,0)=f(v,0)— f(0,0).

The function f;, is continuous and f;(0, 0)=0. We consider the number
&> 0 and partition the integral (4.9) substituting in it f for f;, in the sum:

(R)0.0= (5 ~1) | £i0.50 o dute.

+ (% _ 1) [ 105 (1 — o0 dul,0).

svb<1

Estimate of the 1-st integegral:

1(%—1> J fl“"”md’“‘):i‘%%’é'fl'(%*) [ (1— oDy dp

v <1

Smax|fi].
v

vo<e

Estimate of the 2-nd integral:

(AR

o] <1

(5 =1) L A=k 104 (-

esvb<1 h

) dvdv

Obviously when &>0, then Liz%(I —gh 2 (% — 1) =0. Therefore,
}?’En; (T, f1) (0,0)] < max | fil and due to continuity of f;, 11_{13 Eng |T,f11=0.
On the other hand, since }ll_{% |T, f1| is independent of ¢, hence it follows
that lim|(7, f;) (0, 0)] =0, consequently, there exists }lli_r'ré(ﬂ, f1) (0,0) and
lim (T, £,) (0,0)=0.
Turning again to the function f, we obtain the existence of
}li_r}g (T, 1) (0, 0) and the equality
lim (T,,)(0,0)= f(0,0). (4.10)

An arbitrary continuously differentiable function in K can be written
(ambigously) as

f(v,z7)=f(0,0)+vf1(v,z7)+5f2(v,5),

where f}, f, — the continuous functions.
We note that for h—0

1 5o dv/\dv L, doadd
(5= 1) fositt—omp = 0 —omi S
P e o,
=12 o a0 = ot
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0
fv ) Analogously

(% - 1) Fof(1 — 20 duto, )= L2

+o(h).

v=0=0

Thus, finally,

+o(h)= (0,0

of, 5fz)
v=p=0 (4.11)

(T,/)(0,0)= £(0,0)+ (—au‘ "o

+h +o(h).

0v0V |y=5-0

Proceed now to studying the Transformation (4.9) at arbitrary z.
Change the variables

(4.12)

The transformation » —w is a motion in the Lobachevskii plane
(a reflection in some point). Therefore, the measured du is invariant
under the change (4.12). Due to this change the integral (4.9) assumes
the form

(RN)GD= (5 —1) [ S0 MWW dun ) (413

where ¢(w, w)= f( Wz —12_:2-%)

—Zw
We note that

62¢ 5 Zf
Fwaw e 17D oo
62
The operator 4 =(1 —z2)? 5,05 is the Laplace-Beltrami operator

on the Lobachevskii plane.
Thus, using (4.11), we obtain an asymptotic decomposition for T, f

(I,)(z,2)= f(z,2) + hA f(z,2) + o(h) . (4.14)

The correspondence principle follows from (4.14): putting 4,(z, 7) 4,(v, 2)
= f(v,7) in (4.7), we get

A(z,2)= f(z,2)+ hAf +o(h)= A,(z,2) A,(z, )
aA 04,

Y
+h(l —zz) —— e

+o(h).
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Hence: },iné A, % Ay =A(z,2) A,(z, 2) is the first requirement of the

correspondence principle and }lin(l)% (A x A, — A, « A))=(1 — z2)?

0A, 04, 0A, 04,
( 0z 0z 0z o0z

4. The Operator T, Expressed in Terms of the Laplace-Beltrami
Operator. The operator T, is permutable with the transformations
f(z,2)— f(gz, gz) where g is a motion in the Lobachevskii plane. From
this property it follows that it is the function of the Laplace-Beltrami 4
operator.

Denote a kernel of the operator 7, through G,(v, 7|z, %) and the
ZTv v_) through 7,. Note that
1—2zv

) =i[A,, A,] is the second one.

transformation (z, f) (v, 0)=f (_12_—20_1;’

Gy(v, 7]z, 2) = (z,G)) (v, 0, 0).

(This feature of the function G, in the other notations has been used
in the previous n°.)

Using permutativity of the operator 4 with T, and 7, and self-
adjointness of 4, and 7,, we obtain:

(AT, f)(z )= (T,41) (2 2)=[(4]) (D) (z.G,) (v, 7|0, 0) d (v, 1)
={f(v,9)(z.4,5G) (v, 9]0, 0) du(v, 0) (4.15)
={(1.f) (v, 0)(4,,:G) (v, 510, 0) d u(v, 7).

Further, after transformations, we obtain
S a2

ovov

“ilr o)

Consequently, the analogous relation is valid for the operators T,

hence
A -1
T,={1l—=———) T, .
’ ( %(%—D) e

Iterating this relation we find, that

1

(4,.5Gy) (v, 010, 0) = (7 _ 1) (=09 L (1 ot

N 1
T,= l_[ 7 T , . (4.16)
0 4 2 1+(N+1)h

—h (1+nh)(1+mn—1)h)

The first requirement of the correspondence principle means that
}lir% T,=E where E is a unit operator. Therefore, proceeding to the

limit for N — o0 in (4.16), we obtain the final expression of the operator
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T, through 4

=] . (4.17)
"0 -
(1+nh)(1+(n—1)h
5. Representations of the Group of Motions of the Lobachevskii
Plane in the Space #,. Denote this group through G.
Consider the transformation in A,

(t,4)(z,2)= A9z, 92), g€G. (4.18)

It has been mentioned above that the transformation (4.18) is the auto-
morphism of the algebra 4,,. As is known, all automorphisms of the algebra
of bounded operators in a Hilbert space are internal. Therefore, the
bounded operator which generates automorphism (4.18) exists in %,

(U,AU; ¢z, ) (s, 62~ =(A, 052) (byer b52) ' = Al92,72) . (4.19)

The operator Ug is defined up to arbitrary complex multiplier. Since
the Transformation (4.18) transfers the real functions in to the real,
the transformation A—»UAU ! transfers self-adjoint operators into
self- adjoint. Hence it follows that U differs from the unitary operator
by the multiplier only. Thus, one can choose U unitary, the indefinite
multiplier equals 1 in modulus.

In what follows we consider this condition to be satisfied. It is
obvious that the correspondence g— U is the projective representation
of G. We show that it is irreducible. Let A be the bounded operator
permutable with all U It follows from (4.19) that in this case A(gz, §z)
is independent of g. Due to the fact that G is transitive, A(z, Z) = a = const.
It follows from a one-to-one correspondence between the operators
and the covariant symbols that A =aE, where E is a unit operator in
Z,. Consequently, the representation is irreducible.

Show the explicit form of the operators Ug. Let g7 '= (% g) then

(Ugf)(2)=9f(g§:g)(52+67)"', o]=1. (4.20)

The unitarity of Transformations (4.20) is verified directly.

The property (4.19) follows from

. az+b
(O, ) ()= 0 (1 et

) (@+bz) "=0(bz+a—vlaz+b) ™"

av—b " _ b _h
_6(1_m2> (a_bﬁ) —G(Cl—bﬁ) d)g‘lu 1)

In conclusion we indicate the covariant symbol U,(z,z) of the
operator U Combining (4.1) and (4.4) we get:

(Uy2, ¢2) = 0@—b2) ™" (d7=r5, ¢2) = 0@—b2) ™" ¢
=0@—azz—bz+bz)™".
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Hence

Luza=m0m@¢a@a¢gﬂ=e(

1—zZ h
=—| . (422
Zi—azE—bE+bz> (4.22)

6. Quantization by Means of Reflections (Analog of the Weyl Quanti-
zation). Let g(v, ) being reflection in the point v

40,5 2= —(1+ov0)z+2v ot (~(1+vz')) 2v

= 4.2
—20z+1+0v0 "’ 1—ovb \—20 1+v )( )

The operator Ug for g=g(v,0) will be denoted via U,,),;. According
to the general formula (4.22) the covariant symbol of the operator
U, ; up to the multiplier 0, |0| = 1, has the form

(1 —z2) (1 —vD) {
(1—217)(1——1)2)] {1+ z—v E~17]"'

{—zv 1—2zv

(4.24)

mmm;a=[

We fix the operator UZ)E so that its covariant symbol has exactly
the form of (4.24).
The function

o(z,2)=Sp(AU, ,) (4.25)

will be called the Weyl covariant symbol of the operator A. The function
o, by means of which the operator Ais represented by the integral

A= (% - 1) § (22 U, ;du(z, 7) (4.26)

will be called the Weyl contravariant symbol of the operator.
The connection between the symbols A4 and < as well between o
and A is given by

A(2,7)=(S,4) (z.2), (4.27)
A(Z: Z-) Z(Shﬂ) (Z9 Z) ’ (428)
where

(Sf) (2 2)= (— - 1>If(v 0) Uy(v, 0|2, 2) d (v, 0)

[the formula (4.27) follows from (3.15) and from the symmetry
U,(v, 0|z, 2) = Uy(z, z|v, )] .

To express the symbols & and o/ one via another, we need the
operator S, as the function of the Laplace-Beltrami operator 4. This is
possible due to permutativity of S, and the operators (4.18) 7,

Performing transformations, analogous to (4.15), we obtain

(AS,f) (2,5) = G~4ﬁuﬂmmMMMmewwmm
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By means of elementary transformations we see that

0% [1—ovp\k
- ] = - 2
(Av,th) (U, UIO, 0) (1 U@ ovoD ( 1 +Ul7)

-6 G

1 /1 4 \7!
AS=—<——1)S—S , S=(1~h2——) S .
ol (S S —n) i

Iterating this relation, we obtain

Hence

n—1

A -1
Sh=r0[(1_hz (1+2kh)(1+(2k_1)h)) Slfé‘nh' (4.29)

Applying the calculations of n°3 to the operators S,, we have that
},iné S,=E. Therefore, passing in (4.29) to the limit n—o0 we receive

0 A -1
S,= 1—h? . 4,
" 101( (1+2kh)(1+(2k—1)h)) (4.30)
Comparing (4.17) and (4.30), we get
T,= S5y, (4.31)
where
, © ) A -1
S"_mi‘h (1+(2k+1)h)(1+2kh)} '
It follows from (4.31) and (4.8)
A=S,A=8,S; oA (4.32)

§ 5. Quantization on a Sphere

1. . .
When the number n= n is integer, the theory, relating to a sphere,

copies in detail the theory refering to the Lobachevskii plane. Let us
consider such a case. At first sight the condition of integrability of

1 . . o
n seems exstravagant. However, as it will be shown in § 6, quantization

on a sphere is, under some natural subsidiary conditions, unique up to

. Sy . {
equivalence. Thus, we are free from considering non-integers R

The main formulas will be given without deduction. Assume radius

of a sphere r= % A sphere is looked upon as the widened complex

plane. In this case the invariant measure on a sphere reads du(z, z)

dz ndz
=(1+29)? sz” Z Isee (1.7)].
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1. The space &, consists of holomorphic functions f(z) with scalar
product {

=y +1) @R+ due D 6)

We remark that if f(z) € %#,, then f(z) is a polynomial of the power no
higher then 711_: in all rest cases the integral, which defines (£, f), diverges.
Thus, dim #, =1 + 1.
The vectors bo(2)=(1 + z0) (5.2)
form a supercomplete system in &%,. For any f e %, following formula
s valid (f:69=10). 53)

We note that (5.2) becomes meaningless under noninteger % in this
case ¢;(z) is a multiple valued function and separation of ambiguous
branch is impossible>.

2. Algebra of Covariant Symbols. The covariant symbol A(z, z) of
the operator A is the value of the function when v=z2

(A, ¢2)
Az, 0)= . (5.4)
(05, ¢2)

The Function (5.4) is an analytic continuation of A(z, Z) therefore,
there is a one-to-one correspondence between the covariant symbols
and operators.

The operator action onto the vector

_)h du(v, 7). (5.6)

- 1
dne= (4 +1)i 4600 (
The product of the operators; if A=A, - A,, then

{ (1+z0)(1 +0v2) |
= _— T . .7
A= (5 +1)§ 4169 s D | (D dute . (57)
Connection between co- and contravariant symbols

e (1 o 1+z0)(1 +v2) )%
A= (G @B = (- + 1)1 40.0) | {0 D P duw ). 58
The expression of the operator 7, through the Laplace-Beltrami
operator:

1+z0

[e o]

_ 2 4 )
T H(Hh (A+nh)(1+m+1)h) ) (59)
The asymptotic formula (4.11) is valid for the operator T,. The
correspondence principle follows from this formula, as in the case of the
Lobachevskii plane.
3. Connection with Representations. The motions of a sphere produce
automorphisms 7, of the algebra 4, according to (4.18). Denote the

5 The System (5.2) (in other coordinates) is the well-known system of Bloch coherent
states. See for example [9].
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projective representation of the group SO(3) which is connected with
automorphisms 1, by (4.19), through U,
The group SO(3) acts onto a sphere according to

-1 az+b
) 2oy Tlim o (5.10)
The operator U, is defined by
~ az+b - ,
=fl—="—](- % 1
GN6 =1 () B a (5.11)

(Under the odd %

from the representation theory, that the whole set of projective repre-
sentations S O(3) is exhausted up to equivalence by the representations U,,.

the representation Ug is two-valued.) It is well-known

§ 6. Problems of Uniqueness

1. Additional Definitions. Let A, and A, be the quantizations of the
same classical mechanics. The quantization A, will be named sub-
quantization U, designated as A, CA, if there exists the admissible
monomorphism y: A, - A,.

Quantisation U is colled maximum, if from A C A, follows A=A .
Let A be a special quantization of the mechanics (IR, w) natural with
respect to some category 24 which involves the group G of motions of
the manifold .

As it has been already mentioned, in this case the shifts generate
automorphisms of the algebra 4, by

(7)) = f(gx). (6.1)

The quantization U will be effective if there is no natural isomorphism
(i.e. permutable with all 7,) between the algebras A4, , 4,, for h; +h,.

The quantization will be irreducible if the algebras allow the exact
irreducible representations by the bounded operators in a Hilbert space.

The quantization will be named w* quantization if the algebras A4,
are the w* algebras.

In particular, for the irreducible w* quantization the algebras A, are
isomorphic with respect to complete algebras of bounded operators
in a Hilbert space.

2. General Consideration. Consider a set M of the algebras A,
consisting of functions on a homogeneous manifold 9 with the group
of motions G and having the following features:

i) The algebra A is isomorphic to the algebra of bounded operators
in a Hilbert space.

i) The shifts (7, f)(x)=f(gx) are the automorphisms of the
algebra A.

iii) A unit of the algebra A is the function fo(x)=1.

The algebras A,,A,e M will be called naturally isomorphic if
there exists an isomorphism between them, which is permutable with
the automorphism 7,.
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A set of all classes of the algebras A, naturally isomorphic in pairs,
will be denoted through M.

A set of all irreducible projective representations of the group G
will be further denoted via T and via T a set of classes of unitarily equiv-
alent projective representations of G. Let us construct the monomorphic
mapping M- T.

We fix A € M. Denote the isomorphic A4 algebra of bounded operators
in a Hilbert space through L, and through ¢ the isomorphism A4— L.
Let 0,= (ptggo'l be the automorphism L. Since all the automorphlsms
L are 1nternal there exists the bounded operator U which is deflned
up to a numerical multiplier A and produces automorphlsm 0,

o,f=U,fU/ . (6.2)
Due to the fact that g, is an * automorphism, it transfers the hermitian
operators into hermitian. Hence it follows that U differs from unitary
operator by the multiplier only. Thus, one can con51der U to be the
unitary operator, an indefinite multiplier 4 to be such, that |A]=1.

The operators U, perform the unitary projective representation
of the group G.

Prove the fact that U is irreducible. Let f, € L be permutable with
U, and fo(x)=0 1foeA Due to (6 2)

Jo gx)—('fgfo) (x)=¢ G'gfo = (U fo 1) (P_lfo = fo(x).

It follows from transitivity of actlons of the group G onto I that
Jo(x)=const= f,. In virtue of the feature iii) it means that fo— foE
where E is a unit operator in /. Therefore, the irreducible projective
representation U,e T of the group G is confronted with each algebra
AeM.

We show that the algebras A,, 4, €M are naturally isomorphic
if and only if the representations U and U corresponding to them,
are unitarily equivalent.

We give the indices i, i = 1, 2 to the objects, refering to the algebra A;.
Let the representations U be unitarily equivalent and V:.J#, -,
be isomorphism of Hilbert spaces, which performs this equivalence:
VU =UPV. We construct the isomorphisms L,—~L, and 4,—A4,
by means of Vv

f=Vivat f@=er (Ve )V )=vf. (63).
The isomorphism (6.3) f > f is natural:

wi f =03 (VUL o, SO0 VY

=07 (U Vo SV UP) ) =1

Vice verse, let the algebras 4,, A, be naturally isomorphicand y: A, —~ A4,
be isomorphism. In this case y = @,p@; ! is isomorphism of the algebras
L, and L,. Since L, and L, are the complete operator algebras, there
exists the 1somorphlsm V:#,— #, which generates y:yf= viv-i,
feL,. The naturalness y means the equality i =1Pp. It follows
from this that yo'" = 6{'y where ¢ is the automorphlsm of L,, such as
(6.2).
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In more detail:
VU“’f(U(”)“ Voi= U‘Z’VfV I(U(Z))‘ (6.4)

VO VO f= fY 0@ VD (6.5)

As (6.5) is valid at any fe Ly, then V™ 1(U{?)~! VUV = AE, consequently,
UP=2V=1UPV. The equality obtained denotes unitary equivalence
of the prOJectlve representations Uy and U

Thus, the correspondence 4 — Ug where U, is irreducible projective
representation of the group G, which is defined by (6.2), is a monomorphic
mapping of the classes M — T.

3. Description of Quantizations on a Sphere. We show that quan-
tization on a sphere, described in §5, is unique maximum effective
irreducible w* quantization up to natural equivalence. Let U be such a
quantization, A, the corresponding algebras, M, M, T, Tisaspecialization
of the objects, introduced in No.2, when M=S, and G=S50(3) is a
group of motions. The algebras 4, have the features i)—iii), i.e. A,,eM
Since there is no natural isomorphism between A, at different h, classes
of the algebras A M, naturally isomorphic to A,, are different at
different h. We denote a set of classes involves A,, through M. The
quantization U is completely defined by the set My, and if U, CA,
then My, C My,. Denote the quantization, described in § 5, through 2.
To prove our assertion it suffices to check that My, =M. For this
purpose we use the monomorphism constructed in the previous section.
Let Ty, and T, be the images of M, and M under this monomorphism.
The following inclusions are obvious: Ty, C Ty, C T. It has been mentioned
in §5 that the representations U defined by (6.2), are exhausted up to
equivalence of projective representatlons of the group SO(3). Conse-
quently, Ty, = T and, therefore Ty, = T);, My, =M.

We have not succeeded in describing analogously the quantization
on the Lobachevskii plane, since for the Lobachevskii plane only the
inclusion Ty, C T'is valid, but not the equality Ty, = T.

Hence
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